1
|
Li S, Yahaya S, Bojanowski J, Ragazzon G, Dydio P. Dual relay Rh-/Pd-catalysis enables β-C(sp 3)-H arylation of α-substituted amines. Chem Sci 2025; 16:4167-4174. [PMID: 39911345 PMCID: PMC11791518 DOI: 10.1039/d4sc06806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
A dual relay catalytic protocol, built on reversible dehydrogenation of amines by Rh catalysis and C-H functionalisation of transient imines by Pd catalysis, is reported to enable regioselective arylation of amines at their unactivated β-C(sp3)-H bond. Notably, the new strategy is applicable to secondary anilines and N-PMP-protected primary aliphatic amines of intermediate steric demands, which is in contrast to the existing strategies that involve either free-amine-directed C-H activation for highly sterically hindered secondary aliphatic amines or steric-controlled migrative cross-coupling for unhindered N-Boc protected secondary aliphatic amines. Regioselectivity of the reaction is imposed by the electronic effects of transient imine intermediates rather than by the steric effects between specific starting materials and catalysts, thereby opening the uncharted scope of amines. In a broader sense, this study demonstrates new opportunities in dual relay catalysis involving hydrogen borrowing chemistry, previously explored in the functionalisation of alcohols, to execute otherwise challenging transformations for amines, commonly present in natural products, pharmaceuticals, biologically active molecules, and functional materials.
Collapse
Affiliation(s)
- Shuailong Li
- University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Sani Yahaya
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Jan Bojanowski
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Giulio Ragazzon
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| | - Paweł Dydio
- University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- University of Strasbourg, CNRS ISIS UMR 7006, 8 Allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
2
|
Ma JY, Yao QJ, Jiang LC, Huang FR, Yue Q, Shi BF. Copper-Mediated Enantioselective C-H Thiolation of Ferrocenes Enabled by the BINOL Ligand. J Am Chem Soc 2025; 147:7061-7069. [PMID: 39884955 DOI: 10.1021/jacs.4c18255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Transition-metal-catalyzed enantioselective C-H activation has transformed the landscape of asymmetric synthesis, enabling the efficient conversion of C-H bonds into C-C and carbon-heteroatom (C-X) bonds. However, the formation of C-S bonds through enantioselective C-H thiolation remains underdeveloped due to challenges such as catalyst deactivation and competitive coordination of sulfur-containing compounds with chiral ligands. Herein, we report an unprecedented approach to constructing sulfur-substituted planar chiral ferrocenes (PCFs) through copper-mediated enantioselective C-H thiolation enabled by only a 2.5 mol % 1,1'-bi-2,2'-naphthol (BINOL) ligand. A variety of sulfur-substituted PCFs were obtained in good yields (up to 83%) with excellent enantioselectivity (up to >99% ee). Mechanistic studies reveal that the irreversible C-H activation serves as both the stereo- and rate-determining step and can be achieved with catalytic amounts of Cu species. Furthermore, the utility of this protocol is illustrated through gram-scale synthesis, removal of the directing group, and the synthesis of N,S-chiral ligands as well as chiral rotaxanes. This significant advancement not only expands the tool kit for constructing chiral organosulfur compounds but also highlights the potential of enantioselective C-H activation in asymmetric synthesis.
Collapse
Affiliation(s)
- Jia-Yi Ma
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qi-Jun Yao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Lu-Chen Jiang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fan-Rui Huang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Qiang Yue
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
3
|
Bakkiyaraj M, Anbarasan P. Catalytic Enantioselective [4+1]-Annulation of Carboxylic Acids with Cyclopropenes. Org Lett 2025; 27:1638-1643. [PMID: 39939118 DOI: 10.1021/acs.orglett.4c04827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
An efficient asymmetric synthesis of 3-vinylphthalides has been accomplished through rhodium-catalyzed [4+1]-annulation of arylcarboxylic acids with cyclopropenes involving C-H bond functionalization. The method exhibited excellent compatibility for various functional groups and offered diverse substituted 3-vinylphthalides in excellent yield and enantioselectivity. Synthetic application and control experiments were also performed to demonstrate the utility and understand the reaction pathway.
Collapse
Affiliation(s)
- Marimuthu Bakkiyaraj
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| |
Collapse
|
4
|
Xu Z, Geng T, Du J, Zuo Y, Hu X, Liu L, Shi Z, Huang H. Visible-light-mediated radical difunctionalization of alkenes with aromatic aldehydes. Org Biomol Chem 2025. [PMID: 39957547 DOI: 10.1039/d4ob02090a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
We have developed a visible-light-mediated three-component tandem reaction of aromatic aldehydes with acrylates using a Hantzsch ester as the hydrogen atom transfer reagent, generating diethyl pentanedioate products in a one-pot synthesis. The reaction facilitates direct formation of acyl groups from the corresponding aldehydes, which are subsequently coupled successively to two molecules of acrylate in a Giese addition.
