1
|
Cai Y, Jiang S, Rajeshkumar T, Maron L, Xu X. A Planar Nickelaspiropentane Complex with Magnesium-Based Metalloligands: Synthesis, Structure, and Synergistic Dihydrogen Activation. J Am Chem Soc 2022; 144:16647-16655. [PMID: 36041123 DOI: 10.1021/jacs.2c07402] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nature of transition-metal-olefin bonding has been explained by the Dewar-Chatt-Duncanson model within a continuum of two extremes, namely, a π-complex and a metallacyclopropane. The textbook rule suggests that a low-spin late-transition-metal-ethylene complex more likely forms a π-complex rather than a metallacyclopropane. Herein, we report a low-spin late-transition-metal-bis-ethylene complex forming an unprecedented planar metalla-bis-cyclopropane structure with magnesium-based metalloligands. Treatment of LMgEt (L = [(DippNCMe)2CH]-, Dipp = 2,6-iPr2C6H3) with Ni(cod)2 (cod = 1,5-cyclooctadiene) formed the heterotrimetallic complex (LMg)2Ni(C2H4)2, which features a linear Mg-Ni-Mg linkage and a planar coordination geometry at the nickel center. Both structural features and computational studies strongly supported the Ni(C2H4)2 moiety as a nickelaspiropentane. The exposure of (LMg)2Ni(C2H4)2 to 1 bar H2 at room temperature produced a four-hydride-bridged complex (LMg)2Ni(μ-H)4. The profile of H2 activation was elucidated by density functional theory calculations, which indicated a novel Mg/Ni cooperative activation mechanism with no oxidation occurring at the metal center, differing from the prevailing mono-metal-based redox mechanism. Moreover, the heterotrimetallic complex (LMg)2Ni(C2H4)2 catalyzed the hydrogenation of a wide range of unsaturated substrates under mild conditions.
Collapse
Affiliation(s)
- Yanping Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Shengjie Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077Toulouse, France
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| |
Collapse
|
2
|
Xu B, Mao W, Wu C, Li J, Lu Z, Luo M, Chen D, Xia H. A
One‐Pot
Strategy for the Synthesis of
β
‐Substituted
Rhoda‐ and
Irida‐Carbolong
Complexes. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Binbin Xu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Wei Mao
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Chengcheng Wu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Jinhua Li
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Dafa Chen
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry Southern University of Science and Technology Shenzhen 518055 People's Republic of China
| |
Collapse
|
3
|
Hu SX, Zhang P, Zhang P. Electronic Structures and Properties of Bimetallic Plutonium Group 13 Carbonyl Compounds [XPuCO] (X = B, Al, and Ga). Inorg Chem 2021; 60:18794-18803. [PMID: 34841875 DOI: 10.1021/acs.inorgchem.1c02503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bonding features of heterobimetallic complexes containing f-block elements are fundamental content in actinide chemistry. In order to account for the structural periodicity of the X-Pu carbonyls and the formation of chemical bonds between bimetallic plutonium and group 13 carbonyl compounds, we report a comprehensively quantum-chemical study of the electronic structure and properties of XPuCO (X = B, Al, and Ga). With increasing atomic radii of the group 13 elements, the XPuCO structure alternates from cyclic [PuCBO] to linear [AlCPuO] and [GaCPuO]. The bonding analysis indicates that the donor-acceptor model is the best description for bonding interactions of metal and ligands with different donation patterns of CBO → Pu and XC → PuO (X = Al and Ga). The apparent XC ← PuO backdonation increases the C-Pu bond strength markedly and stabilizes the linear geometry of [AlCPuO] and [GaCPuO], while spin-orbit coupling is found to be significant in the stabilization of [PuCBO]. The ground electron configurations and natural orbital analysis indicate that cyclic [PuCBO] and linear [XCPuO] (X = Al and Ga) are considered as complexes of Pu(III) and Pu(V), respectively. The trend presents a valuable insight for the 5f/6d-np bonding interactions, especially for the fundamental understanding of transuranic elements.
Collapse
Affiliation(s)
- Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.,Beijing Computational Science Research Center, Beijing 100193, China
| | - Peng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ping Zhang
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
4
|
Huang Z, Zheng Y, Zhong M. Transmetalation Reactions of Aromatic Dilithionickelole: Synthesis of Heterobimetallic Complexes Featuring Metalloles as Diene Ligands. Chemistry 2021; 27:15967-15972. [PMID: 34569115 DOI: 10.1002/chem.202102037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/08/2022]
Abstract
The aromatic metallole dianions are important metallaaromatic compounds because of their various reactivities and extensive synthetic applications. Herein we report the reactions of dilithionickelole with MgCl2 , EtAlCl2 , Cp*ScCl2 , Cp*LuCl2 and Pt(COD)Cl2 (COD=1,5-cyclooctadiene) affording a series of Ni/M heterobimetallic complexes of the general formula (η4 -C4 R4 M)Ni(COD), in which the metalloles act as diene ligands, as suggested by single-crystal X-ray, NMR and theoretical analyses. In these reactions, two electrons of the nickelole dianion transferred to Ni, representing different reactivity compared with main-group metallole dianions.
