1
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
2
|
Yang L, Grzeschik R, Schlücker S, Xie W. Contact Electrification as an Emerging Strategy for Controlling the Performance of Metal Nanoparticle Catalysts. Chemistry 2024; 30:e202401718. [PMID: 38945833 DOI: 10.1002/chem.202401718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/02/2024]
Abstract
Contact electrification (CE) is an emerging strategy for controlling the performance of metal nanoparticle (NP) catalysts. The underlying physical principle of this control is the sensitivity of the Fermi level to metal-metal contacts. This change in electronic structure has a direct impact on surface properties and chemical reactivity. The concept article briefly introduces the basic theory of CE and its relationship to catalytic performance. We then highlight selected recent examples of advances in the preparation of hybrid metal NP assemblies, experimental techniques for characterizing CE, and finally applications of CE for altering catalytic performance.
Collapse
Affiliation(s)
- Ling Yang
- Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Weijin Rd. 94, 300071, Tianjin, China
| | - Roland Grzeschik
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Universitätsstrasse 5, 45141, Essen, Germany
| | - Sebastian Schlücker
- Department of Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen (UDE), Universitätsstrasse 5, 45141, Essen, Germany
| | - Wei Xie
- Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, Weijin Rd. 94, 300071, Tianjin, China
| |
Collapse
|
3
|
Chen J, Li M, Yang Y, Liu H, Zhao B, Ozaki Y, Song W. In-situ surface enhanced Raman spectroscopy revealing the role of metal-organic frameworks on photocatalytic reaction selectivity on highly sensitive and durable Cu-CuBr substrate. J Colloid Interface Sci 2024; 660:669-680. [PMID: 38271803 DOI: 10.1016/j.jcis.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/27/2024]
Abstract
Photocatalytic reactions using copper-based nanomaterials have emerged as a new paradigm in green technology. Selective photocatalysis is very important for improving energy utilization efficiency, and in order to directional improve catalytic selectivity, it is necessary to understand the mechanism of interfacial reactions at the molecular level. Therefore, a unique bifunctional Cu-CuBr substrate is first fabricated via an electrochemical method, which overcomes the instability of traditional copper-based materials and endows high surface-enhanced Raman spectroscopy (SERS) sensitivity and photocatalytic performance and can be stored stably for more than a year. Further modification of the surface with Metal-Organic Frameworks (MOFs) containing carboxyl functional groups can significantly tune the surface properties of the substrate. This increases the adsorption of cationic dyes to improve the SERS effect, and 10-10 M methylene blue can easily be detected with this substrate. Surprisingly, in-situ SERS monitoring of the interfacial photocatalytic dehalogenation reaction of aromatic halides through its intrinsic SERS effect reveal two competing selective reaction pathways, self-coupling and hydrogenation. Typically, the SERS spectra reveal that the latter's selectivity was greatly enhanced after MOFs modification, and the yield rate of the hydrogenated product increased from 27.6 % to 46.9 % (selectivity increased from 32.7 % to 51.5 %). This proves that the surface properties of catalysts, especially the affinity for reaction intermediates, can effectively regulate catalytic selectivity.
Collapse
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yumei Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Hao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Yukihiro Ozaki
- School of Biological and Environmatal Sciences, Kwansei Gakuin University, 1-Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
4
|
Yang JL, Wang HJ, Qi X, Zheng QN, Tian JH, Zhang H, Li JF. Understanding the Behaviors of Plasmon-Induced Hot Carriers and Their Applications in Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38412551 DOI: 10.1021/acsami.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Photocatalysis driven by plasmon-induced hot carriers has been gaining increasing attention. Recent studies have demonstrated that plasmon-induced hot carriers can directly participate in photocatalytic reactions, leading to great enhancement in solar energy conversion efficiency, by improving the catalytic activity or changing selectivity. Nevertheless, the utilization efficiency of hot carriers remains unsatisfactory. Therefore, how to correctly understand the generation and transfer process of hot carriers, as well as accurately differentiate between the possible mechanisms, have become a key point of attention. In this review, we overview the fundamental processes and mechanisms underlying hot carrier generation and transport, followed by highlighting the importance of hot carrier monitoring methods and related photocatalytic reactions. Furthermore, possible strategies for the further characterization of plasmon-induced hot carriers and boosting their utilization efficiency have been proposed. We hope that a comprehensive understanding of the fundamental behaviors of hot carriers can aid in designing more efficient photocatalysts for plasmon-induced photocatalytic reactions.