Collapse
Affiliation(s)
- Zhenhua Xu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Tao Geng
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Jun Du
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Youpeng Zuo
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Xiaoxiao Hu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Lin Liu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Zhiqiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, People's Republic of China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
5
|
Yang JY, Du YR, Cheng FQ, An K, Hu Y, Li ZY. Construction of Axially Chiral Dialdehydes via Rhodium-Catalyzed Enantioselective C-H Amidation. Angew Chem Int Ed Engl 2025:e202421412. [PMID: 39853834 DOI: 10.1002/anie.202421412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86 % yields with 99.5 : 0.5 er. Furthermore, detailed mechanistic studies indicated that both the imine formation and C-H bond cleavage steps were reversible. More interestingly, the X-ray crystallographic analysis of Int-2 showed probable C-H/π interaction between biaryl group and chiral amine moiety. This process offered a convenient route to access axially chiral dialdehyde derivatives. More broadly, it demonstrated a new tool through transient and C-H/π synergistic interactions, which would stimulate further development of asymmetric catalytic system in enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Jie-Ying Yang
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ya-Ru Du
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Fu-Qiang Cheng
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Kun An
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yuefei Hu
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
6
|
Chen JH, Yao QJ, Zhong MY, Jiang TY, Huang FR, Li X, Shi BF. Nickel(II)/Salox-Catalyzed Enantioselective C-H Functionalization. ACS CENTRAL SCIENCE 2025; 11:127-135. [PMID: 39866700 PMCID: PMC11758223 DOI: 10.1021/acscentsci.4c02049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/28/2025]
Abstract
Recently, nickel catalysts have garnered considerable attention for their efficacy and versatility in asymmetric catalysis, attributed to their distinctive properties. However, the use of cost-effective and sustainable divalent nickel catalysts in C-H activation/asymmetric alkene insertion poses significant challenges due to the intricate control of stereochemistry in the transformation of the tetracoordinate C-Ni(II) intermediate. Herein, we report a Ni(II)-catalyzed enantioselective C-H/N-H annulation with oxabicyclic alkenes. This protocol offers straightforward access to chiral [2,2,1]-bridged bicyclic compounds bearing four consecutive stereocenters with high enantioselectivity (up to 96% ee). The development of a sterically hindered chiral salicyloxazoline (Salox) ligand, TMS-Salox, is key to the success of this protocol. Mechanistic investigations unveiled that a chiral Ni(III)-metalacyclic intermediate was formed through the in situ oxidation of achiral organometallic Ni(II) species and coordination of the Salox ligand. This process led to the creation of a tailored chiral pocket that guides the approach of alkenes, thereby influencing and determining the stereochemistry.
Collapse
Affiliation(s)
- Jia-Hao Chen
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qi-Jun Yao
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Ming-Yu Zhong
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tian-Yu Jiang
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Fan-Rui Huang
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiang Li
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Feng Shi
- Department
of Chemistry, Zhejiang University, Hangzhou 310058, China
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
- College
of Material Chemistry and Chemical Engineering, Key Laboratory of
Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
7
|
Jia K, Wang J, Jiang C, Wang X. Ligand-Promoted Palladium-Catalyzed β-C(sp3)–H Arylation of Ketones Using Acetohydrazide as a Transient Directing Group. Synlett 2025; 36:65-68. [DOI: 10.1055/a-2310-0880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractA palladium-catalyzed β-C(sp3)–H arylation of aliphatic ketones by using acetohydrazide as a transient directing group has been developed. The reaction proceeds through a less-favored [5,5]-bicyclic palladacycle intermediate and is promoted by a pyridine ligand.
Collapse
|
8
|
Wei F, Zhang Y. Palladium-Catalyzed Cascade Distal C-H Methylation and Cyclization for the Construction of Spirooxindole Skeletons. Org Lett 2024; 26:9221-9226. [PMID: 39423361 DOI: 10.1021/acs.orglett.4c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Transition metal-catalyzed C-H methylation represents a straightforward approach for introducing methyl groups into organic molecules. Herein, we report a palladium-catalyzed alkene-relayed remote C-H methylation reaction that utilizes dimethyl carbonate as the methylation reagent. The aryl groups distal to a bromo group were dimethylated via C-H activation, leading to the formation of spirooxindoles as the final products through C(sp3)-H activation and C(sp3)-C(sp3) coupling. This cascade process involves the formation of four C-C bonds and the activation of three C-H bonds. The reaction not only provides a new approach to C-H methylation but also offers a novel method for constructing spirooxindole skeletons by merging skeleton construction and methylation into a single step.
