1
|
Sutar P, Maisuls I, Fernández Z, Strassert CA, Fernández G. Pathway-dependent Metallosupramolecular Polymerization Regulated by Ligand Geometry. Chemistry 2024:e202403287. [PMID: 39317651 DOI: 10.1002/chem.202403287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Understanding structure/property correlations in self-assembly is a key but challenging requirement for developing functional materials. Herein, we explore the importance of ligand geometry to fine-tune photophysical properties (MMLCT vs. MLCT excited states) and self-assembly pathways in metallosupramolecular polymerization. To this end, we have designed two hydrophobic Pt(II) complexes, 1 and 2, containing a π-extended bidentate bipyridine ligand with different substitution pattern, resulting in different molecular geometries (linear vs. V-shaped). Detailed comparative studies revealed significant differences for both complexes in terms of their photophysical properties and self-assembly pathways in non-polar media. The V-shaped topology of 1 enables facile face-to-face molecular stacking with a certain curvature leading to luminescent spherical assemblies exhibiting MMLCT states and short Pt⋅⋅⋅Pt contacts via a single-step cooperative pathway. On the other hand, the higher preorganized linear topology of complex 2 induces a two-step competitive self-assembly process leading to the formation of one-dimensional supramolecular polymers with slipped packing and MLCT-originated emission. Our findings broaden the monomer scope for supramolecular polymerization and provide design guidelines for the realization of luminescent supramolecular assemblies.
Collapse
Affiliation(s)
- Papri Sutar
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
- Current address: Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Zulema Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
| |
Collapse
|
2
|
Saito T, Yoshida M, Segawa K, Saito D, Takayama J, Hiura S, Murayama A, Lakshan NM, Sameera WMC, Kobayashi A, Kato M. Thermo-responsive emission induced by different delocalized excited-states in isomorphous Pd(ii) and Pt(ii) one-dimensional chains. Chem Sci 2024:d4sc04497e. [PMID: 39170722 PMCID: PMC11333949 DOI: 10.1039/d4sc04497e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The self-assembly of d8 transition metal complexes is essential for the development of optoelectronic and sensing materials with superior photofunctional properties. However, detailed insight into the electronic delocalization of excited states across multiple molecules, particularly in comparing 5d8 (Pt(ii)) and 4d8 (Pd(ii)) systems, remains ambiguous but important. In this study, we have successfully evaluated the differences in the excited-state delocalization and thermal responses of self-assembled Pt(ii) and Pd(ii) complexes. Although the complexes presented herein, K[M(CN)2(dFppy)]·H2O (M = Pt or Pd, dFppy = 2-(4,6-difluorophenyl)pyridinate), are crystallographically isomorphous with similarly short metal⋯metal contacts, only the Pt(ii) complex exhibited thermal equilibria between delocalized excited states, resulting in a drastic thermochromic luminescence with a red-shift of greater than 100 nm. In contrast, the dimeric localized emission from the Pd(ii) complex showed a significant increase in the quantum yield upon cooling, approaching almost unity.
Collapse
Affiliation(s)
- Tomoya Saito
- Department of Chemistry, Faculty of Science, Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masaki Yoshida
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University 1 Gakuen-Uegahara Sanda Hyogo 669-1330 Japan
| | - Kaito Segawa
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University 1 Gakuen-Uegahara Sanda Hyogo 669-1330 Japan
| | - Daisuke Saito
- Department of Chemistry, Faculty of Science, Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University 1 Gakuen-Uegahara Sanda Hyogo 669-1330 Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology, Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology, Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology, Hokkaido University North-14 West-9, Kita-ku Sapporo Hokkaido 060-0814 Japan
| | - Nishshanka M Lakshan
- Department of Chemistry, University of Colombo Kumaratunga Munidasa Mawatha Colombo 00700 Sri Lanka
| | - W M C Sameera
- Department of Chemistry, University of Colombo Kumaratunga Munidasa Mawatha Colombo 00700 Sri Lanka
- Department of Chemistry and Molecular Biology, University of Gothenburg SE-41390 Gothenburg Sweden
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University 1 Gakuen-Uegahara Sanda Hyogo 669-1330 Japan
| |
Collapse
|
3
|
Mochizuki T, Yoshida M, Kobayashi A, Kato M. Controlled crystallisation of porous crystals of luminescent platinum(II) complexes by electronic tuning of ancillary ligands. Dalton Trans 2024; 53:12064-12072. [PMID: 38616678 DOI: 10.1039/d4dt00713a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Porous molecular crystals (PMCs) have gained significant importance as next-generation functional porous materials. However, the selective crystallisation of the PMC phase remains a challenge. Herein, we have systematically controlled the stability of the luminescent PMC phase prepared using the luminescent Pt(II) complex [Pt(pbim)(N^O)] (pbim = 2-phenylbenzimidazolate, N^O = N-heteroaryl carboxylate) with Pt⋯Pt electronic interactions. The PMC phase formation varied significantly among the complexes depending on the heteroaryl group of the ancillary N^O ligand; the oxazolyl-bearing complex did not form a PMC phase, whereas the pyrazyl- and 5-fluoropyridyl-bearing complexes spontaneously formed a porous structure. This difference was rationalised by the π-stacking capability of the heteroaryl group of the ancillary ligand. Furthermore, owing to the presence of the one-dimensional Pt⋯Pt chains in this PMC phase, the photophysical properties of PMCs resulting from the Pt⋯Pt interactions were also significantly changed by the ancillary ligands.