Collapse
Affiliation(s)
- Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
| | - Hong-Jia Wang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
| | - Qing-Na Zheng
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hua Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
5
|
Kim Y, Wi DH, Hong JW, Han SW. Plasmonic Nanocrystal Assembly-Semiconductor Hybrids for Boosting Visible to Near-Infrared Photocatalysis. ACS NANO 2023; 17:18641-18651. [PMID: 37702701 DOI: 10.1021/acsnano.3c08182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Plasmonic metal-semiconductor hybrid photocatalysts have received much attention because of their wide light harvesting range and efficient charge carrier generation capability originating from plasmon energy transfer. Here, we introduce a plasmonic metal-semiconductor hybrid nanostructure consisting of a Au core-satellite assembly and crystalline TiO2. The formation of Au@TiO2-Au core-satellite assemblies using TiO2 as a spacer and the subsequent growth of outer TiO2 shells on the core-satellite assemblies, followed by calcination, successfully generated Au core-satellite assembly@TiO2 nanostructures. Exquisite control over the growth of the TiO2 interlayer enabled the regulation of the gap distance between the core and satellite Au nanocrystals within the same hybrid morphology. Due to the structural controllability of the present approach, the gap-distance-dependent plasmonic and photocatalytic properties of the hybrid nanostructures could be explored. The nanostructures possessing the most closely arranged Au nanocrystals showed high photocatalytic activity under visible to near-infrared light irradiation, which can be attributed to strong plasmon coupling between the core and satellite Au nanocrystals that can expedite the formation of intense plasmon energy and its transfer to TiO2.
Collapse
Affiliation(s)
- Yonghyeon Kim
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Dae Han Wi
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| | - Jong Wook Hong
- Department of Chemistry, University of Ulsan, Ulsan 44776, Korea
| | - Sang Woo Han
- Center for Nanotectonics, Department of Chemistry and KI for the NanoCentury, KAIST, Daejeon 34141, Korea
| |
Collapse
|
6
|
Li C, Zhang Y, Ye Z, Bell SEJ, Xu Y. Combining surface-accessible Ag and Au colloidal nanomaterials with SERS for in situ analysis of molecule-metal interactions in complex solution environments. Nat Protoc 2023; 18:2717-2744. [PMID: 37495750 DOI: 10.1038/s41596-023-00851-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/03/2023] [Indexed: 07/28/2023]
Abstract
The interactions between molecules and noble metal nanosurfaces play a central role in many areas of nanotechnology. The surface chemistry of noble metal surfaces under ideal, clean conditions has been extensively studied; however, clean conditions are seldom met in real-world applications. We developed a sensitive and robust characterization technique for probing the surface chemistry of nanomaterials in the complex environments that are directly relevant to their applications. Surface-enhanced Raman spectroscopy (SERS) can be used to probe the interaction of plasmonic nanoparticles with light to enhance the Raman signals of molecules near the surface of nanoparticles. Here, we explain how to couple SERS with surface-accessible plasmonic-enhancing substrates, which are capped with weakly adsorbing capping ligands such as citrate and chloride ions, to allow molecule-metal interactions to be probed in situ and in real time, thus providing information on the surface orientation and the formation and breaking of chemical bonds. The procedure covers the synthesis and characterization of surface-accessible colloids, the preliminary SERS screening with agglomerated colloids, the synthesis and characterization of interfacial nanoparticle assemblies, termed metal liquid-like films, and the in situ biphasic SERS analysis with metal liquid-like films. The applications of the approach are illustrated using two examples: the probing of π-metal interactions and that of target/ligand-particle interactions on hollow bimetallic nanostars. This protocol, from the initial synthesis of the surface-accessible plasmonic nanoparticles to the final in situ biphasic SERS analysis, requires ~14 h and is ideally suited to users with basic knowledge in performing Raman spectroscopy and wet synthesis of metal nanoparticles.
Collapse
Affiliation(s)
- Chunchun Li
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai, China
| | - Yingrui Zhang
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK
| | - Ziwei Ye
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK.
| | - Yikai Xu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, UK.
