1
|
Somprasong S, Wan B, Harutyunyan SR. Enantioselective nickel-catalyzed electrochemical reductive conjugate alkenylation of α,β-unsaturated ketones. Chem Sci 2025; 16:802-808. [PMID: 39640021 PMCID: PMC11615957 DOI: 10.1039/d4sc06891b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Catalytic electrochemical asymmetric catalysis is emerging as a promising strategy for the synthesis of chiral compounds. Herein, we report an asymmetric electrochemical nickel-catalysed reductive conjugate addition of alkenyl bromides/aryl iodides to α,β-unsaturated ketones in an undivided cell, leading to addition products with high yields and excellent enantioselectivities (up to 96% yield and 96% ee).
Collapse
Affiliation(s)
- Siriphong Somprasong
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands
| | - Bin Wan
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands
| | - Syuzanna R Harutyunyan
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3 9747 AG Groningen The Netherlands
| |
Collapse
|
2
|
Zhang WF, Lu CD. Stereoselective Enesulfinamide-Sulfinylimine Tautomerization of β,β-Disubstituted Enesulfinamides. Org Lett 2024; 26:10999-11004. [PMID: 39631841 DOI: 10.1021/acs.orglett.4c04159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In the presence of cesium fluoride and organosilicon reagent, β,β-disubstituted NH-enesulfinamides undergo stereoselective enesulfinamide-sulfinylimine tautomerization at room temperature, resulting in the formation of α-branched N-sulfinyl ketimines in good yields with high stereoselectivity. A variety of acyclic ketone surrogates α-substituted with two electronically and sterically similar groups (e.g., methyl and ethyl), which are typically challenging to access through conventional protocols involving stereoselective protonation of enolates and their equivalents, have been effectively synthesized.
Collapse
Affiliation(s)
- Wan-Fu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
| | - Chong-Dao Lu
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China
- Southwest United Graduate School, Kunming, Yunnan 650092, China
| |
Collapse
|
3
|
Ye Z, Ma W, Zhang X, Liu H, Zhang F. Electrochemically Driven Nickel-Catalyzed Enantioselective Hydro-Arylation/Alkenylation of Enones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405926. [PMID: 39264302 PMCID: PMC11558104 DOI: 10.1002/advs.202405926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Herein, the study reports the first electrochemical nickel-catalyzed enantioselective hydro-arylation/alkenylation of enones in an undivided cell with low-cost electrodes in the absence of external reductants and supporting electrolytes. Aryl bromides/iodides/triflates or alkenyl bromides are employed as electrophiles for the efficient preparation of more than 56 valuable β-arylated/alkenylated ketones in a simple manner (up to 97% yield, 97% ee). With the advantages of electrochemistry, excellent functional group tolerance and late-stage modification of complex natural products and pharmaceuticals made the established protocol greener and more economic. Mechanism investigation suggests that a NiI/NiIII cycle may be involved in this electro-reductive reaction rather than metal reductant driven Ni0/NiII cycle. Overall, the efficient electrochemical activation and turnover of the nickel catalyst avoid the drawbacks posed by the employment of stoichiometric amount of sensitive metal powder reductants.
Collapse
Affiliation(s)
- Zenghui Ye
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| | - Weiyuan Ma
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| | - Xi Zhang
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| | - Huaqing Liu
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| | - Fengzhi Zhang
- School of PharmacyHangzhou Medical CollegeHangzhouZhejiang311399China
| |
Collapse
|
4
|
He JY, Zhu C, Duan WX, Kong LX, Wang NN, Wang YZ, Fan ZY, Qiao XY, Xu H. Bifunctional Chiral Electrocatalysts Enable Enantioselective α-Alkylation of Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202401355. [PMID: 38967087 DOI: 10.1002/anie.202401355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Herein, we describe an innovative approach to the asymmetric electrochemical α-alkylation of aldehydes facilitated by a newly designed bifunctional chiral electrocatalyst. The highly efficient bifunctional chiral electrocatalyst combines a chiral aminocatalyst with a redox mediator. It plays a dual role as a redox mediator for electrooxidation, while simultaneously providing remarkable asymmetric induction for the stereoselective α-alkylation of aldehydes. Additionally, this novel catalyst exhibits enhanced catalytic activity and excellent stereoselective control comparable to conventional catalytic systems. As a result, this strategy provides a new avenue for versatile asymmetric electrochemistry. The electrooxidation of diverse phenols enables the C-H/C-H oxidative α-alkylation of aldehydes in a highly chemo- and stereoselective fashion. Detailed mechanistic studies by control experiments and cyclic voltammetry analysis demonstrate possible reaction pathways and the origin of enantio-induction.