Collapse
Affiliation(s)
- Takanari Mochizuki
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
4
|
Glosz D, Jędrzejowska K, Niedzielski G, Kobylarczyk J, Zakrzewski JJ, Hooper JGM, Gryl M, Koshevoy IO, Podgajny R. Influence of O-H⋅⋅⋅Pt interactions on photoluminescent response in the (Et 4N) 2{[Pt(bph)(CN) 2][phenylene-1,4-diresorcinol]} framework. Chemistry 2024; 30:e202400797. [PMID: 38751354 DOI: 10.1002/chem.202400797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Indexed: 06/28/2024]
Abstract
Tunable photoluminescence (PL) is one of the hot topics in current materials science, and research performed on the molecular phases is at the forefront of this field. We present the new (Et4N)2[PtII(bph)(CN)2]⋅rez3⋅1/3H2O (Pt2rez3) (bph=biphenyl-2,2'-diyl; rez3=3,3",5,5"-tetrahydroxy-1,1':4',1"-terphenyl, phenylene-1,4-diresorcinol coformer, a linear quaternary hydrogen bond donor) co-crystal salt based on the recently appointed promising [PtII(bph)(CN)2]2- luminophore. Within the extended hydrogen-bonded subnetwork [PtII(bph)(CN)2]2- complexes and rez3 coformer molecules form two types of contacts: the rez3O-H⋅⋅⋅Ncomplex ones in the equatorial plane of the complex and non-typical rez3O-H⋅⋅⋅Pt ones along its axial direction. The combined structural, PL, and DFT approach identified the rez3O-H⋅⋅⋅Pt synthons to be crucial in promoting the noticeable uniform redshift of bph ligand centered (LC) emission compared to the LC emission of the (Et4N)2[PtII(bph)(CN)2]⋅H2O (Pt2) precursor, owing to the direct interference of the phenol group with the PtII-bph orbital system via altering the CT processes within. The high-resolution emission spectra for Pt2 and Pt2rez3 were successfully reproduced at 77 K by using the Franck-Cordon expressions. The possibility to tune PL properties along the plausible continuum of rez3O-H⋅⋅⋅Pt synthons is indicated, considering various scenarios of molecular occupation of the space above and below the complex plane.
Collapse
Affiliation(s)
- Dorota Glosz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Katarzyna Jędrzejowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Grzegorz Niedzielski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - Jedrzej Kobylarczyk
- Institute of Nuclear Physics, PAN, Radzikowskiego 152, 31-342, Krakow, Poland
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, 30-348, Krakow, Poland
| | - James G M Hooper
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Marlena Gryl
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| |
Collapse
|
5
|
Kato M. Chromic soft crystals based on luminescent platinum(II) complexes. IUCRJ 2024; 11:442-452. [PMID: 38860955 PMCID: PMC11220876 DOI: 10.1107/s2052252524003658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/22/2024] [Indexed: 06/12/2024]
Abstract
Platinum(II) complexes of square-planar geometry are interesting from a crystal engineering viewpoint because they exhibit strong luminescence based on the self-assembly of molecular units. The luminescence color changes in response to gentle stimuli, such as vapor exposure or weak mechanical forces. Both the molecular and the crystal designs for soft crystals are critical to effectively generate the chromic luminescence phenomenon of Pt(II) complexes. In this topical review, strategies for fabricating chromic luminescent Pt(II) complexes are described from a crystal design perspective, focusing on the structural regulation of Pt(II) complexes that exhibit assembly-induced luminescence via metal-metal interactions and structural control of anionic Pt(II) complexes using cations. The research progress on the evolution of various chromic luminescence properties of Pt(II) complexes, including the studies conducted by our group, are presented here along with the latest research outcomes, and an overview of the frontiers and future potential of this research field is provided.
Collapse
Affiliation(s)
- Masako Kato
- Department of Applied Chemistry for EnvironmentKwansei Gakuin University1 Gakuen UegaharaSandaHyogo669-1330Japan
| |
Collapse
|
6
|
Campillo-Alvarado G. Chromic and dynamic: soft crystals of platinum(II) complexes pave the way for multi-responsive materials. IUCRJ 2024; 11:436-437. [PMID: 38958011 PMCID: PMC11220872 DOI: 10.1107/s2052252524006055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The development of smart, stimuli-responsive materials has received increased attention in the past decade for their applications as sensing technologies. This commentary discusses a timely topical review by Kato [(2024). IUCrJ, 11, 442-452] on the fabrication of multi-stimuli responsive crystals comprised of luminescent platinum(II) complexes, which exhibit intriguing chromic phenomena in response to stimuli.
Collapse
|
7
|
Lei X, Ai Y, Shu Z, Wang W, Li Y. Precise Regulation the Multiemission Based on Soft Double Salt for Information Encryption. Inorg Chem 2024; 63:11354-11360. [PMID: 38842865 DOI: 10.1021/acs.inorgchem.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Manipulation of multiemissive luminophores is meaningful for exploring luminescent materials. Herein, we report a soft double salt assembly strategy that could result in well-organized nanostructures and different luminescence based on multiple weak intermolecular interactions thanks to the existence of electrostatic attraction between the anionic and cationic platinum(II) complexes. The cationic complexes B1 and B2 can coassemble with anionic complex A, respectively, and the emission switches from monomeric and excimeric emission to the triplet metal-metal-to-ligand charge transfer (3MMLCT) along with morphology changes from 0-dimensional (0-D) nanospheres to 3-dimensional (3-D) nanostructures. It is demonstrated that an isodesmic growth mechanism is adopted during the spontaneous self-assembly process, and the relative negative ΔG values make the anionic and cationic complex molecules prefer to form aggregates based on π-π stacking, Pt···Pt interactions, and electrostatic interactions. The coassembly strategy between anionic and cationic complexes endows them with multicolor luminescent and apparent color as optical materials for advanced information encryption.
Collapse
Affiliation(s)
- Xin Lei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yeye Ai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhu Shu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Wei Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongguang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
8
|
Hruzd M, Durand R, Gauthier S, le Poul P, Robin-le Guen F, Achelle S. Photoluminescence of Platinum(II) Complexes with Diazine-Based Ligands. CHEM REC 2024; 24:e202300335. [PMID: 38847061 DOI: 10.1002/tcr.202300335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
In the last past twenty years, research on luminescent platinum (II) complexes has been intensively developed for useful application such as organic light emitting diodes (OLEDs). More recently, new photoluminescent complexes based on diazine ligands (pyrimidine, pyrazine, pyridazine, quinazoline and quinoxaline) have been developed in this context. This review will summarize the photophysical properties of most of the phosphorescent diazine Pt(II) complexes described in the literature and compare the results to pyridine analogues whenever possible. Based on the emission color, and the photoluminescence quantum yield (PLQY) values, the relationship between structure modification, and photophysical properties are highlighted. Tuning of emission color, quantum yields in solution and solid state and, for some complexes, aggregation induced emission (AIE) or thermally activated delayed fluorescence (TADF) properties are described. When emitting OLEDs have been built from diazine Pt(II) complexes, the external quantum efficiency (EQE) values and luminance for different emission wavelengths and in some cases, chromaticity coordinates obtained from devices, are given. Finally, this review highlights the growing interest in studies of new luminescent diazine Pt(II) complexes for OLED applications.