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, China.
| |
Collapse
|
7
|
Song X, Zhang XG, Deng YL, Nan ZA, Song W, Wang Y, Lü L, Jiang Q, Jin X, Zheng Y, Chen M, Xie Z, Li JF, Tian ZQ, Fan FR. Improving the Hydrogen Oxidation Reaction Rate of Ru by Active Hydrogen in the Ultrathin Pd Interlayer. J Am Chem Soc 2023. [PMID: 37268602 DOI: 10.1021/jacs.3c02604] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Enhancing the catalytic activity of Ru metal in the hydrogen oxidation reaction (HOR) potential range, improving the insufficient activity of Ru caused by its oxophilicity, is of great significance for reducing the cost of anion exchange membrane fuel cells (AEMFCs). Here, we use Ru grown on Au@Pd as a model system to understand the underlying mechanism for activity improvement by combining direct in situ surface-enhanced Raman spectroscopy (SERS) evidence of the catalytic reaction intermediate (OHad) with in situ X-ray diffraction (XRD), electrochemical characterization, as well as DFT calculations. The results showed that the Au@Pd@Ru nanocatalyst utilizes the hydrogen storage capacity of the Pd interlayer to "temporarily" store the activated hydrogen enriched at the interface, which spontaneously overflows at the "hydrogen-deficient interface" to react with OHad adsorbed on Ru. It is the essential reason for the enhanced catalytic activity of Ru at anodic potential. This work deepens our understanding of the HOR mechanism and provides new ideas for the rational design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Xianmeng Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yong-Liang Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Zi-Ang Nan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Weishen Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanjie Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Linzhe Lü
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Qiaorong Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xi Jin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanping Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Mingshu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Zhaoxiong Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- College of Energy, College of Materials, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, IChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Zhang Q, Peng M, Gao Z, Guo W, Sun Z, Zhao Y, Zhou W, Wang M, Mei B, Du XL, Jiang Z, Sun W, Liu C, Zhu Y, Liu YM, He HY, Li ZH, Ma D, Cao Y. Nitrogen-Neighbored Single-Cobalt Sites Enable Heterogeneous Oxidase-Type Catalysis. J Am Chem Soc 2023; 145:4166-4176. [PMID: 36757303 DOI: 10.1021/jacs.2c12586] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The development of biomimetic catalytic systems that can imitate or even surpass natural enzymes remains an ongoing challenge, especially for bioinspired syntheses that can access non-natural reactions. Here, we show how an all-inorganic biomimetic system bearing robust nitrogen-neighbored single-cobalt site/pyridinic-N site (Co-N4/Py-N) pairs can act cooperatively as an oxidase mimic, which renders an engaged coupling of oxygen (O2) reduction with synthetically beneficial chemical transformations. By developing this broadly applicable platform, the scalable synthesis of greater than 100 industrially and pharmaceutically appealing O-silylated compounds including silanols, borasiloxanes, and silyl ethers via the unprecedented aerobic oxidation of hydrosilane under ambient conditions is demonstrated. Moreover, this heterogeneous oxidase mimic also offers the potential for expanding the catalytic scope of enzymatic synthesis. We anticipate that the strategy demonstrated here will pave a new avenue for understanding the underlying nature of redox enzymes and open up a new class of material systems for artificial biomimetics.
Collapse
Affiliation(s)
- Qi Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
- Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wendi Guo
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zehui Sun
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yi Zhao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Wang
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Xian-Long Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zheng Jiang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Synchrotron Radiation Facility, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chao Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yifeng Zhu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yong-Mei Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - He-Yong He
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zhen Hua Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yong Cao
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Hu Y, Li Y, Yu L, Zhang Y, Lai Y, Zhang W, Xie W. Universal linker-free assembly of core-satellite hetero-superstructures. Chem Sci 2022; 13:11792-11797. [PMID: 36320924 PMCID: PMC9580622 DOI: 10.1039/d2sc02843c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
Colloidal superstructures comprising hetero-building blocks often show unanticipated physical and chemical properties. Here, we present a universal assembly methodology to prepare hetero-superstructures. This straightforward methodology allows the assembly of building block materials varying from inorganic nanoparticles to living cells to form superstructures. No molecular linker is required to bind the building blocks together and thus the products do not contain any unwanted adscititious material. The Fourier transform infrared spectra, high resolution transmission electron microscopic images and nanoparticle adhesion force measurement results reveal that the key to self-organization is stripping surface ligands by adding non-polar solvents or neutralizing surface charge by adding salts, which allow us to tune the balance between van der Waals attraction and electrostatic repulsion in the colloid so as to trigger the assembling process. As a proof-of-concept, the superior photocatalytic activity and single-particle surface-enhanced Raman scattering of the corresponding superstructures are demonstrated. Our methodology greatly extends the scope of building blocks for superstructure assembly and enables scalable construction of colloidal multifunctional materials.