Collapse
Affiliation(s)
- Jin-Yu He
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Cuiju Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wen-Xi Duan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ling-Xuan Kong
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Na-Na Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan-Zhao Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhi-Yong Fan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin-Ying Qiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Xu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
5
|
Li Y, Xu J, Oliveira JC, Scheremetjew A, Ackermann L. Electrochemical Enantioselective C-H Annulation by Achiral Rhodium(III)/Chiral Brønsted Base Domino Catalysis. ACS Catal 2024; 14:8160-8167. [PMID: 38868099 PMCID: PMC11165455 DOI: 10.1021/acscatal.4c01886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
Rhodium(III)-catalyzed enantioselective C-H activation has emerged as a powerful tool for assembling enabling chiral molecules. However, this approach is significantly hampered by the cumbersome synthetic routes for preparing chiral rhodium catalysts. In sharp contrast, we herein report on an electrochemical domino catalysis system that exploits an achiral Cp*-rhodium catalyst along with an easily accessible chiral Brønsted base for an enantioselective C-H activation/annulation reaction of alkenes by benzoic acids. Our strategy offers an environmentally benign and most user-friendly approach for assembling synthetically useful chiral phthalides in good enantioselectivity, employing electricity as the sustainable oxidant.
Collapse
Affiliation(s)
- Yanjun Li
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Jiawei Xu
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - João C.
A. Oliveira
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Alexej Scheremetjew
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| |
Collapse
|
6
|
Wang S, Wu Z, Li J, Zhu Y, Zheng S, Jiang C, Lu H. Electrochemical decarboxylative alkylation of β-ketoacids with phenol derivatives. Chem Commun (Camb) 2024; 60:1329-1332. [PMID: 38197300 DOI: 10.1039/d3cc05489f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An electrochemical method for the decarboxylative alkylation of β-ketoacids with phenol derivatives has been developed. The protocol was carried out in readily available unseparated cells at room temperature in the absence of catalysts and oxidants. The corresponding aryl ketones were obtained in satisfactory yields without additional electrolytes, and were easy to produce in gram-scale synthesis. Based on control experiments and cyclic voltammetry, a plausible reaction mechanism was proposed.
Collapse
Affiliation(s)
- Shan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Zhaotian Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Junqiang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Yujun Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
7
|
Huang C, Tao Y, Cao X, Zhou C, Lu Q. Asymmetric Paired Electrocatalysis: Enantioselective Olefin-Sulfonylimine Coupling. J Am Chem Soc 2024; 146:1984-1991. [PMID: 38113828 DOI: 10.1021/jacs.3c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Asymmetric electrocatalysis offers exciting new strategies for the synthesis of chiral molecules through novel reaction pathways. However, simultaneous activation of reactants on both electrodes via asymmetric paired electrolysis, which is more energy efficient and economic than single half-electrode synthesis, remains a formidable challenge. Herein, an asymmetric olefin-sulfonylimine coupling via paired electrocatalysis is presented for the first time. In this protocol, Co-catalyzed hydrogen atom transfer on the anode and Ni-catalyzed sulfonylimine reduction on the cathode were seamlessly cross-coupled. The new catalytic system enables the formation of chiral amine products bearing a tetrasubstituted carbon stereocenter with a high enantioselectivity (up to 96% ee).
Collapse
Affiliation(s)
- Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Xiyang Cao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Cong Zhou
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
8
|
Abstract
Electrochemistry has emerged as a powerful means to enable redox transformations in modern chemical synthesis. This tutorial review delves into the unique advantages of electrochemistry in the context of asymmetric catalysis. While electrochemistry has historically been used as a green and mild alternative for established enantioselective transformations, in recent years asymmetric electrocatalysis has been increasingly employed in the discovery of novel asymmetric methodologies based on reaction mechanisms unique to electrochemistry. This tutorial review first provides a brief tutorial introduction to electrosynthesis, then explores case studies on homogenous small molecule asymmetric electrocatalysis. Each case study serves to highlight a key advance in the field, starting with the historic electrification of known asymmetric transformations and culminating with modern methods relying on unique electrochemical mechanistic sequences. Finally, we highlight case studies in the emerging reasearch areas at the interface of asymmetric electrocatalysis with biocatalysis and heterogeneous catalysis.
