1
|
Wu FP, Lenz M, Suresh A, Gogoi AR, Tyler JL, Daniliuc CG, Gutierrez O, Glorius F. Nitrogen-to-functionalized carbon atom transmutation of pyridine. Chem Sci 2024; 15:d4sc04413d. [PMID: 39246332 PMCID: PMC11372446 DOI: 10.1039/d4sc04413d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
The targeted and selective replacement of a single atom in an aromatic system represents a powerful strategy for the rapid interconversion of molecular scaffolds. Herein, we report a pyridine-to-benzene transformation via nitrogen-to-carbon skeletal editing. This approach proceeds via a sequence of pyridine ring-opening, imine hydrolysis, olefination, electrocyclization, and aromatization to achieve the desired transmutation. The most notable features of this transformation are the ability to directly install a wide variety of versatile functional groups in the benzene scaffolding, including ester, ketone, amide, nitrile, and phosphate ester fragments, as well as the inclusion of meta-substituted pyridines which have thus far been elusive for related strategies.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Madina Lenz
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Adhya Suresh
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Jasper L Tyler
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
2
|
Fan Y, Wang M, Liu Z, Gao G, Qi H, Huang W, Ma L, Qu Z, Yan N, Xu H. Lattice-Strain Engineering in Ni-Ru Heterostructures for Efficient Acetylene Hydrochlorination toward Vinyl Chloride. ACS NANO 2024. [PMID: 39056445 DOI: 10.1021/acsnano.4c06094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Ru-based catalysts have emerged as promising alternatives to HgCl2 in vinyl chloride monomer (VCM) production by acetylene hydrochlorination. However, poor C2H2 activation and the generation of key intermediates (*CH2═CH) have posed grand challenges for enhanced catalytic performances. Herein, we synthesized a Ni-intercalated Ru heterostructure using a lattice-strain engineering strategy, resulting in the desired electronic and chemical environments. The collaboration of Ni splits the adsorption centers of C2H2 and HCl by weakening the strong steric hindrance, and it also promotes the activation of the linear C≡C configurations. The well-controlled lattice strain enables strong d-d hybridization interactions between Ni and Ru, resulting in an upshift of the d-band center from -3.72 eV (for Ru/C) to -3.49 eV and electronic delocalization. This optimized local Ni-Ru/C structure thus enhances *H adsorption while weakening the energy barrier for generating *CH2═CH intermediates. Furthermore, the energy barrier for VCM formation was simultaneously reduced. Accordingly, the Ni-Ru/C heterostructures achieve improved performance in pilot-scale trials, with a conversion of >99.2% and stability for over 500 h. These performances significantly surpass most reported Ru-based moieties and the traditional Hg catalysts, offering a promising avenue for C2H2 activation in industrial applications.
Collapse
Affiliation(s)
- Yurui Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingming Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhisong Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China
| | - Guanqun Gao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongyuan Qi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haomiao Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Saha J, Banerjee S, Malo S, Das AK, Das I. A Torquoselective Thermal 6π-Electrocyclization Approach to 1,4-Cyclohexadienes via Solvent-Aided Proton Transfer: Experimental and Theoretical Studies. Chemistry 2024; 30:e202304009. [PMID: 38179806 DOI: 10.1002/chem.202304009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 01/06/2024]
Abstract
The thermal 6π-electrocyclization of hexatriene typically delivers 1,3-cyclohexadiene (1,3-CHD). However, there is only limited success in directly synthesizing 1,4-cyclohexadiene (1,4-CHD) using such an approach, probably due to the difficulty in realizing thermally-forbidden 1,3-hydride shift after electrocyclic ring closure. The present study shows that by heating (2E,4E,6E)-hexatrienes bearing ester or ketone substituents at the C1-position in a mixture of toluene/MeOH or EtOH (2 : 1) solvents at 90-100 °C, 1,4-CHDs can be selectively synthesized. This is achieved through a torquoselective disrotatory 6π-electrocyclic ring closure followed by a proton-transfer process. The success of this method depends on the polar protic solvent-assisted intramolecular proton transfer from 1,3-CHD to 1,4-CHD, which has been confirmed by deuterium-labeling experiments. There are no reports to date for such a solvent-assisted isomerization. Density functional theory (DFT) studies have suggested that forming 1,3-CHD and subsequent isomerization is a thermodynamically feasible process, regardless of the functional groups involved. Two possible successive polar solvent-assisted proton-transfer pathways have been identified for isomerization.