Collapse
Affiliation(s)
- Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yonglong Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Linfeng Yu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yuying Zhang
- School of Medicine, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yuming Lai
- National Center for Materials Service Safety, University of Science and Technology Beijing Beijing 100083 China
| | - Wei Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Lab of Molecular Recognition & Biosensing, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University Weijin Rd. 94 Tianjin 300071 China
| |
Collapse
|
10
|
Pauling-type adsorption of O 2 induced electrocatalytic singlet oxygen production on N-CuO for organic pollutants degradation. Nat Commun 2022; 13:5560. [PMID: 36138010 PMCID: PMC9500010 DOI: 10.1038/s41467-022-33149-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Due to environmentally friendly operation and on-site productivity, electrocatalytic singlet oxygen (1O2) production via O2 gas is of immense interest in environment purification. However, the side-on configuration of O2 on the catalysts surface will lead to the formation of H2O, which seriously limits the selectivity and activity of 1O2 production. Herein, we show a robust N-doped CuO (N–CuO) with Pauling-type (end-on) adsorption of O2 at the N–Cu–O3 sites for the selective generation of 1O2 under direct-current electric field. We propose that Pauling-type configuration of O2 not only lowers the overall activation energy barrier, but also alters the reaction pathway to form 1O2 instead of H2O, which is the key feature determining selectivity for the dissociation of Cu–O bonds rather than the O–O bonds. The proposed N dopant strategy is applicable to a series of transition metal oxides, providing a universal electrocatalysts design scheme for existing high-performance electrocatalytic 1O2 production. Side-on configuration of O2 on the catalysts conventionally leads to reduction of O2 to water. Here, the authors propose a nitrogen doping strategy with Pauling-type adsorption of O2 for selective electrocatalytic singlet oxygen production.
Collapse
|
11
|
Zhang C, Li Y, Zhu A, Yang L, Du X, Hu Y, Yang X, Zhang F, Xie W. In situ monitoring of Suzuki-Miyaura cross-coupling reaction by using surface-enhanced Raman spectroscopy on a bifunctional Au-Pd nanocoronal film. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Sun Q, Xu Y, Gao Z, Zhou H, Zhang Q, Xu R, Zhang C, Yao H, Liu M. High-Performance Surface-Enhanced Raman Scattering Substrates Based on the ZnO/Ag Core-Satellite Nanostructures. NANOMATERIALS 2022; 12:nano12081286. [PMID: 35457994 PMCID: PMC9027200 DOI: 10.3390/nano12081286] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 12/10/2022]
Abstract
Recently, hierarchical hybrid structures based on the combination of semiconductor micro/nanostructures and noble metal nanoparticles have become a hot research topic in the area of surface-enhanced Raman scattering (SERS). In this work, two core-satellite nanostructures of metal oxide/metal nanoparticles were successfully introduced into SERS substrates, assembling monodispersed small silver nanoparticles (Ag NPs) on large polydispersed ZnO nanospheres (p-ZnO NSs) or monodispersed ZnO nanospheres (m-ZnO NSs) core. The p-ZnO NSs and m-ZnO NSs were synthesized by the pyrolysis method without any template. The Ag NPs were prepared by the thermal evaporation method without any annealing process. An ultralow limit of detection (LOD) of 1 × 10−13 M was achieved in the two core-satellite nanostructures with Rhodamine 6G (R6G) as the probe molecule. Compared with the silicon (Si)/Ag NPs substrate, the two core-satellite nanostructures of Si/p-ZnO NSs/Ag NPs and Si/m-ZnO NSs/Ag NPs substrates have higher enhancement factors (EF) of 2.6 × 108 and 2.5 × 108 for R6G as the probe molecule due to the enhanced electromagnetic field. The two core-satellite nanostructures have great application potential in the low-cost massive production of large-area SERS substrates due to their excellent SERS effect and simple preparation process without any template.