Collapse
Affiliation(s)
- Jonas Rein
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Samson B Zacate
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Kaining Mao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
9
|
Lin Y, von Münchow T, Ackermann L. Cobaltaelectro-Catalyzed C-H Annulation with Allenes for Atropochiral and P-Stereogenic Compounds: Late-Stage Diversification and Continuous Flow Scale-Up. ACS Catal 2023; 13:9713-9723. [PMID: 38076330 PMCID: PMC10704562 DOI: 10.1021/acscatal.3c02072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Indexed: 01/25/2024]
Abstract
The 3d metallaelectro-catalyzed C-H activation has been identified as an increasingly viable strategy to access valuable organic molecules in a resource-economic fashion under exceedingly mild reaction conditions. However, the development of enantioselective 3d metallaelectro-catalyzed C-H activation is very challenging and in its infancy. Here, we disclose the merger of cobaltaelectro-catalyzed C-H activation with asymmetric catalysis for the highly enantioselective annulation of allenes. A broad range of C-N axially chiral and P-stereogenic compounds were thereby obtained in good yields of up to 98% with high enantioselectivities of up to >99% ee. The practicality of this approach was demonstrated by the diversification of complex bioactive compounds and drug molecules as well as decagram scale enantioselective electrocatalysis in continuous flow.
Collapse
Affiliation(s)
- Ye Lin
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Tristan von Münchow
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Lutz Ackermann
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität
Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
- WISCh
(Wöhler-Research Institute for Sustainable Chemistry), Georg-August-Universität
Göttingen, Tammannstraße
2, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Wang YZ, Wang ZH, Eshel IL, Sun B, Liu D, Gu YC, Milo A, Mei TS. Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides. Nat Commun 2023; 14:2322. [PMID: 37087477 PMCID: PMC10122672 DOI: 10.1038/s41467-023-37965-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 04/24/2023] Open
Abstract
Here, we report an asymmetric electrochemical organonickel-catalyzed reductive cross-coupling of aryl aziridines with aryl iodides in an undivided cell, affording β-phenethylamines in good to excellent enantioselectivity with broad functional group tolerance. The combination of cyclic voltammetry analysis of the catalyst reduction potential as well as an electrode potential study provides a convenient route for reaction optimization. Overall, the high efficiency of this method is credited to the electroreduction-mediated turnover of the nickel catalyst instead of a metal reductant-mediated turnover. Mechanistic studies suggest a radical pathway is involved in the ring opening of aziridines. The statistical analysis serves to compare the different design requirements for photochemically and electrochemically mediated reactions under this type of mechanistic manifold.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Inbal L Eshel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 841051, Israel
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, RE42 6EY, UK
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 841051, Israel.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|
11
|
Tan X, Wang Q, Sun J. Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis. Nat Commun 2023; 14:357. [PMID: 36690612 PMCID: PMC9870882 DOI: 10.1038/s41467-023-36000-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Electricity-driven asymmetric catalysis is an emerging powerful tool in organic synthesis. However, asymmetric induction so far has mainly relied on forming strong bonds with a chiral catalyst. Asymmetry induced by weak interactions with a chiral catalyst in an electrochemical medium remains challenging due to compatibility issues related to solvent polarity, electrolyte interference, etc. Enabled by a properly designed phase-transfer strategy, here we have achieved two efficient electricity-driven catalytic asymmetric bromocyclization processes induced by weak ion-pairing interaction. The combined use of a phase-transfer catalyst and a chiral phosphate catalyst, together with NaBr as the bromine source, constitutes the key advantages over the conventional chemical oxidation approach. Synergy over multiple events, including anodic oxidation, ion exchange, phase transfer, asymmetric bromination, and inhibition of Br2 decomposition by NaHCO3, proved critical to the success.