Collapse
Affiliation(s)
- Zhe Huang
- College of Chemistry, Peking University, Beijing, 100871, China
| | - Yu Zheng
- College of Chemistry, Peking University, Beijing, 100871, China
| | - Mingdong Zhong
- College of Chemistry, Peking University, Beijing, 100871, China.,Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
5
|
Wang Z, Zhao G, Yan W, Wu K, Wang F, Li Q, Zhang J. Tin Metal Cluster Compounds as New Third-Order Nonlinear Optical Materials by Computational Study. J Phys Chem Lett 2021; 12:7537-7544. [PMID: 34347498 DOI: 10.1021/acs.jpclett.1c02104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is quite appealing but challenging to predict and synthesize new nonlinear optical (NLO) materials with exceptional performance. Herein, the different Sn4 cluster core structures and third-order NLO properties are studied through electronic structure, excited hole-electron, bonding character, and aromaticity analysis. As a result, Sn4 clusters with ring core structure (Sn4-R) not only have the smallest Egap, the largest UV-vis response intensity, but also the strongest third-order NLO response in our work. As proved by natural bond orbitals' (NBO) analysis, electron localization function (ELF), and adaptive natural density partitioning (AdNDP), the Sn44+ has two in-plane four center-two electron (4c-2e) Sn-Sn σ-bonds, resulting in a good delocalization. For the first time, delocalization of metal cluster cores in tin clusters that is beneficial to the third-order NLO response is proposed, which provides a new guidance to design and prepare third-order NLO materials.
Collapse
Affiliation(s)
- Zirui Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P.R. China
| | - Guoxiang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Weiyin Yan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Kechen Wu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, P.R. China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, P.R. China
| | - Qiaohong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou 350108, P.R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
6
|
Zhou LL, Guan Q, Li WY, Zhang Z, Li YA, Dong YB. A Ferrocene-Functionalized Covalent Organic Framework for Enhancing Chemodynamic Therapy via Redox Dyshomeostasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101368. [PMID: 34216420 DOI: 10.1002/smll.202101368] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/05/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), which induces cell death by decomposing high levels of H2 O2 in tumor cells into highly toxic ·OH, is recognized as a promising antineoplastic approach. However, current CDT approaches are often restricted by the highly controlled and upregulated cellular antioxidant defense. To enhance ·OH-induced cellular damage by CDT, a covalent organic framework (COF)-based, ferrocene (Fc)- and glutathione peroxidase 4 (GPX4) inhibitor-loaded nanodrug, RSL3@COF-Fc (2b), is fabricated. The obtained 2b not only promotes in situ Fenton-like reactions to trigger ·OH production in cells, but also attenuates the repair mechanisms under oxidative stress via irreversible covalent GPX4 inhibition. As a result, these two approaches synergistically result in massive lipid peroxide accumulation, subsequent cell damage, and ultimately ferroptosis, while not being limited by intracellular glutathione. It is believed that this research provides a paradigm for enhancing reactive oxygen species-mediated oncotherapy through redox dyshomeostasis and may provide new insights for developing COF-based nanomedicine.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Zhiyong Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, P. R. China
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
7
|
Li X, Yang X, Liu L, Zhao H, Li Y, Zhu H, Chen Y, Guo S, Liu Y, Tan Q, Wu G. Chemical Vapor Deposition for N/S-Doped Single Fe Site Catalysts for the Oxygen Reduction in Direct Methanol Fuel Cells. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05446] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaohang Li
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Liting Liu
- Analytical and Testing Center, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - He Zhao
- Institute of Modern Physics, Northwest University, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an, Shaanxi 710069, China
| | - Yawei Li
- Institute of Modern Physics, Northwest University, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an, Shaanxi 710069, China
| | - Haiyan Zhu
- Institute of Modern Physics, Northwest University, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an, Shaanxi 710069, China
| | - Yuanzhen Chen
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Shengwu Guo
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science & Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
8
|
Luo M, Cai Y, Lin X, Long L, Zhang H, Xia H. Synthesis, Characterization, and Reactivity of Metalla‐Chalcogenirenium Compounds
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000745] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ming Luo
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yapeng Cai
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Xinlei Lin
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Lipeng Long