Collapse
Affiliation(s)
- Jayanta Saha
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Soumadip Banerjee
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Sidhartha Malo
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Kumar Das
- School of Mathematical and Computational Sciences, Indian Association for the Cultivation of Science Jadavpur, Kolkata, 700032, India
| | - Indrajit Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical BiologyJadavpur, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
4
|
Dethe DH, Uike A, Beeralingappa NC. Ru(II)-Catalyzed Deoxygenative Formal [3 + 1 + 2] Benzannulation of Allyl Alcohols and Acetylenediesters via C-H Activation and Selective Carbon-Carbon Triple Bond Cleavage. Org Lett 2024; 26:2013-2017. [PMID: 38437734 DOI: 10.1021/acs.orglett.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
An unprecedented Ru(II)-catalyzed deoxygenative, site-selective formal [3 + 1 + 2] benzannulation reaction for the efficient synthesis of highly substituted benzene molecules is reported. This reaction between allyl alcohols and acetylenedicarboxylate esters proceeds via cascade C-H activation, consecutive double migratory insertion with alkynes, and cycloaromatization followed by an unusual specific C-C triple bond cleavage.
Collapse
Affiliation(s)
- Dattatraya H Dethe
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Amar Uike
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | |
Collapse
|
5
|
Lyu H, Tugwell TH, Chen Z, Kukier GA, Turlik A, Wu Y, Houk KN, Liu P, Dong G. Modular synthesis of 1,2-azaborines via ring-opening BN-isostere benzannulation. Nat Chem 2024; 16:269-276. [PMID: 37783725 PMCID: PMC11681771 DOI: 10.1038/s41557-023-01343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/08/2023] [Indexed: 10/04/2023]
Abstract
1,2-Azaborines represent a unique class of benzene isosteres that have attracted interest for developing pharmaceuticals with better potency and bioavailability. However, it remains a long-standing challenge to prepare monocyclic 1,2-azaborines, particularly multi-substituted ones, in an efficient and modular manner. Here we report a straightforward method to directly access diverse multi-substituted 1,2-azaborines from readily available cyclopropyl imines/ketones and dibromoboranes under relatively mild conditions. The reaction is scalable, shows a broad substrate scope, and tolerates a range of functional groups. The utility of this method is demonstrated in the concise syntheses of BN isosteres of a PD-1/PD-L1 inhibitor and pyrethroid insecticide, bifenthrin. Combined experimental and computational mechanistic studies suggest that the reaction pathway involves boron-mediated cyclopropane ring-opening and base-mediated elimination, followed by an unusual low-barrier 6π-electrocyclization accelerated by the BN/CC isomerism. This method is anticipated to find applications for the synthesis of BN-isostere analogues in medicinal chemistry, and the mechanistic insights gained here may guide developing other boron-mediated electrocyclizations.
Collapse
Affiliation(s)
- Hairong Lyu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Thomas H Tugwell
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhijie Chen
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Garrett A Kukier
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Yifei Wu
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Naulin E, Lombard M, Gandon V, Retailleau P, Elslande EV, Neuville L, Masson G. Enantioselective and Regiodivergent Synthesis of Dihydro-1,2-oxazines from Triene-Carbamates via Chiral Phosphoric Acid-Catalysis. J Am Chem Soc 2023; 145:26504-26515. [PMID: 38011838 DOI: 10.1021/jacs.3c12015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Conjugated trienes are fascinating building blocks for the rapid construction of complex polycyclic compounds. However, limited success has been achieved due to the challenging regioselectivity control. Herein, we report an enantio- and diastereoselective process allowing to regioselectively control the functionalization of NH-triene-carbamates. Synthesis of chiral cis-3,6-dihydro-2H-1,2-oxazines is achieved by a chiral phosphoric acid catalyzed Nitroso-Diels-Alder cycloaddition involving [(1E,3E,5E)-hexa-1,3,5-trien-1-yl]carbamates. Moreover, modular access to three different regioisomers with excellent diastereoselectivities and high to excellent enantioselectivities is obtained by a careful choice of the reaction conditions. A computational study reveals that the regioselectivity is influenced by the steric demand of the substituents at the 6-position of the triene, as well as noncovalent interactions between the two cycloaddition partners. Utility of each regioisomeric cycloadduct is highlighted by a variety of synthetic transformations.