Collapse
Affiliation(s)
- Xuefeng Tan
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.495521.eHKUST Shenzhen Research Institute, No. 9 Yuexing 1st Rd, 518057 Shenzhen, China
| | - Qingli Wang
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.510951.90000 0004 7775 6738Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Jianwei Sun
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.495521.eHKUST Shenzhen Research Institute, No. 9 Yuexing 1st Rd, 518057 Shenzhen, China
| |
Collapse
|
12
|
Liu D, Liu ZR, Wang ZH, Ma C, Herbert S, Schirok H, Mei TS. Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides. Nat Commun 2022; 13:7318. [PMID: 36443306 PMCID: PMC9705544 DOI: 10.1038/s41467-022-35073-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Electrochemical asymmetric catalysis has emerged as a sustainable and promising approach to the production of chiral compounds and the utilization of both the anode and cathode as working electrodes would provide a unique approach for organic synthesis. However, precise matching of the rate and electric potential of anodic oxidation and cathodic reduction make such idealized electrolysis difficult to achieve. Herein, asymmetric cross-coupling between α-chloroesters and aryl bromides is probed as a model reaction, wherein alkyl radicals are generated from the α-chloroesters through a sequential oxidative electron transfer process at the anode, while the nickel catalyst is reduced to a lower oxidation state at the cathode. Radical clock studies, cyclic voltammetry analysis, and electron paramagnetic resonance experiments support the synergistic involvement of anodic and cathodic redox events. This electrolytic method provides an alternative avenue for asymmetric catalysis that could find significant utility in organic synthesis.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Hartmut Schirok
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|
13
|
Liang K, Zhang Q, Guo C. Nickel-catalyzed switchable asymmetric electrochemical functionalization of alkenes. SCIENCE ADVANCES 2022; 8:eadd7134. [PMID: 36351023 PMCID: PMC9645727 DOI: 10.1126/sciadv.add7134] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The development of general electrocatalytic methods for the diversity-oriented regio- and stereoselective functionalization of alkenes remains a challenge in organic synthesis. We present a switchable electrocatalytic method based on anodic oxidative activation for the controlled liberation of chiral α-keto radical species toward stereoselective organic transformations. Electrogenerated α-keto radical species capture alkene partners, allowing switchable intermolecular alkene difunctionalization and alkenylation in a highly stereoselective manner. In addition to acting as proton donors to facilitate H2 evolution at the cathode, the unique properties of alcohol additives play an important role in determining the distinct outcomes for alkene functionalization under electrocatalytic conditions.
Collapse
|
14
|
Zhang Q, Liang K, Guo C. Enantioselective Nickel‐Catalyzed Electrochemical Radical Allylation. Angew Chem Int Ed Engl 2022; 61:e202210632. [DOI: 10.1002/anie.202210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Kang Liang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
15
|
Zhang Q, Liang K, Guo C. Enantioselective Nickel‐Catalyzed Electrochemical Radical Allylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qinglin Zhang
- USTC: University of Science and Technology of China HFNL CHINA
| | - Kang Liang
- USTC: University of Science and Technology of China HFNL CHINA
| | - Chang Guo
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale No.96, JinZhai Road Baohe District 230026 Hefei CHINA
| |
Collapse
|
16
|
Hussain Y, Sharma D, Kotwal N, Kumar I, Chauhan P. Stereoselective Oxidative Mannich Reaction of Ketones with Dihydrodibenzo-Oxazepines via a Merger of Photoredox-/Electro-Catalysis with Organocatalysis. CHEMSUSCHEM 2022; 15:e202200415. [PMID: 35343096 DOI: 10.1002/cssc.202200415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Indexed: 06/14/2023]
Abstract
An enantio- and diastereoselective sp3 -sp3 coupling of acyclic/cyclic ketones with dihydrodibenzo-oxazepines has been developed by merging visible light photo-redox- or electro-catalysis with organocatalysis. This approach parallelly utilizes Eosin Y or graphite electrodes for the co-catalyst-free oxidative conversion of dihydrodibenzo-oxazepines to oxazepines, followed by L-Proline catalyzed direct Mannich-type reaction with ketones. A series of enantioenriched dihydrodibenzo-oxazepines have been prepared in high yields and enantioselectivity. This method shows substantial advantages over the existing protocols by using potentially safer starting materials and cheap commercially available catalysts.
Collapse
Affiliation(s)
- Yaseen Hussain
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Deepak Sharma
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Namrata Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| | - Indresh Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu Jagti, NH-44, Nagrota Bypass, Jammu, 181221, J&K, India
| |
Collapse
|
17
|
Yang J, Liu S, Hong P, Li J, Wang Z, Ren J. Synthesis of 2,2-Difluoro-3-hydroxy-1,4-diketones via an HFIP-Catalyzed Mukaiyama Aldol Reaction of Glyoxal Monohydrates with Difluoroenoxysilanes. J Org Chem 2022; 87:1144-1153. [PMID: 34994195 DOI: 10.1021/acs.joc.1c02504] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel efficient HFIP-catalyzed synthesis of structurally diverse 2,2-difluoro-3-hydroxy-1,4-diketone derivatives from readily available glyoxal monohydrates and difluoroenoxysilanes is described. This convenient protocol is induced by the distinctive fluorine effect of the reactants and the fluoroalcohol catalyst, which represents the first application of fluoroalcohol catalysis in a Mukaiyama aldol reaction.