Collapse
Affiliation(s)
- Mariia Hruzd
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Raphaël Durand
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Sébastien Gauthier
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Pascal le Poul
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Françoise Robin-le Guen
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| | - Sylvain Achelle
- Univ Rennes, CNRS, Institut des Sciences Chimiques de Rennes - UMR 6226, 5000, Rennes, France
| |
Collapse
|
9
|
Wang Y, Li N, Chu L, Hao Z, Chen J, Huang J, Yan J, Bian H, Duan P, Liu J, Fang Y. Dual Enhancement of Phosphorescence and Circularly Polarized Luminescence through Entropically Driven Self-Assembly of a Platinum(II) Complex. Angew Chem Int Ed Engl 2024; 63:e202403898. [PMID: 38497553 DOI: 10.1002/anie.202403898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Addressing the dual enhancement of circular polarization (glum) and luminescence quantum yield (QY) in circularly polarized luminescence (CPL) systems poses a significant challenge. In this study, we present an innovative strategy utilizing the entropically driven self-assembly of amphiphilic phosphorescent platinum(II) complexes (L-Pt) with tetraethylene glycol chains, resulting in unique temperature dependencies. The entropically driven self-assembly of L-Pt leads to a synergistic improvement in phosphorescence emission efficiency (QY was amplified from 15 % at 25 °C to 53 % at 60 °C) and chirality, both in the ground state and the excited state (glum value has been magnified from 0.04×10-2 to 0.06) with increasing temperature. Notably, we observed reversible modulation of phosphorescence and chirality observed over at least 10 cycles through successive heating and cooling, highlighting the intelligent control of luminescence and chiroptical properties by regulating intermolecular interactions among neighboring L-Pt molecules. Importantly, the QY and glum of the L-Pt assembly in solid state were measured as 69 % and 0.16 respectively, representing relatively high values compared to most self-assembled CPL systems. This study marks the pioneering demonstration of dual thermo-enhancement of phosphorescence and CPL and provides valuable insights into the thermal effects on high-temperature and switchable CPL materials.
Collapse
Affiliation(s)
- Yanqing Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Na Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Liangwen Chu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Zelin Hao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Junyu Chen
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jiang Huang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Junlin Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, No. 620, West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi, 710119, P. R. China
| |
Collapse
|
10
|
Wu J, Xu B, Xu Y, Yue L, Chen J, Xie G, Zhao J. Reblooming of the cis-Bis(2-phenylpyridine) Platinum(II) Complex: Synthesis Updating, Aggregation-Induced Emission, Electroluminescence, and Cell Imaging. Inorg Chem 2023; 62:19142-19152. [PMID: 37945528 DOI: 10.1021/acs.inorgchem.3c03618] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Studies on the syntheses, photophysical properties, and applications of cis-bis(2-phenylpyridine) platinum(II) complex (Pt(ppy)2) family are of great importance, but very limited progress has been achieved to date. Herein, a one-pot method was established for the syntheses of Pt(ppy)2-type complexes Pt-ppy and Pt-tBu. These two compounds were nonemissive in dilute solutions. However, they produced intense red and deep-red phosphorescence in the aggregation and film states, with lifetimes and quantum yields up to 1.92 μs and 70%, respectively, exhibiting unique aggregation-induced emission (AIE) characteristics. According to the experimental and theoretical studies, molecular configuration transformation (MCT) in the excited state may occur because of the d-d transition from the Pt center, causing nonradiative transitions in the solution. Nevertheless, the MCT would be largely restricted by the intermolecular interactions or rigid matrix, thereby enabling efficient phosphorescence in the aggregation state and in the PMMA films. Consequently, the AIE characteristics of Pt-ppy and Pt-tBu probably result from the restriction of molecular configuration transformation (RMCT). Due to the π-π and/or weak Pt-Pt interactions and the concentration-dependent emission characteristics, they emit deep-red and NIR emissions generated by excimer and/or MMLCT emitting species. Inspired by their AIE features, electroluminescence and cell imaging applications are explored. To the best of our knowledge, this is the first comprehensive study on the synthesis optimization, photophysical properties, AIE characteristics, and applications of the Pt(ppy)2-type complexes, which may rebloom the research studies on this type of Pt(II) complex family and provide valuable insights on the development of phosphorescent AIE metal-organic complexes.
Collapse
Affiliation(s)
- Jianglan Wu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang ,Guizhou 550025, China
| | - Bingjia Xu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yanzi Xu
- School of Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Ling Yue
- School of Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China
| | - Jiangshan Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guohua Xie
- Institute of Flexible Electronics (Future Technologies), Xiamen University, Xiamen 361005, China
| | - Jiang Zhao
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang ,Guizhou 550025, China
| |
Collapse
|
11
|
Ogawa T, Wenger OS. Nickel(II) Analogues of Phosphorescent Platinum(II) Complexes with Picosecond Excited-State Decay. Angew Chem Int Ed Engl 2023; 62:e202312851. [PMID: 37732725 DOI: 10.1002/anie.202312851] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Square-planar NiII complexes are interesting as cheaper and more sustainable alternatives to PtII luminophores widely used in lighting and photocatalysis. We investigated the excited-state behavior of two NiII complexes, which are isostructural with two luminescent PtII complexes. The initially excited singlet metal-to-ligand charge transfer (1 MLCT) excited states in the NiII complexes decay to metal-centered (3 MC) excited states within less than 1 picosecond, followed by non-radiative relaxation of the 3 MC states to the electronic ground state within 9-21 ps. This contrasts with the population of an emissive triplet ligand-centered (3 LC) excited state upon excitation of the PtII analogues. Structural distortions of the NiII complexes are responsible for this discrepant behavior and lead to dark 3 MC states far lower in energy than the luminescent 3 LC states of PtII compounds. Our findings suggest that if these structural distortions could be restricted by more rigid coordination environments and stronger ligand fields, the excited-state relaxation in four-coordinate NiII complexes could be decelerated such that luminescent 3 LC or 3 MLCT excited states become accessible. These insights are relevant to make NiII fit for photophysical and photochemical applications that relied on PtII until now.