Collapse
Affiliation(s)
- Emma Naulin
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Marine Lombard
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 17 Avenue des Sciences, Orsay 91400, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Elsa Van Elslande
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, Porcheville 78440, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex 91198, France
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 8 Rue de Rouen, Porcheville 78440, France
| |
Collapse
|
7
|
Badeji AA, Liu Y, Oladipo SD, Osinubi AD. Computational insights into the mechanisms and origins of switchable selectivity in gold(i)-catalyzed annulation of ynamides with isoxazoles via 6π-electrocyclizations of azaheptatrienyl cations. RSC Adv 2023; 13:18025-18037. [PMID: 37323448 PMCID: PMC10265590 DOI: 10.1039/d3ra02839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Electrocyclizations of acyclic conjugated π-motifs have emerged as a versatile and effective strategy for accessing various ring systems with excellent functional group tolerability and controllable selectivity. Typically, the realization of 6π-electrocyclization of heptatrienyl cations to afford seven-membered motif has proven difficult due to the high-energy state of the cyclizing seven-membered intermediate. Instead, it undergoes the Nazarov cyclization, affording a five-membered pyrrole product. However, the incorporation of a Au(i)-catalyst, a nitrogen atom and tosylamide group in the heptatrienyl cations unexpectedly circumvented the aforementioned high energy state to afford a seven-membered azepine product via 6π-electrocyclization in the annulation of 3-en-1-ynamides with isoxazoles. Therefore, extensive computational studies were carried out to investigate the mechanism of Au(i)-catalyzed [4+3] annulation of 3-en-1-ynamides with dimethylisoxazoles to produce a seven-membered 4H-azepine via the 6π-electrocyclization of azaheptatrienyl cations. Computational results showed that after the formation of the key α-imino gold carbene intermediate, the annulation of 3-en-1-ynamides with dimethylisoxazole occurs via the unusual 6π-electrocyclization to afford a seven-membered 4H-azepine exclusively. However, the annulation of 3-cyclohexen-1-ynamides with dimethylisoxazole occurs via the commonly proposed aza-Nazarov cyclization pathway to majorly generate five-membered pyrrole derivatives. The results from the DFT predictive analysis revealed that the key factors responsible for the different chemo-, and regio-selectivities observed are the cooperating effect of the tosylamide group on C1, the uninterrupted π-conjugation pattern of the α-imino gold(i) carbene and the substitution pattern at the cyclization termini. The Au(i)-catalyst is believed to assist in the stabilization of the azaheptatrienyl cation.
Collapse
Affiliation(s)
| | - Yuan Liu
- School of Chemistry and Chemical Engineering, Nantong University 9 Seyuan Road Nantong 226019 China
| | - Segun D Oladipo
- Department of Chemical Sciences, Olabisi Onabanjo University 2002 Ago-Iwoye Nigeria
| | | |
Collapse
|
8
|
Frynas S, Wawrzkiewicz M. Synthesis, Characterization and Application of a New Functionalized Polymeric Sorbent Based on Alkenylphoshine Oxide. Polymers (Basel) 2023; 15:polym15061591. [PMID: 36987371 PMCID: PMC10052587 DOI: 10.3390/polym15061591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
A novel phosphorus-containing sorbent (CyP(Ph)4-DVB) was prepared by copolymerizing divinylbenzene (DVB) with bis α,β-unsaturated phosphorylated cyclohexene (CyP(Ph)4). ATR-FT-IR indicated that the phosphinoyl group was introduced into the sorbent structure. The thermal properties of the sorbent were investigated using a differential scanning calorimeter (DSC), which revealed that (CyP(Ph)4-DVB) is more stable than poly(DVB). The CyP(Ph)4-DVB was applied for cationic dye removal, such as C.I. Basic Yellow 2 (BY2) and C.I. Basic Blue 3 (BB3). Batch adsorption tests suggested that the Freundlich isotherm model seemed to be the better one for the description of equilibrium sorption data at equilibrium, rather than the Langmuir or Temkin models. The Freundlich constants concerning the adsorption capacity of CyP(Ph)4-DVB, kF, were calculated as 14.2 mg1-1/nL1/n/g for BY2 and 53.7 mg1-1/nL1/n/g for BB3.