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Hong Zhang
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Haiping Xia
- Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology Shenzhen Guangdong 518055 China
- College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
9
|
Zhang Y, Yu C, Huang Z, Zhang WX, Ye S, Wei J, Xi Z. Metalla-aromatics: Planar, Nonplanar, and Spiro. Acc Chem Res 2021; 54:2323-2333. [PMID: 33849276 DOI: 10.1021/acs.accounts.1c00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ConspectusThe concept of aromaticity is one of the most fundamental principles in chemistry. It is generally accepted that planarity is a prerequisite for aromaticity, and typically the more planar the geometry of an aromatic compound is, the stronger aromatic it is. However, it is not always the case, particularly when transition metals are involved in conjugation and electron delocalization of aromatic systems, i.e., metalla-aromatics. Because of the intrinsic nature of transition-metal orbitals, besides planar geometries, the most stable molecular structures of metalla-aromatic compounds could take nonplanar and even spiro geometries. In this Account, we outline several unprecedented types of metalla-aromatics developed recently in our research group.Around seven years ago, we found that 1,4-dilithio-1,3-butadienes, dilithio reagents with π-conjugation, could function as non-innocent ligands and react with low-valent transition-metal complexes, generating monocyclic metalla-aromatic compounds. Later on, by taking advantage of the unique behavior of dilithio reagents and the intrinsic nature of different transition metals, we have synthesized a series of metalla-aromatic compounds, of which four types are discussed here, and each of them represents the first of its kind. First, nearly planar aromatic dicupra[10]annulenes, a 10 π-electron aromatic system with two bridging Cu atoms participating in the orbital conjugation and electron delocalization, are synthesized by annulating two dilithio reagents with two Cu(I) complexes.Second, four kinds of spiro metalla-aromatics, featuring planar (with Pd, Pt, or Rh as the spiro atom) geometry with a whole 10π aromatic system, octahedral (tris-spiro metalla-aromatics with V as the spiro atom) geometry with an entire 40π Craig-Möbius aromatic system, tetrahedral (with Mn as the spiro atom) geometry having two independent and perpendicular 6π planar aromatic rings, and tetrahedral (with Mn as the spiro atom) geometry with one planar and one nonplanar 6π aromatic rings, respectively, are generated. In sharp contrast to spiroaromaticity with carbon acting as the spiro atom described in Organic Chemistry, the metal spiro atom herein takes part in orbital conjugation and electron delocalization.Third, nonplanar aromatic butadienyl diiron complexes are realized. Different from planar aromatic systems featuring delocalized π-type overlap, this nonplanar metalla-aromaticity is achieved by the novel σ-type overlap between the two Fe 3dxz orbitals and the butadienyl π orbital, forming a 6π aromatic system. Fourth, dinickelaferrocene, a ferrocene analogue with two aromatic nickeloles, is synthesized from our monocyclic aromatic dilithionickelole and FeBr2. The aromaticity of dinickelaferrocene and its nickelole ligands is realized by electron back-donation from the Fe 3d orbital to the π* orbital of nickeloles, which also deepens our understanding of the origin of aromaticity.The search for unprecedented and exciting aromatic systems, particularly with transition metals being involved, will continue to drive this intriguing research field forward. Given the synthetic strategies and various types of metalla-aromatics developed and described, diversified metalla-aromatics of interesting structures and reaction chemistry, novel chemical bonding modes, and useful functions can be expected.
Collapse
Affiliation(s)
- Yongliang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Chao Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhe Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Wang H, Ruan Y, Lin YM, Xia H. Direct amidation of metallaaromatics: access to N-functionalized osmapentalynes via a 1,5-bromoamidated intermediate. Chem Sci 2021; 12:6315-6322. [PMID: 34084429 PMCID: PMC8115065 DOI: 10.1039/d1sc01571k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The direct C–H amidation or imidation of metallaaromatics with N-bromoamides or imides has been achieved under mild conditions and leads to the formation of a family of N-functionalized metallapentalyne derivatives. A unique 1,5-bromoamidated species has been identified, and can be viewed as a σH-adduct intermediate in a nucleophilic aromatic substitution. The 1,5-addition of both electrophilic and nucleophilic moieties into the metallaaromatic framework demonstrates a novel pathway in contrast to the typical radical process of arene C–H amidation involving N-haloamide reagents. The direct C–H amidation of metallapentalyne has been achieved under mild conditions in which key 1,5-bromoamidated intermediates was determined.![]()
Collapse
Affiliation(s)
- Hongjian Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yonghong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China .,Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|