Collapse
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
12
|
Morimoto T, Yoshida M, Sato-Tomita A, Nozawa S, Takayama J, Hiura S, Murayama A, Kobayashi A, Kato M. Vapor-Induced Assembly of a Platinum(II) Complex Loaded on Layered Double Hydroxide Nanoparticles. Chemistry 2023; 29:e202301993. [PMID: 37581259 DOI: 10.1002/chem.202301993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/16/2023]
Abstract
Controlled self-assembly of PtII complexes is key to the development of optical and stimuli-responsive materials, but designing and precisely controlling them is still difficult owing to weak intermolecular interactions. Herein, we report the successful water-vapor-induced assembly of an anionic PtII complex [Pt(CN)2 (ppy)]- (Hppy=2-phenylpyridine) electrostatically loaded onto cationically charged layered double hydroxide (LDH) nanoparticles consisting of Mg2+ and Al3+ ions. When the PtII complexes were densely loaded onto the LDH nanoparticles, the assembly was maintained, even in dilute aqueous media. In the case of sparse loading, the PtII complexes were loaded discretely in the dry state; however, when water vapor was adsorbed, the increased mobility of the PtII complexes led to their assembly on the LDH nanoparticles. The presence of water vapor led to a drastic change in luminescence from green to orange.
Collapse
Affiliation(s)
- Tamami Morimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masaki Yoshida
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| | - Ayana Sato-Tomita
- Division of Biophysics, Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Junichi Takayama
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Satoshi Hiura
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Akihiro Murayama
- Faculty of Information Science and Technology, Hokkaido University, North-14 West-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido, 060-0810, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan
| |
Collapse
|
13
|
Wang B, Nan ZA, Liu J, Lu ZX, Wang W, Zhuo Z, Li GL, Huang YG. Metalation of a Hierarchical Self-Assembly Consisting of π-Stacked Cubes through Single-Crystal-to-Single-Crystal Transformation. Molecules 2023; 28:4923. [PMID: 37446584 DOI: 10.3390/molecules28134923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Single-crystal-to-single-crystal metalation of organic ligands represents a novel method to prepare metal-organic complexes, but remains challenging. Herein, a hierarchical self-assembly {(H12L8)·([N(C2H5)4]+)3·(ClO4-)15·(H2O)32} (1) (L = tris(2-benzimidazolylmethyl) amine) consisting of π-stacked cubes which are assembled from eight partially protonated L ligands is obtained. By soaking the crystals of compound 1 in the aqueous solution of Co(SCN)2, the ligands coordinate with Co2+ ions stoichiometrically and ClO4- exchange with SCN- via single-crystal-to-single-crystal transformation, leading to {([CoSCNL]+)8·([NC8H20]+)3·(SCN)11·(H2O)13} (2).
Collapse
Affiliation(s)
- Bin Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Ang Nan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jin Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zi-Xiu Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhu Zhuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guo-Ling Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - You-Gui Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
14
|
Sasaki K, Saito D, Yoshida M, Tanaka F, Kobayashi A, Sada K, Kato M. Chromic triboluminescence of self-assembled platinum(II) complexes. Chem Commun (Camb) 2023; 59:6745-6748. [PMID: 37194401 DOI: 10.1039/d3cc01525d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A series of Pt(II) complexes bearing N-heterocyclic carbenes, [Pt(CN)2(Rim-Mepy)] (Rim-MepyH+ = 3-alkyl-1-(4-methyl-(2-pyridinyl))-1H-imidazolium, R = Me, Et, iPr, or tBu), exhibits triboluminescence in the visible range from blue to red, as well as the corresponding intense photoluminescence. Remarkably, among the complexes, the iPr-substituted one exhibits chromic triboluminescence behaviour during the process of rubbing and also vapour exposure.
Collapse
Affiliation(s)
- Kono Sasaki
- Graduate School of Chemical Sciences and Engineering, and Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Daisuke Saito
- Graduate School of Chemical Sciences and Engineering, and Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Masaki Yoshida
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Fuka Tanaka
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Atsushi Kobayashi
- Graduate School of Chemical Sciences and Engineering, and Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, and Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
15
|
Makino Y, Yoshida M, Hayashi S, Sasaki T, Takamizawa S, Kobayashi A, Kato M. Elastic and bright assembly-induced luminescent crystals of platinum(II) complexes with near-unity emission quantum yield. Dalton Trans 2023. [PMID: 36847788 DOI: 10.1039/d3dt00192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Molecular crystals of Pt(II) complexes with metallophilic interactions can provide bright assembly-induced luminescence with colour tunability. However, the brittleness of many of these crystals makes their application in flexible optical materials difficult. Herein, we have achieved the elastic deformation of crystals of polyhalogenated Pt(II) complexes exhibiting bright assembly-induced luminescence. A crystal of [Pt(bpic)(dFppy)] (Hbpic = 5-bromopicolinic acid, HdFppy = 2-(2,4-difluorophenyl)pyridine) and a co-crystal of [Pt(bpic)(dFppy)] and [Pt(bpic)(ppy)] (Hppy = 2-phenylpyridine) were found to exhibit significant elastic deformation due to their highly anisotropic interaction topologies. While the crystal of [Pt(bpic)(dFppy)] exhibited monomer-based ligand-centred 3ππ* emission with an emission quantum yield of 0.40, the co-crystal exhibited bright, triplet metal-metal-to-ligand charge transfer (3MMLCT) emission owing to Pt⋯Pt interactions, thereby achieving a significantly higher emission quantum yield of 0.94.