Collapse
Affiliation(s)
- Sławomir Frynas
- Department of Organic Chemistry and Crystallochemistry, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, 33 Gliniana Str., 20-614 Lublin, Poland
| | - Monika Wawrzkiewicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 2, 20-031 Lublin, Poland
| |
Collapse
|
9
|
Bolliger R, Siebenmann L, Wolf E, Ross M, Meola G, Blacque O, Braband H, Alberto R. Exploring Rhenium Arene Piano-Stool Chemistry with [Re(η 6-C 6H 6)(NCCH 3) 3] +: A Powerful Semi-Solvated Precursor. Inorg Chem 2023; 62:4227-4237. [PMID: 36853095 PMCID: PMC10015454 DOI: 10.1021/acs.inorgchem.2c04346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Thermal treatment of the ReIII hydride complex [ReH(η5-C6H7)(η6-C6H6)]+ in CH3CN results in the formation of [Re(η6-C6H6)(NCCH3)3]+. This semi-solvated complex is remarkably stable under an ambient atmosphere and exhibits a fast CH3CN self-exchange, which facilitates substitution reactions. The CH3CN ligands are replaced by σ-donating phosphines such as trimethyl phosphine (PMe3), triphenyl phosphine (PPh3), or the bidentate 1,2-bis(diphenylphosphino)ethane (dppe) to afford [Re(η6-C6H6)(NCCH3)3-x(PR3)x]+ (if R = Me, then x = 2; if R = Ph, then x = 1 or 2) or [Re(η6-C6H6)(dppe)(NCCH3)]+, respectively. [Re(η6-C6H6)(NCCH3)3]+ also reacts with π-acceptors such as 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), or CO (1 atm) to give [Re(η6-C6H6)(L)(NCCH3)]+ (L = bipy or phen) and [Re(η6-C6H6)(CO)(NCCH3)2]+, respectively. The latter does not show any signs of decomposition after being exposed to an ambient atmosphere for multiple days. Additionally, [Re(η6-C6H6)(NCCH3)3]+ reacts with π-donors such as the dienes 2,3-dimethyl-1,3-butadiene (DMBD), norbornadiene (NBD), or 1,5-cyclooctadiene (COD) to give [Re(η6-C6H6)(η4-diene)(NCCH3)]+ (diene = DMBD, NBD, and COD). All three complexes are extremely stable and do not decompose during purification by preparative high-performance liquid chromatography (aqueous acidic gradient). In the presence of 18-crown-6, [Re(η6-C6H6)(NCCH3)3]+ reacts with lithium cyclopentadienyl to give the sandwich complex [Re(η5-C5H5)(η6-C6H6)]. Loss of the coordinated benzene was observed when treating [Re(η6-C6H6)(NCCH3)3]+ with diphenylacetylene (PhC≡CPh), yielding the tetra-coordinated [Re(NCCH3)(η2-PhC≡CPh)3]+.
Collapse
Affiliation(s)
- Robin Bolliger
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Lukas Siebenmann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Emily Wolf
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Megan Ross
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Giuseppe Meola
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Henrik Braband
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
10
|
Andrés JL, Suárez E, Martín M, Sola E. Mechanistic Versatility at Ir(PSiP) Pincer Catalysts: Triflate Proton Shuttling from 2-Butyne to Diene and [3]Dendralene Motifs. Organometallics 2022; 41:2622-2630. [PMID: 36185395 PMCID: PMC9518705 DOI: 10.1021/acs.organomet.2c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/28/2022]
Abstract
![]()
The five-coordinate
hydrido complex [IrH(OTf)(PSiP)]
(1) catalytically transforms 2-butyne into a mixture
of its isomer
1,3-butadiene, and [3]dendralene and linear hexatriene dimerization
products: (E)-4-methyl-3-methylene-1,4-hexadiene
and (3Z)-3,4-dimethyl-1,3,5-hexatriene, respectively.
Under the conditions of the catalytic reaction, benzene, and 363 K,
the hexatriene further undergoes thermal electrocyclization into 2,3-dimethyl-1,3-cyclohexadiene.
The reactions between 1 and the alkyne substrate allow
isolation or nuclear magnetic resonance (NMR) observation of catalyst
resting states and possible reaction intermediates, including complexes
with the former PSiP pincer ligands disassembled into PSi and PC chelates,
and species coordinating allyl or carbene fragments en route to products.
The density functional theory (DFT) calculations guided by these experimental
observations disclose competing mechanisms for C–H bond elaboration
that move H atoms either classically, as hydrides, or as protons transported
by the triflate. This latter role of triflate, previously recognized
only for more basic anions such as carboxylates, is discussed to result
from combining the unfavorable charge separation in the nonpolar solvent
and the low electronic demand from the metal to the anion at coordination
positions trans to silicon. Triflate deprotonation of methyl groups
is key to release highly coordinating diene products from stable allyl
intermediates, thus enabling catalytic cycling.
