1
|
Pommainville A, Campeau D, Gagosz F. The Synthetic Potential of Thiophenium Ylide Cycloadducts**. Angew Chem Int Ed Engl 2022; 61:e202205963. [DOI: 10.1002/anie.202205963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Alice Pommainville
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Dominic Campeau
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| |
Collapse
|
2
|
Pommainville A, Campeau D, Gagosz F. The Synthetic Potential of Thiophenium Ylide Cycloadducts**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alice Pommainville
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Dominic Campeau
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa K1N 6N5 Canada
| |
Collapse
|
3
|
Mishra M, Maharana PK, Karjee P, Punniyamurthy T. Expedient cobalt-catalyzed stereospecific cascade C-N and C-O bond formation of styrene oxides with hydrazones. Chem Commun (Camb) 2022; 58:7090-7093. [PMID: 35661177 DOI: 10.1039/d2cc01926d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cobalt-catalyzed cascade C-N and C-O bond formation of epoxides with hydrazones is described to furnish oxadiazines using air as an oxidant. The catalyst plays a dual role as a Lewis acid followed by a redox catalyst to accomplish the C-H/O-H cyclization. Optically active styrene oxide can be reacted enantiospecifically (>99% ee).
Collapse
Affiliation(s)
- Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Prabhat Kumar Maharana
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
4
|
Gao C, Zhang T, Li X, Wu JD, Liu J. Asymmetric Decarboxylative [3+2] Cycloaddition for the Diastereo- and Enantioselective Synthesis of Spiro[2.4]heptanes via Cyclopropanation. Org Chem Front 2022. [DOI: 10.1039/d2qo00124a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric cycloaddition reaction has emerged as one of the powful and reliable strategies for the construction of enantioenriched molecules, especially those with polycyclic frameworks. Herein, we report the asymmetric decarboxylative...
Collapse
|
5
|
Erguven H, Zhou C, Arndtsen BA. Multicomponent formation route to a new class of oxygen-based 1,3-dipoles and the modular synthesis of furans. Chem Sci 2021; 12:15077-15083. [PMID: 34909148 PMCID: PMC8612406 DOI: 10.1039/d1sc04088j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
A new class of phosphorus-containing 1,3-dipoles can be generated by the multicomponent reaction of aldehydes, acid chlorides and the phosphonite PhP(catechyl). These 1,3-dipoles are formally cyclic tautomers of simple Wittig-type ylides, where the angle strain and moderate nucleophilicity in the catechyl-phosphonite favor their cyclization and also direct 1,3-dipolar cycloaddition to afford single regioisomers of substituted products. Coupling the generation of the dipoles with 1,3-dipolar cycloaddition offers a unique, modular route to furans from combinations of available aldehydes, acid chlorides and alkynes with independent control of all four substituents.
Collapse
Affiliation(s)
- Huseyin Erguven
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road, Piscataway NJ 08854 USA
| | - Cuihan Zhou
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| |
Collapse
|
6
|
Campeau D, Pommainville A, Gagosz F. Ynamides as Three-Atom Components in Cycloadditions: An Unexplored Chemical Reaction Space. J Am Chem Soc 2021; 143:9601-9611. [PMID: 34132536 DOI: 10.1021/jacs.1c04051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
While 1,3-dipolar cycloadditions have appeared to be a fertile area for research, as attested by the numerous synthetic transformations and resulting applications that have been developed during the past 60 years, the use of neutral three-atom components (TACs) in (3+2) cycloadditions remains comparatively sparse. Neutral TACs, however, have great synthetic potential given that their reaction with a π system can produce zwitterionic cycloadducts that may be manipulated for further chemistry. We report herein that ynamides, a class of carbon π systems that has seen wide interest over the last two decades, can be used as neutral TACs in thermally induced intramolecular (3+2) cycloaddition reactions with alkynes to yield a variety of functionalized pyrroles. The transformation is proposed to occur in a stepwise manner via the intermediacy of a pyrrolium ylide, from which the electron-withdrawing group on the nitrogen atom undergoes an intramolecular 1,2-shift to produce the neutral pyrrole. This work demonstrates a yet unexplored facet of ynamide reactivity with great potential in heterocyclic chemistry.
Collapse
Affiliation(s)
- Dominic Campeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Alice Pommainville
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, K1N 6N5, Ottawa, Canada
| |
Collapse
|
7
|
Hu D, Lu B, Song C, Zhu B, Wang L, Bernhardt E, Zeng X. Synthesis and characterization of phosphorous(III) diisocyanate and triisocyanate. Dalton Trans 2021; 50:3299-3307. [PMID: 33595037 DOI: 10.1039/d1dt00261a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two phosphorous(iii) isocyanates, ClP(NCO)2 and P(NCO)3 were isolated as neat substances and characterized with IR (gas-phase and Ne-matrix), Raman (solid), and 31P NMR spectroscopy. Their vibrational spectra were analyzed in terms of a single conformer with the aid of quantum chemical computations at the B3LYP/6-311+G(3df) level of theory. In line with the theoretically computed favorable syn-configuration of the NCO ligands with the sterically active lone-pair electrons on the central phosphorous atom (nP), low-temperature single-crystal X-ray diffraction (XRD) of solid ClP(NCO)2 reveals a Cs symmetric syn-configuration for both NCO ligands with weak CO (r = 2.9692(4) Å) van der Waals (vdW) interactions. In the binary isocyante P(NCO)3, all the three NCO ligands adopt similar syn-configuration with nP, leading to a propeller-shaped structure with slightly distorted C3v symmetry due to steric repulsion of the NCO ligands and the PO vdW interactions (r = 3.1901(1) Å) in the solid state.
Collapse
Affiliation(s)
- Dandan Hu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bo Lu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Chao Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Bifeng Zhu
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Lina Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, China.
| | - Eduard Bernhardt
- FB C-Anorganische Chemie, Bergische Universität Wuppertal, Gaussstrasse 20, Wuppertal, 42119, Germany
| | - Xiaoqing Zeng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China and Department of Chemistry, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Huang L, Wang Y, Liu J, Li S, Zhang W, Lan Y. Mechanistic Study of Cu-Catalyzed Addition Reaction of lsocyanates. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|