Collapse
Affiliation(s)
- Yusuke Makino
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| | - Shotaro Hayashi
- School of Environmental Science and Engineering and Research Centre for Molecular Design, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Toshiyuki Sasaki
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Satoshi Takamizawa
- Department of Materials System Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan
| | - Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.,Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
16
|
Ogawa T, Sinha N, Pfund B, Prescimone A, Wenger OS. Molecular Design Principles to Elongate the Metal-to-Ligand Charge Transfer Excited-State Lifetimes of Square-Planar Nickel(II) Complexes. J Am Chem Soc 2022; 144:21948-21960. [DOI: 10.1021/jacs.2c08838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
17
|
Strong dual-state emission of unsymmetrical and symmetrical thiazolothiazole-bridged imidazolium salts. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Group 10 metal-cyanide scaffolds in complexes and extended frameworks: Properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
19
|
Otsubo K, Nagayama S, Kawaguchi S, Sugimoto K, Kitagawa H. A Preinstalled Protic Cation as a Switch for Superprotonic Conduction in a Metal-Organic Framework. JACS AU 2022; 2:109-115. [PMID: 35098227 PMCID: PMC8790730 DOI: 10.1021/jacsau.1c00388] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs), made from various metal nodes and organic linkers, provide diverse research platforms for proton conduction. Here, we report on the superprotonic conduction of a Pt dimer based MOF, [Pt2(MPC)4Cl2Co(DMA)(HDMA)·guest] (H2MPC, 6-mercaptopyridine-3-carboxylic acid; DMA, dimethylamine). In this framework, a protic dimethylammonium cation (HDMA+) is trapped inside a pore through hydrogen bonding with an MPC ligand. Proton conductivity and X-ray measurements revealed that trapped HDMA+ works as a preinstalled switch, where HDMA+ changes its relative position and forms an effective proton-conducting pathway upon hydration, resulting in more than 105 times higher proton conductivity in comparison to that of the dehydrated form. Moreover, the anisotropy of single-crystal proton conductivity reveals the proton-conducting direction within the crystal. The present results offer insights into functional materials having a strong coupling of molecular dynamic motion and transport properties.
Collapse
Affiliation(s)
- Kazuya Otsubo
- Division
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Shuya Nagayama
- Division
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| | - Shogo Kawaguchi
- Japan
Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kunihisa Sugimoto
- Japan
Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Hiroshi Kitagawa
- Division
of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho,
Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
20
|
Li B, Li Y, Chan MHY, Yam VWW. Phosphorescent Cyclometalated Platinum(II) Enantiomers with Circularly Polarized Luminescence Properties and Their Assembly Behaviors. J Am Chem Soc 2021; 143:21676-21684. [PMID: 34907777 DOI: 10.1021/jacs.1c10943] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platinum(II) complexes as supramolecular luminescent materials have received considerable attention due to their unique planar structures and fascinating photophysical properties. However, the molecular design of platinum(II) complexes with impressive circularly polarized luminescence properties still remains challenging and rarely explored. Herein, we reported a series of cyclometalated platinum(II) complexes with benzaldehyde and its derived imine-containing alkynyl ligands to investigate their phosphorescent, chiroptical, and self-assembly behaviors. An isodesmic growth mechanism is found for their temperature-dependent self-assembly process. The chiral sense of the enantiomers can be transferred from the chiral alkynyl ligands to the cyclometalated platinum(II) dipyridylbenzene N^C^N chromophore and further amplified through supramolecular assembly via intermolecular noncovalent interactions. Notably, distinctive phosphorescent properties and nanostructured morphologies have been found for enantiomers 4R and 4S. Their intriguing self-assembled nanostructures and phosphorescence behaviors are supported by crystal structure determination, 1H NMR, emission, and UV-vis absorption spectroscopy, scanning electron microscopy, and X-ray powder diffraction studies.
Collapse
Affiliation(s)
- Baoning Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Yongguang Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Michael Ho-Yeung Chan
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Vivian Wing-Wah Yam
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| |
Collapse
|
21
|
Roy S, Lopez AA, Yarnell JE, Castellano FN. Metal-Metal-to-Ligand Charge Transfer in Pt(II) Dimers Bridged by Pyridyl and Quinoline Thiols. Inorg Chem 2021; 61:121-130. [PMID: 34955020 DOI: 10.1021/acs.inorgchem.1c02469] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The investigation of two distinct species of square planar dinuclear Pt(II) dimers based on anti-[Pt(C∧N)(μ-N∧S)]2, where C∧N is either 2-phenylpyridine (ppy) or benzo(h)quinoline (bzq) and N∧S is pyridine-2-thiol (pyt), 6-methylpyridine-2-thiol (Mpyt), or 2-quinolinethiol (2QT), is presented. Each molecule was thoroughly characterized with electronic structure calculations, static UV-vis and photoluminescence (PL) spectroscopy, and cyclic voltammetry, along with transient absorbance and time-gated PL experiments. These visible absorbing chromophores feature metal-metal-to-ligand charge-transfer (MMLCT) excited states that originate from intramolecular d8-d8 metal-metal σ-interactions and are manifested in the ground- and excited-state properties of these molecules. All five molecules reported (anti-[Pt(ppy)(μ-Mpyt)]2 could not be isolated), three of which are newly conceived here, possess electronic absorptions past 500 nm and high quantum yield PL emission with spectra extending into the far red (λem > 700 nm), originating from the charge-transfer state in each instance. Each chromophore displays excited-state decay kinetics adequately modeled by single exponentials as recorded using dynamic absorption and PL experiments; each technique yields similar decay kinetics. The combined data illustrate that pyridyl and quinoline-thiolates in conjunction with select cyclometalates represent classes of MMLCT chromophores that exhibit excited-state properties suitable for promoting light-energized chemical reactions and provide a molecular platform suitable for evaluating coherence phenomena in transient metal-metal bond-forming photochemistry.