Collapse
Affiliation(s)
- José L. Andrés
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, Facultad de Ciencias, E50009 Zaragoza, Spain
| | - Elizabeth Suárez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, Facultad de Ciencias, E50009 Zaragoza, Spain
| | - Marta Martín
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, Facultad de Ciencias, E50009 Zaragoza, Spain
| | - Eduardo Sola
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, Facultad de Ciencias, E50009 Zaragoza, Spain
| |
Collapse
|
11
|
Sohail M, Bilal M, Maqbool T, Rasool N, Ammar M, Mahmood S, Malik A, Zubair M, Abbas Ashraf G. Iron-catalyzed synthesis of N-heterocycles via intermolecular and intramolecular cyclization reactions: A review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Tandem acid-promoted intramolecular azide-hydrazone electrocyclization/hydrolysis approach for the synthesis of N-Aminotetrazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Saini KM, Saunthwal RK, Kumar A, Verma AK. Tandem 6π-Azatriene Electrocyclization of Fused Amino-cyclopentenones: Synthesis of Functionalized Pyrrolo- and Indolo-quinoxalines. Org Lett 2021; 23:7586-7591. [PMID: 34543027 DOI: 10.1021/acs.orglett.1c02782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A tandem 6π-azacyclization approach for the synthesis of diversified pyrrolo/indolo[1,2-a]quinoxalines from amino-cyclopentenones has been developed. The reaction proceeds through a trifluoroacetic-acid-mediated 6π-electrocyclization and concomitant opening of the cyclopentenone ring. The advantageous features of the developed chemistry include transition-metal-free conditions, operational simplicity, and a broad substrate scope. Further X-ray crystallographic studies confirm the assigned structures of the fused heterocycles.
Collapse
Affiliation(s)
- Kapil Mohan Saini
- Kalindi College, Department of Chemistry, University of Delhi, Delhi 110008, India
| | - Rakesh K Saunthwal
- Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign 61801, United States
| | - Ankit Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Akhilesh K Verma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
14
|
Nie W, Shen S, Ma C. Rhodium-Catalyzed Dehydrogenative Cycloisomerization of Dienylcyclopropane to Highly Substituted Toluene. Org Lett 2021; 23:4337-4341. [PMID: 34029111 DOI: 10.1021/acs.orglett.1c01265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A rhodium-catalyzed dehydrogenative cycloisomerization of dienylcyclopropane compounds is reported, which provides a straightforward approach to a variety of highly substituted toluene derivatives in 67-85% yields. The dienylcyclopropane-imides are produced by a single-step formal three-component olefination procedure. Preliminary mechanistic studies indicated that an electron-withdrawing group as R plays a critical role in completing this transformation.
Collapse
Affiliation(s)
- Wo Nie
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| | - Shichao Shen
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| | - Cheng Ma
- Department of Chemistry, Zhejiang University, 20 Yugu Road, Hangzhou 310027, China
| |
Collapse
|
15
|
Bettens T, Eeckhoudt J, Hoffmann M, Alonso M, Geerlings P, Dreuw A, De Proft F. Designing Force Probes Based on Reversible 6π-Electrocyclizations in Polyenes Using Quantum Chemical Calculations. J Org Chem 2021; 86:7477-7489. [PMID: 33988028 DOI: 10.1021/acs.joc.1c00482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The conjugated π-system in polyenes can be interrupted by electrocyclic ring-closure reactions. In this work, this 6π-electrocylization is shown by means of density functional calculations to be reversible by the application of an external mechanical pulling force at the terminal ends of the interrupted polyene chain. The test systems were constrained in a fused ring system, thus locking the orientation of three π-bonds and generally promoting 6π-electrocyclic ring-closure reactions. For several systems, the forward reaction is exergonic and the corresponding reaction barrier is comparable to those reported in the literature. The reverse reaction is triggered by an external pulling force of 2 nN (nano-Newton) or less and also becomes exergonic in all investigated polyenes under these force conditions. Moreover, it proceeds via a low reaction barrier when a pulling force of 2 nN is active, indicating that the mechanical force is an efficient stimulus for triggering ring-opening reactions. Analysis of the strain energy induced by this mechanical force confirms an optimal activation of the corresponding C-C σ-bond that breaks upon ring opening when the pulling positions are located on the polyene chain.
Collapse
Affiliation(s)
- Tom Bettens
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Jochen Eeckhoudt
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Marvin Hoffmann
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205A, D-69120 Heidelberg, Germany
| | - Mercedes Alonso
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Paul Geerlings
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205A, D-69120 Heidelberg, Germany
| | - Frank De Proft
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|