Collapse
Affiliation(s)
- Qianqian Sun
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
- Correspondence: (Q.S.); (H.Y.); (M.L.)
| | - Yujie Xu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Zhicheng Gao
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Hang Zhou
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Qian Zhang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Ruichong Xu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Chao Zhang
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
| | - Haizi Yao
- Key Laboratory of Smart Lighting in Henan Province, School of Energy Engineering, Huanghuai University, Zhumadian 463000, China
- Correspondence: (Q.S.); (H.Y.); (M.L.)
| | - Mei Liu
- Collaborative Innovation Center of Light Manipulations and Applications in Universities of Shandong, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; (Y.X.); (Z.G.); (H.Z.); (Q.Z.); (R.X.); (C.Z.)
- Correspondence: (Q.S.); (H.Y.); (M.L.)
| |
Collapse
|
13
|
Song G, Cong S, Zhao Z. Defect engineering in semiconductor-based SERS. Chem Sci 2022; 13:1210-1224. [PMID: 35222907 PMCID: PMC8809400 DOI: 10.1039/d1sc05940h] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Semiconductor-based surface enhanced Raman spectroscopy (SERS) platforms take advantage of the multifaceted tunability of semiconductor materials to realize specialized sensing demands in a wide range of applications. However, until quite recently, semiconductor-based SERS materials have generally exhibited low activity compared to conventional noble metal substrates, with enhancement factors (EF) typically reaching 103, confining the study of semiconductor-based SERS to purely academic settings. In recent years, defect engineering has been proposed to effectively improve the SERS activity of semiconductor materials. Defective semiconductors can now achieve noble-metal-comparable SERS enhancement and exceedingly low, nano-molar detection concentrations towards certain molecules. The reason for such success is that defect engineering effectively harnesses the complex enhancement mechanisms behind the SERS phenomenon by purposefully tailoring many physicochemical parameters of semiconductors. In this perspective, we introduce the main defect engineering approaches used in SERS-activation, and discuss in depth the electromagnetic and chemical enhancement mechanisms (EM and CM, respectively) that are influenced by these defect engineering methods. We also introduce the applications that have been reported for defective semiconductor-based SERS platforms. With this perspective we aim to meet the imperative demand for a summary on the recent developments of SERS material design based on defect engineering of semiconductors, and highlight the attractive research and application prospects for semiconductor-based SERS.
Collapse
Affiliation(s)
- Ge Song
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS) Suzhou 215123 China
- Gusu Laboratory of Materials Suzhou 215123 China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Chinese Academy of Sciences (CAS) Suzhou 215123 China
| |
Collapse
|
14
|
Yang A, Huang Q, Wei Z, Yu Z, Cui M, Lei W, Tang Y, Qiu X. l-Lysine derived fabrication of Cu@Ni core–satellite nanoassemblies as efficient non-Pt catalysts for the methanol oxidation reaction. CrystEngComm 2022. [DOI: 10.1039/d2ce00963c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With assistance of l-lysine, Cu@Ni core–satellite nanoassemblies were fabricated, which could serve as efficient non-Pt electrocatalysts for the methanol oxidation reaction due to both the component effects and structural features.
Collapse
Affiliation(s)
- Anzhou Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Qiuzi Huang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Ziqi Wei
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Zehan Yu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Meifeng Cui
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wu Lei
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xiaoyu Qiu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Li R, Zhang CC, Wang D, Hu YF, Li YL, Xie W. Reaction pathway change on plasmonic Au nanoparticles studied by surface-enhanced Raman spectroscopy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Hu C, Hu Y, Fan C, Yang L, Zhang Y, Li H, Xie W. Surface-Enhanced Raman Spectroscopic Evidence of Key Intermediate Species and Role of NiFe Dual-Catalytic Center in Water Oxidation. Angew Chem Int Ed Engl 2021; 60:19774-19778. [PMID: 34184371 DOI: 10.1002/anie.202103888] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/27/2021] [Indexed: 11/10/2022]
Abstract
NiFe-based electrocatalysts have attracted great interests due to the low price and high activity in oxygen evolution reaction (OER). However, the complex reaction mechanism of NiFe-catalyzed OER has not been fully explored yet. Detection of intermediate species can bridge the gap between OER performances and catalyst component/structure properties. Here, we performed label-free surface-enhanced Raman spectroscopic (SERS) monitoring of interfacial OER process on Ni3 FeOx nanoparticles (NPs) in alkaline medium. By using bifunctional Au@Ni3 FeOx core-satellite superstructures as Raman signal enhancer, we found direct spectroscopic evidence of intermediate O-O- species. According to the SERS results, Fe atoms are the catalytic sites for the initial OH- to O-O- oxidation. The O-O- species adsorbed across neighboring Fe and Ni sites experiences further oxidation caused by electron transfer to NiIII and eventually forms O2 product.