Collapse
Affiliation(s)
- Subhangi Roy
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Antonio A Lopez
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - James E Yarnell
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
22
|
Li R, Gong ZL, Zhu Q, Sun MJ, Che Y, Yao J, Zhong YW. A pre-organized monomer-reservoir strategy to prepare multidimensional phosphorescent organoplatinum nanocrystals and suprastructures. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1129-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Nakayama N, Hijikata M, Ohmagari H, Tanaka H, Inazuka Y, Saito D, Obata S, Ohta K, Kato M, Goto H, Hasegawa M. Computational studies for crystal structures of helicate lanthanide complexes based on X-ray analyses. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naofumi Nakayama
- CONFLEX Co., Shinagawa Center Bldg., 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Masahiro Hijikata
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Hitomi Ohmagari
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Mirai Molecular Materials Design Institute, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Hideyuki Tanaka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Yudai Inazuka
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Daisuke Saito
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shigeaki Obata
- CONFLEX Co., Shinagawa Center Bldg., 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Kazuo Ohta
- CONFLEX Co., Shinagawa Center Bldg., 3-23-17 Takanawa, Minato-ku, Tokyo 108-0074, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Hitoshi Goto
- Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Miki Hasegawa
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
- Mirai Molecular Materials Design Institute, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
24
|
Inoue H, Yamashita Y, Ozawa Y, Ono T, Abe M. Solid-State Structures and Photoluminescence of Lamellar Architectures of Cu(I) and Ag(I) Paddlewheel Clusters with Hydrogen-Bonded Polar Guests. Molecules 2021; 26:molecules26216731. [PMID: 34771140 PMCID: PMC8587135 DOI: 10.3390/molecules26216731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Two hexanuclear paddlewheel-like clusters appending six carboxylic-acid pendants have been isolated with the inclusion of polar solvent guests: [Cu6(Hmna)6]·7DMF (1·7DMF) and [Ag6(Hmna)6]·8DMSO (2·8DMSO), where H2mna = 2-mercaptonicotininc acid, DMF = N,N’-dimethylformamide, and DMSO = dimethyl sulfoxide. The solvated clusters, together with their fully desolvated forms 1 and 2, have been characterized by FTIR, UV–Vis diffuse reflectance spectroscopy, TG-DTA analysis, and DFT calculations. Crystal structures of two solvated clusters 1·7DMF and 2·8DMSO have been unambiguously determined by single-crystal X-ray diffraction analysis. Six carboxylic groups appended on the clusters trap solvent guests, DMF or DMSO, through H-bonds. As a result, alternately stacked lamellar architectures comprising of a paddlewheel cluster layer and H-bonded solvent layer are formed. Upon UV illumination (λex = 365 nm), the solvated hexasilver(I) cluster 2·8DMSO gives intense greenish-yellow photoluminescence in the solid state (λPL = 545 nm, ΦPL = 0.17 at 298 K), whereas the solvated hexacopper(I) cluster 1·7DMF displays PL in the near-IR region (λPL = 765 nm, ΦPL = 0.38 at 298 K). Upon complete desolvation, a substantial bleach in the PL intensity (ΦPL < 0.01) is observed. The desorption–sorption response was studied by the solid-state PL spectroscopy. Non-covalent interactions in the crystal including intermolecular H-bonds, CH⋯π interactions, and π⋯π stack were found to play decisive roles in the creation of the lamellar architectures, small-molecule trap-and-release behavior, and guest-induced luminescence enhancement.
Collapse
Affiliation(s)
- Haruki Inoue
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Kobe 678-1297, Japan; (H.I.); (Y.Y.)
| | - Yuga Yamashita
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Kobe 678-1297, Japan; (H.I.); (Y.Y.)
| | - Yoshiki Ozawa
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Kobe 678-1297, Japan; (H.I.); (Y.Y.)
- Correspondence: (Y.O.); (M.A.)
| | - Toshikazu Ono
- Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Masaaki Abe
- Graduate School of Science, University of Hyogo, 3-2-1, Kouto, Kamigori-cho, Kobe 678-1297, Japan; (H.I.); (Y.Y.)
- Correspondence: (Y.O.); (M.A.)
| |
Collapse
|
25
|
Li J, Chen K, Wei J, Ma Y, Zhou R, Liu S, Zhao Q, Wong WY. Reversible On-Off Switching of Excitation-Wavelength-Dependent Emission of a Phosphorescent Soft Salt Based on Platinum(II) Complexes. J Am Chem Soc 2021; 143:18317-18324. [PMID: 34694133 DOI: 10.1021/jacs.1c09272] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Excitation-wavelength-dependent (Ex-De) emission materials show excellent potential in diverse advanced photonic areas. Of significant importance is the on-demand regulation of the Ex-De luminescence behavior of these materials, which is previously unprecedented. In this study, we report on a platinum(II) complex-based phosphorescent soft salt S1 ([Pt(tpp)(ed)]+[Pt(ftpp)(CN)2]- (where ttp = 2-(4-(trifluoromethyl)phenyl)pyridine, ed = ethane-1,2-diamine, and ftpp = 2-(4-fluoro-3-(trifluoromethyl)phenyl)pyridine)) with Ex-De photoluminescence (PL) property. UV-visible absorption and PL spectra of S1 were recorded in DMSO-H2O mixture (1 × 10-3 M) with various H2O fractions to investigate its ground and excited states. Interestingly, the PL spectra of S1 powder show that its maximum emission peak is red-shifted from 595 to 644 nm upon excitation at different wavelengths from 360 to 520 nm, accompanied by an obvious emission color change from yellow-orange to red. Furthermore, confocal laser scanning fluorescence microscopy was employed to determine the PL property of self-assembled uniform S1 nanostructure, and the result shows that the Ex-De emission behavior is absent. On the basis of these results, we conclude the various Pt(II)···Pt(II) distances that exist are the major factor responsible for the properties of the Ex-De PL of S1 powder. Thus, for the first time, reversible on-off switching of Ex-De PL of S1 was achieved by manipulating its Pt(II)···Pt(II) distances through mechanical stress and vapor fuming. Finally, we demonstrate the high-level anticounterfeiting applications via on-demand multicolor displays.
Collapse
Affiliation(s)
- Jiangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Kexin Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Yun Ma
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.,Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China.,State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Ruyi Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, Jiangsu, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.,Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
26
|
Inoue R, Naota T, Ehara M. Origin of the Aggregation-Induced Phosphorescence of Platinum(II) Complexes: The Role of Metal-Metal Interactions on Emission Decay in the Crystalline State. Chem Asian J 2021; 16:3129-3140. [PMID: 34476913 DOI: 10.1002/asia.202100887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Indexed: 11/06/2022]
Abstract
Discerning the origins of the phosphorescent aggregation-induced emission (AIE) from Pt(II) complexes is crucial for developing the broader range of photo-functional materials. Over the past few decades, several mechanisms of phosphorescent AIE have been proposed, however, not have been directly elucidated. Herein, we describe phosphorescence and deactivation processes of four class of AIE active Pt(II) complexes in the crystalline state based on experimental and theoretical investigation. These complexes show metal-to-ligand and/or metal-metal-to-ligand charge transfer emission in crystalline state with different heat resistance against thermal emission quenching. The calculated energy profiles including the minimum energy crossing point between S0 and T1 states were consistent with the heat resistant properties, which provided the mechanism for AIE expression. Furthermore, we have clarified the role of metal-metal interaction in AIE by comparing two computational models.