Collapse
Affiliation(s)
- Jianguo Yang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China.,Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Saimei Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| | - Peng Hong
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P.R. China
| | - Jun Ren
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Hubei University, Wuhan 430062, P.R. China
| |
Collapse
|
18
|
Wang Z, Ma C, Fang P, Xu H, Mei T. Advances in Organic Electrochemical Synthesis. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22060260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Wang D, Wan Z, Zhang H, Alhumade H, Yi H, Lei A. Electrochemical Reductive Arylation of Nitroarenes with Arylboronic Acids. CHEMSUSCHEM 2021; 14:5399-5404. [PMID: 34581006 DOI: 10.1002/cssc.202101924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/26/2021] [Indexed: 06/13/2023]
Abstract
The synthesis of diarylamine is extremely important in organic chemistry. Herein, a novel electrochemical reductive arylation of nitroarenes with arylboronic acids was developed. A variety of diarylamines were synthesized without the need for transition-metal catalysts. The reaction could be scaled up efficiently in a flow cell and several derivatization reactions were carried out smoothly. Cyclic voltammetry experiments and mechanism studies showed that acetonitrile, formic acid, and triethyl phosphite all played a role in promoting this reductive arylation transformation.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, P. R. China
| | - Zhaohua Wan
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
| | - Heng Zhang
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
| | - Hesham Alhumade
- Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, Jdedah, 21589, Saudi Arabia
- Center of Research Excellence in Renewable Energy and Power Systems, King Abdulaziz University, Jdedah, 21589, Saudi Arabia
| | - Hong Yi
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
| | - Aiwen Lei
- Institute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Wuhan University, Wuhan, 430072, P. R. China
- King Abdulaziz University, Jdedah, 21589, Saudi Arabia
| |
Collapse
|
20
|
Directing electrochemical asymmetric synthesis at heterogeneous interfaces: Past, present, and challenges. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Ma C, Fang P, Liu D, Jiao KJ, Gao PS, Qiu H, Mei TS. Transition metal-catalyzed organic reactions in undivided electrochemical cells. Chem Sci 2021; 12:12866-12873. [PMID: 34745519 PMCID: PMC8514006 DOI: 10.1039/d1sc04011a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Transition metal-catalyzed organic electrochemistry is a rapidly growing research area owing in part to the ability of metal catalysts to alter the selectivity of a given transformation. This conversion mainly focuses on transition metal-catalyzed anodic oxidation and cathodic reduction and great progress has been achieved in both areas. Typically, only one of the half-cell reactions is involved in the organic reaction while a sacrificial reaction occurs at the counter electrode, which is inherently wasteful since one electrode is not being used productively. Recently, transition metal-catalyzed paired electrolysis that makes use of both anodic oxidation and cathodic reduction has attracted much attention. This perspective highlights the recent progress of each type of electrochemical reaction and relatively focuses on the transition metal-catalyzed paired electrolysis, showcasing that electrochemical reactions involving transition metal catalysis have advantages over conventional reactions in terms of controlling the reaction activity and selectivity and figuring out that transition metal-catalyzed paired electrolysis is an important direction of organic electrochemistry in the future and offers numerous opportunities for new and improved organic reaction methods.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ke-Jin Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pei-Sen Gao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hui Qiu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
22
|
Wang ZH, Gao PS, Wang X, Gao JQ, Xu XT, He Z, Ma C, Mei TS. TEMPO-Enabled Electrochemical Enantioselective Oxidative Coupling of Secondary Acyclic Amines with Ketones. J Am Chem Soc 2021; 143:15599-15605. [PMID: 34533943 DOI: 10.1021/jacs.1c08671] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An electrochemical asymmetric coupling of secondary acyclic amines with ketones via a Shono-type oxidation has been described, affording the corresponding amino acid derivatives with good to excellent diastereoselectivity and enantioselectivity. The addition of an N-oxyl radical as a redox mediator could selectively oxidize the substrate rather than the product, although their oxidation potential difference is subtle (about 13 mV). This electrochemical transformation proceeds in the absence of stoichiometric additives, including metals, oxidants, and electrolytes, which gives it good functional group compatibility. Mechanistic studies suggest that proton-mediated racemization of the product is prevented by the reduction of protons at the cathode.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Pei-Sen Gao
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xiu Wang
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Jun-Qing Gao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Zeng He
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
23
|
Abstract
The renewed interest in electrosynthesis demonstrated by organic chemists in the last years has allowed for rapid development of new methodologies. In this review, advances in enantioselective electrosynthesis that rely on catalytic amounts of organic or metal-based chiral mediators are highlighted with focus on the most recent developments up to July 2020. Examples of C-H functionalization, alkene functionalization, carboxylation and cross-electrophile couplings are discussed, along with their related mechanistic aspects.
Collapse
|