1
|
Hum G, Phang SJI, Ong HC, León F, Quek S, Khoo YXJ, Li C, Li Y, Clegg JK, Díaz J, Stuparu MC, García F. Main Group Molecular Switches with Swivel Bifurcated to Trifurcated Hydrogen Bond Mode of Action. J Am Chem Soc 2023. [PMID: 37267593 DOI: 10.1021/jacs.2c12713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Artificial molecular machines have captured the full attention of the scientific community since Jean-Pierre Sauvage, Fraser Stoddart, and Ben Feringa were awarded the 2016 Nobel Prize in Chemistry. The past and current developments in molecular machinery (rotaxanes, rotors, and switches) primarily rely on organic-based compounds as molecular building blocks for their assembly and future development. In contrast, the main group chemical space has not been traditionally part of the molecular machine domain. The oxidation states and valency ranges within the p-block provide a tremendous wealth of structures with various chemical properties. Such chemical diversity─when implemented in molecular machines─could become a transformative force in the field. Within this context, we have rationally designed a series of NH-bridged acyclic dimeric cyclodiphosphazane species, [(μ-NH){PE(μ-NtBu)2PE(NHtBu)}2] (E = O and S), bis-PV2N2, displaying bimodal bifurcated R21(8) and trifurcated R31(8,8) hydrogen bonding motifs. The reported species reversibly switch their topological arrangement in the presence and absence of anions. Our results underscore these species as versatile building blocks for molecular machines and switches, as well as supramolecular chemistry and crystal engineering based on cyclophosphazane frameworks.
Collapse
Affiliation(s)
- Gavin Hum
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Si Jia Isabel Phang
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - How Chee Ong
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Felix León
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Shina Quek
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Yi Xin Joycelyn Khoo
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Chenfei Li
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Yongxin Li
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Cooper Road, St Lucia 4072, Queensland, Australia
| | - Jesús Díaz
- Departamento de Química Orgánica e Inorgánica, Facultad de Veterinaria Extremadura, Avda de la Universidad s/n, Cáceres 10003, Spain
| | - Mihaiela C Stuparu
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore, Singapore
| | - Felipe García
- Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Julián Claveria 8, Oviedo 33006, Asturias, Spain
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
2
|
Ng ZX, Tan D, Teo WL, León F, Shi X, Sim Y, Li Y, Ganguly R, Zhao Y, Mohamed S, García F. Mechanosynthesis of Higher‐Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zi Xuan Ng
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Davin Tan
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Wei Liang Teo
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Felix León
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xiaoyan Shi
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
- School of Materials and Energy Guangdong University of Technology Guangzhou 510006 Guangdong P. R. China
| | - Ying Sim
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Yongxin Li
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Rakesh Ganguly
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
- Department of Chemistry Shiv Nadar University NH91, Tehsil Dadri, Gautam Buddha Nagard 201314 Uttar Pradesh India
| | - Yanli Zhao
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Sharmarke Mohamed
- Department of Chemistry Green Chemistry & Materials Modelling Laboratory Khalifa University of Science and Technology P.O. Box 127788 Abu Dhabi United Arab Emirates
| | - Felipe García
- School of Physical and Mathematical Sciences Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
3
|
Ng ZX, Tan D, Teo WL, León F, Shi X, Sim Y, Li Y, Ganguly R, Zhao Y, Mohamed S, García F. Mechanosynthesis of Higher-Order Cocrystals: Tuning Order, Functionality and Size in Cocrystal Design*. Angew Chem Int Ed Engl 2021; 60:17481-17490. [PMID: 33982390 PMCID: PMC8362154 DOI: 10.1002/anie.202101248] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Indexed: 01/18/2023]
Abstract
The ability to rationally design and predictably construct crystalline solids has been the hallmark of crystal engineering research. To date, numerous examples of multicomponent crystals comprising organic molecules have been reported. However, the crystal engineering of cocrystals comprising both organic and inorganic chemical units is still poorly understood and mostly unexplored. Here, we report a new diverse set of higher-order cocrystals (HOCs) based on the structurally versatile-yet largely unexplored-phosph(V/V)azane heterosynthon building block. The novel ternary and quaternary cocrystals reported are held together by synergistic and orthogonal intermolecular interactions. Notably, the HOCs can be readily obtained either via sequential or one-pot mechanochemical methods. Computational modelling methods reveal that the HOCs are thermodynamically driven to form and that their mechanical properties strongly depend on the composition and intermolecular forces in the crystal, offering untapped potential for optimizing material properties.
Collapse
Affiliation(s)
- Zi Xuan Ng
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
| | - Davin Tan
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
| | - Wei Liang Teo
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
| | - Felix León
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
| | - Xiaoyan Shi
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
- School of Materials and EnergyGuangdong University of TechnologyGuangzhou510006GuangdongP. R. China
| | - Ying Sim
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
| | - Yongxin Li
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
| | - Rakesh Ganguly
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
- Department of ChemistryShiv Nadar UniversityNH91, Tehsil Dadri, Gautam Buddha Nagard201314Uttar PradeshIndia
| | - Yanli Zhao
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
| | - Sharmarke Mohamed
- Department of ChemistryGreen Chemistry & Materials Modelling LaboratoryKhalifa University of Science and TechnologyP.O. Box 127788Abu DhabiUnited Arab Emirates
| | - Felipe García
- School of Physical and Mathematical SciencesDivision of Chemistry and Biological ChemistryNanyang Technological University21 Nanyang Link637371SingaporeSingapore
| |
Collapse
|
4
|
Size-control in the synthesis of oxo-bridged phosphazane macrocycles via a modular addition approach. Commun Chem 2021; 4:21. [PMID: 36697582 PMCID: PMC9814222 DOI: 10.1038/s42004-021-00455-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/19/2021] [Indexed: 01/28/2023] Open
Abstract
Inorganic macrocycles remain largely underdeveloped compared with their organic counterparts due to the challenges involved in their synthesis. Among them, cyclodiphosphazane macrocycles have shown to be promising candidates for supramolecular chemistry applications due to their ability to encapsulate small molecules or ions within their cavities. However, further developments have been handicapped by the lack of synthetic routes to high-order cyclodiphosphazane macrocycles. Moreover, current approaches allow little control over the size of the macrocycles formed. Here we report the synthesis of high-order oxygen-bridged phosphazane macrocycles via a "3 + n cyclisation" (n = 1 and 3). Using this method, an all-PIII high-order hexameric cyclodiphosphazane macrocycle was isolated, displaying a larger macrocyclic cavity than comparable organic crown-ethers. Our approach demonstrates that increasing building block complexity enables precise control over macrocycle size, which will not only generate future developments in both the phosphazane and main group chemistry but also in the fields of supramolecular chemistry.
Collapse
|