Collapse
Affiliation(s)
- Ryo Inoue
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Machikaneyama, 560-8531, Toyonaka, Osaka, Japan
| | - Masahiro Ehara
- Institute for Molecular Science and Research Center for Computational Science, Nishigo-naka 38, Myodai-ji, 444-8585, Okazaki, Japan
| |
Collapse
|
27
|
Sicilia V, Arnal L, Escudero D, Fuertes S, Martin A. Chameleonic Photo- and Mechanoluminescence in Pyrazolate-Bridged NHC Cyclometalated Platinum Complexes. Inorg Chem 2021; 60:12274-12284. [PMID: 34339189 PMCID: PMC8892954 DOI: 10.1021/acs.inorgchem.1c01470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DFT investigations on the ground (GS) and the first triplet (T1) excited state potential energy surfaces (PES) were performed on a new series of platinum-butterfly complexes, [{Pt(C∧C*)(μ-Rpz)}2] (Rpz: pz, 1; 4-Mepz, 2; 3,5-dmpz, 3; 3,5-dppz, 4), containing a cyclometalated NHC in their wings. The geometries of two close-lying local minima corresponding to butterfly spread conformers, 1s-4s, and butterfly folded ones, 1f-4f, with long and short Pt-Pt separations, respectively, were optimized in the GS and T1 PES. A comparison of the GS and T1 energy profiles revealed that an opposite trend is obtained in the relative stability of folded and spread conformers, the latter being more stabilized in their GS. Small ΔG (s/f) along with small-energy barriers in the GS support the coexistence of both kinds of conformers, which influence the photo- and mechanoluminescence of these complexes. In 5 wt % doped PMMA films in the air, these complexes exhibit intense sky-blue emissions (PLQY: 72.0-85.9%) upon excitation at λ ≤ 380 nm arising from 3IL/MLCT excited states, corresponding to the predominant 1s-4s conformers. Upon excitation at longer wavelengths (up to 450 nm), the minor 1f-4f conformers afford a blue emission as well, with PLQY still significant (40%-60%). In the solid state, the as-prepared powder of 4 exhibits a greenish-blue emission with QY ∼ 29%, mainly due to 3IL/3MLCT excited states of butterfly spread molecules, 4s. Mechanical grinding resulted in an enhanced and yellowish-green emission (QY ∼ 51%) due to the 3MMLCT excited states of butterfly folded molecules, 4f, in such a way that the mechanoluminescence has been associated with an intramolecular structural change induced by mechanical grinding.
Collapse
Affiliation(s)
- Violeta Sicilia
- Departamento de Quimica Inorganica, Escuela de Ingenieria y Arquitectura de Zaragoza, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Campus Rio Ebro, Edificio Torres Quevedo, 50018, Zaragoza, Spain
| | - Lorenzo Arnal
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Daniel Escudero
- Department of Chemistry, KU Leuven, Celestijnenlaan 200f - box 2404, 3001 Leuven, Belgium
| | - Sara Fuertes
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Antonio Martin
- Departamento de Quimica Inorganica, Facultad de Ciencias, Instituto de Sintesis Quimica y Catalisis Homogenea (ISQCH), CSIC - Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|
28
|
Su BK, Wei YC, Chuang WT, Weng SC, Wang SF, Chen DG, Huang ZX, Chi Y, Chou PT. The Observation of Interchain Motion in Self-Assembled Crystalline Platinum(II) Complexes: An Exquisite Case but By No Means the Only One in Molecular Solids. J Phys Chem Lett 2021; 12:7482-7489. [PMID: 34342467 DOI: 10.1021/acs.jpclett.1c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In organic and organometallic solids, upon electronic excitation, most intermolecular structural relaxations follow a pathway along the π-π stacking direction or metal-metal bond with significant coupling strength. Differently, we discovered that the self-assembled platinum(II) complexes, Pt(fppz)2, exhibit an unusual interchain contraction. The ground-state and excited-state multiple local minima were distinguished by temperature-dependent excitation/emission spectra, indicating the existence of multiple local minima. The time-resolved emission decay revealed the excited-state structural relaxation lifetime with τobs = 41 ns at 298 K. Temperature-dependent X-ray diffraction analysis showed that the packing geometries contract 0.6 Å along the interchain direction (a-axis) at 50 K compared to the geometries at 298 K. Such structural displacements render the slow internal conversion rate in the excited states. We thus demonstrate the correlation between the packing geometries and the excited-state dynamics of the self-assembled Pt(II) complexes, shedding light on the unique direction of interchain structural deformation of the molecular aggregates.