Collapse
Affiliation(s)
- Cejun Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Chenghao Fan
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Ling Yang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Yutong Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Haixia Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Weijin Rd. 94, Tianjin, 300071, China
| |
Collapse
|
17
|
Hu C, Hu Y, Fan C, Yang L, Zhang Y, Li H, Xie W. Surface‐Enhanced Raman Spectroscopic Evidence of Key Intermediate Species and Role of NiFe Dual‐Catalytic Center in Water Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Cejun Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Chenghao Fan
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Ling Yang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Yutong Zhang
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Haixia Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 China
| |
Collapse
|
18
|
Wei J, Qin SN, Yang J, Ya HL, Huang WH, Zhang H, Hwang BJ, Tian ZQ, Li JF. Probing Single-Atom Catalysts and Catalytic Reaction Processes by Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021; 60:9306-9310. [PMID: 33523581 DOI: 10.1002/anie.202100198] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Indexed: 02/03/2023]
Abstract
Developing advanced characterization techniques for single-atom catalysts (SACs) is of great significance to identify their structural and catalytic properties. Raman spectroscopy can provide molecular structure information, and thus, the technique is a promising tool for catalysis. However, its application in SACs remains a great challenge because of its low sensitivity. We develop a highly sensitive strategy that achieves the characterization of the structure of SACs and in situ monitoring of the catalytic reaction processes on them by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for the first time. Using the strategy, Pd SACs on different supports were identified by Raman spectroscopy and the nucleation process of Pd species from single atoms to nanoparticles was revealed. Moreover, the catalytic reaction processes of the hydrogenation of nitro compounds on Pd SACs were monitored in situ, and molecular insights were obtained to uncover the unique catalytic properties of SACs. This work provides a new spectroscopic tool for the in situ study of SACs, especially at solid-liquid interfaces.
Collapse
Affiliation(s)
- Jie Wei
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Si-Na Qin
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Ji Yang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Han-Long Ya
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Wei-Hsiang Huang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Hua Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Bing Joe Hwang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Zhong-Qun Tian
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
19
|
Wei J, Qin S, Yang J, Ya H, Huang W, Zhang H, Hwang BJ, Tian Z, Li J. Probing Single‐Atom Catalysts and Catalytic Reaction Processes by Shell‐Isolated Nanoparticle‐Enhanced Raman Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jie Wei
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Si‐Na Qin
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Ji Yang
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Han‐Long Ya
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Wei‐Hsiang Huang
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Hua Zhang
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Bing Joe Hwang
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei 10607 Taiwan
| | - Zhong‐Qun Tian
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| | - Jian‐Feng Li
- College of Materials State Key Laboratory of Physical Chemistry of Solid Surfaces,iChEM College of Chemistry and Chemical Engineering Fujian Key Laboratory of Advanced Materials College of Energy Xiamen University Xiamen 361005 China
| |
Collapse
|
20
|
Zheng X, Yan X, Ma J, Yao X, Zhang J, Wang L. Unidirectional/Bidirectional Electron Transfer at the Au/TiO 2 Interface Operando Tracked by SERS Spectra from Au and TiO 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16498-16506. [PMID: 33784060 DOI: 10.1021/acsami.1c02540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although it is well-known that the size can influence the surface plasmon resonance property of coinage metals and the electronic state of the Mott-Schottky junction formed at the metal/semiconductor interface, insights into how the size can be exploited to optimize the photocatalytic activity and selectivity of metal/semiconductor composites are lacking. Here we utilize operando SERS spectroscopy to identify the size effect on the electron-transfer dynamics and the direction at the Au/TiO2 interface. This effect was characterized by the photocatalytic reduction sites of p-nitrothiophenol, which were self-tracked with the SERS spectra from Au nanoparticle and inverse-opal structured TiO2, respectively. The size-dependent unidirectional/bidirectional transfer of photoinduced electrons at the Au/TiO2 interface was revealed by operando SERS spectroscopy, which enables the rational tuning of the reduction selectivity.
Collapse
Affiliation(s)
- Xinlu Zheng
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xuefeng Yan
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jiayu Ma
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xinyun Yao
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-media Environmental Catalysis and Resource Utilization, Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|