Collapse
Affiliation(s)
- Bo-Kang Su
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Shih-Chang Weng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sheng-Fu Wang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Deng-Gao Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zhi-Xuan Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yun Chi
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
29
|
Das B, Gupta P. Trinuclear Organometallic Pt-Ir-Pt Complexes: Insights into Photophysical Properties, Amino Acid Binding and Protein Sensing. Chem Asian J 2021; 16:2495-2503. [PMID: 34254446 DOI: 10.1002/asia.202100719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Indexed: 11/08/2022]
Abstract
The rational synthesis of trinuclear emissive organometallic complexes with two equivalent platinum(II) centres appended to the ancillary substituted 2,2'-bipyridyl ligand of the cyclometalated iridium(III) centre is reported here. The alkynyl-platinum moiety and cyclometalated iridium(III) centres have been separated through a non-conjugated CH2 -O-CH2 linkage. The emission titration with amino acids reveals that the complexes sense free amino acids. The luminescence sensing of BSA is thus attributed to the amino acid sensing ability of the complexes and confirmed by emission anisotropy and Far-UV CD spectral study. The decrease in α-helix in the CD spectra signifies the changes in the secondary structure of protein in presence of the complexes.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, 741246, India
| |
Collapse
|
30
|
Galiana‐Cameo M, Passarelli V, Pérez‐Torrente JJ, Di Giuseppe A, Castarlenas R. Variation on the π‐Acceptor Ligand within a Rh
I
−N‐Heterocyclic Carbene Framework: Divergent Catalytic Outcomes for Phenylacetylene‐Methanol Transformations. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- María Galiana‐Cameo
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12 CP 50009 Zaragoza Spain
| | - Vincenzo Passarelli
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12 CP 50009 Zaragoza Spain
| | - Jesús J. Pérez‐Torrente
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12 CP 50009 Zaragoza Spain
| | - Andrea Di Giuseppe
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12 CP 50009 Zaragoza Spain
- Dipartimento di Scienze Fisiche e Chimiche Università dell'Aquila Via Vetoio 67100 Coppito (AQ) Italy
| | - Ricardo Castarlenas
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) Universidad de Zaragoza-CSIC C/Pedro Cerbuna 12 CP 50009 Zaragoza Spain
| |
Collapse
|
31
|
Song WJ, Su H, Zhou P, Zhu YH, Khan MA, Song JB, Li H. Controllable synthesis of two adenosine 5'-monophosphate nucleotide coordination polymers via pH regulation: crystal structure and chirality. Dalton Trans 2021; 50:4713-4719. [PMID: 33729226 DOI: 10.1039/d1dt00133g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two types of Cu(ii)-AMP-4,4'-bipy coordination polymers, {[Cu(AMP)(4,4'-bipy)(H2O)3]·5H2O}n (1) and {[Cu2(HAMP)2(4,4'-bipy)2(H2O)4]·2NO3·11H2O}n (2) (Na2AMP = adenosine 5'-monophosphate disodium salt), were synthesised through pH control. X-ray single-crystal diffraction analysis revealed that 1 and 2 are one-dimensional (1D) coordinating coordination polymers. The nucleotide in 1 was not protonated whereas that in 2 was protonated. With the protonated NO3- in 2 entering the crystal lattice, it plays a role in balancing the charge. The chirality was studied using solid-state circular dichroism (CD) spectroscopy based on the analysis of crystal structures.
Collapse
Affiliation(s)
- Wen-Jing Song
- Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Su MM, Kang JJ, Liu SQ, Meng CG, Li YQ, Zhang JJ, Ni J. Strategy for Achieving Long-Wavelength Near-Infrared Luminescence of Diimineplatinum(II) Complexes. Inorg Chem 2021; 60:3773-3780. [PMID: 33615779 DOI: 10.1021/acs.inorgchem.0c03529] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although many strategies have been used to help design effective near-infrared (NIR) luminescent materials, it is still a huge challenge to realize long-wavelength NIR luminescence of diimineplatinum(II) complexes in the solid state. Herein, we have successfully achieved long-wavelength NIR luminescence of a family of diimineplatinum(II) complexes based on a new strategy that combines a one-dimensional (1D) "Pt wire" structure with the electronic effect of the substituent. The structures of six solvated diimineplatinum(II) complexes based on 4,4-dichloro-2,2'-bipyridine or 4,4-dibromo-2,2'-bipyridine and 4-substituted phenylacetylene ligands have been determined, namely, 1·1/2toluene, 2·1/2THF, 3·1/8toluene, 4·1/2THF, 5·1/8CH2Cl2, and 6·1/4toluene. All of them crystallize in the monoclinic space group C2/c or C2/m and stack in the 1D "Pt wire" structure. In the solid state, six complexes exhibited unusual long-wavelength metal-metal-to-ligand charge-transfer luminescence that peaked at 984, 1044, 972, 990, 1022, and 935 nm, respectively. Interestingly, 2·1/2THF has the shortest Pt···Pt distance and the longest emission wavelength among the six complexes. As far as we know, the luminescence of 2·1/2THF at 1044 nm is the longest emission wavelength among known diimineplatinum(II) complexes. Systematic studies revealed that good molecular planarity, suitable substituent position, weak hydrogen-bond-forming ability of the substituents, appropriate molecular bending, and weakening of the interaction between solvated molecules and platinum molecules are conducive to the construction of a 1D "Pt wire" structure of the diimineplatinum(II) complex. Furthermore, the emission energy of the complex is mainly determined by the strength of the Pt-Pt interaction and electronic effect of the substituent.
Collapse
Affiliation(s)
- Meng-Meng Su
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Jia-Jia Kang
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Shu-Qin Liu
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Chang-Gong Meng
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Yan-Qin Li
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Jian-Jun Zhang
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| | - Jun Ni
- College of Chemistry, Dalian University of Technology, Linggong Road, No. 2, Dalian 116024, P. R. China
| |
Collapse
|
33
|
Das B, Gupta P. Luminescent terpyridine appended geminal bisazide and bistriazoles: multinuclear Pt(II) complexes and AIPE-based DNA detection with the naked eye. Dalton Trans 2021; 50:10225-10236. [PMID: 34236066 DOI: 10.1039/d1dt01108a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report square planar Pt(ii) complexes as luminescent biosensors for DNA detection in solution. The sensing is attributed to the aggregation induced bright red photoluminescence (AIPE) of the complexes in the presence of DNA that can be seen with the naked eye using only a 360 nm light source. Terpyridine appended luminescent geminal bistriazoles (L1-L4, from geminal bisazide A through azide-alkyne 'click' cycloaddition) with versatile chelating sites were explored for metal coordination and reaction with Pt(dmso)2Cl2 yielding tetranuclear and dinuclear complexes of Pt(ii) with different N∩N ligand environments. Thermally stable gem-bisazide and bistriazoles are hardly reported in the literature and this is the first report of terpyridine appended geminal bisazide and bistriazoles.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Parna Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
34
|
Su MM, Ni J, Guo ZC, Liu SQ, Zhang JJ, Meng CG. Long-wavelength NIR luminescence of 2,2′-bipyridyl-Pt( ii) dimers achieved by enhanced Pt–Pt interaction. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00546d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benefiting from the very strong intermolecular Pt–Pt interaction, 2,2′-bipyridyl-Pt(ii) dimers have achieved long-wavelength near-infrared luminescence exceeding 1000 nm for the first time.
Collapse
Affiliation(s)
- Meng-Meng Su
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Jun Ni
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Zhong-Cui Guo
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Shu-Qin Liu
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Jian-Jun Zhang
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| | - Chang-Gong Meng
- School of Chemical Engineering, Dalian University of Technology, Linggong Road No. 2, Dalian 116024, P. R. China
| |
Collapse
|