Collapse
Affiliation(s)
- Feng Wei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Wu LS, Wang CY, Zhou T, Shi BF. Pd(II)-Catalyzed Chemo-, Diastereo-, and Enantioselective C(sp 3)-H Arylation to Construct Contiguous Phosphorus and Carbon Stereocenters. Org Lett 2024; 26:8988-8992. [PMID: 39400248 DOI: 10.1021/acs.orglett.4c02692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Chiral phosphorus compounds with contiguous P,C-stereogenic centers are widely found in chiral ligands. The synthesis of these skeletons has been scarcely reported. Herein, we developed a Pd(II)-catalyzed chemo-, diastereo-, and enantioselective arylation of diisopropyl phosphinamide enabled by 2-pyridinylisopropyl (PIP) auxiliary and (S)-6,6'-(CN)2-SPINOL. A range of chiral phosphinamides containing contiguous P,C-stereocenters were obtained in good yields (up to 85%) with excellent enantioselectivities (up to >99% ee).
Collapse
Affiliation(s)
- Le-Song Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chen-Yue Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
10
|
Lu F, Geng Y, Wang H, Liu YN, Zhang E, Yang L, Tang J. Late-Stage Modification of Peptides with Maleimides through Palladium-Catalyzed β-C(sp 3)-H Alkylation. Org Lett 2024; 26:8786-8791. [PMID: 39364794 DOI: 10.1021/acs.orglett.4c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Transition-metal-catalyzed C-H activation has proven to be a powerful tool for the late-stage modification of peptides. We herein report a method for site-selective alkylation of peptides with maleimides through Pd-catalyzed β-C(sp3)-H activation. In this protocol, the methionine residues within peptides serve as the directing groups, which circumvented the preinstallation and subsequent removal of the directing groups. This chemistry exhibited broad substrate scope and can be utilized for peptide ligation.
Collapse
Affiliation(s)
- Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yujie Geng
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Huihui Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ya-Ning Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Liyun Yang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P. R. China
| |
Collapse
|
11
|
Teng MY, Liu DY, Mao SY, Wu X, Chen JH, Zhong MY, Huang FR, Yao QJ, Shi BF. Asymmetric Dearomatization of Indoles through Cobalt-Catalyzed Enantioselective C-H Functionalization Enabled by Photocatalysis. Angew Chem Int Ed Engl 2024; 63:e202407640. [PMID: 38898602 DOI: 10.1002/anie.202407640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Photocatalysis holds a pivotal position in modern organic synthesis, capable of inducing novel reactivities under mild and environmentally friendly reaction conditions. However, the merger of photocatalysis and transition-metal-catalyzed asymmetric C-H activation as an efficient and sustainable method for the construction of chiral molecules remains elusive and challenging. Herein, we develop a cobalt-catalyzed enantioselective C-H activation reaction enabled by visible-light photoredox catalysis, providing a synergistic catalytic strategy for the asymmetric dearomatization of indoles with high levels of enantioselectivity (96 % to >99 % ee). Mechanistic studies indicate that the excited photocatalyst was quenched by divalent cobalt species in the presence of Salox ligand, leading to the formation of catalytically active chiral Co(III) complex. Moreover, stoichiometric reactions of cobaltacycle intermediate with indole suggest that the irradiation of visible light also play a critical role in the dearomatization step.
Collapse
Affiliation(s)
- Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - De-Yang Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Shi-Yu Mao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Xu Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Ming-Yu Zhong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
12
|
E J, Wang L, Zeng J, Tian H, Bu X, Yang X, Zhao Z. Tunable Rh(III)-Catalyzed C(sp 2)-H Bond Functionalization of Aryl Imidates with Cyclic 1,3-Diones: Strategic Use of Directing Groups. Org Lett 2024; 26:7885-7890. [PMID: 39241179 DOI: 10.1021/acs.orglett.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
A tunable Rh(III)-catalyzed C(sp2)-H bond functionalization of aryl imidates with cyclic 1,3-diones was developed. With suitable and straightforward reaction condition adjustments, the C-H bond functionalization of diverse aryl imidates with cyclic 1,3-diones occurred smoothly and precisely at room temperature. Accompanied by different directing group transformations, a series of corresponding aryl nitriles, hydrophenanthridin-1(2H)-ones, spiro isoindoles, or hydrophenanthridine-1,6(2H,5H)-diones were synthesized in good yields to provide a rational directing group utilization strategy for the Rh(III)-catalyzed C(sp2)-H bond activation. Control experiments and primary mechanistic studies revealed that solvent effects and functional group electronic effects might influence the reaction's selectivity.
Collapse
Affiliation(s)
- Junnan E
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Luohe Wang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Jing Zeng
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, and Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, P. R. China
| |
Collapse
|
13
|
Gang YC, Dong L. The Construction of Novel Spirocyclic Frameworks with Cyclobutane through Rh(III)-Catalyzed [3 + 2]-Annulation between Quinoxalines and Alkynylcyclobutanols. J Org Chem 2024; 89:12912-12923. [PMID: 39225374 DOI: 10.1021/acs.joc.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
An effective synthesis strategy for the preparation of 1'H-spiro[indene-1,2'-quinoxaline] has been developed. This involves a Rh(III)-catalyzed [3 + 2]-annulation of quinoxalines with alkynylcyclobutanols. The developed protocol offers a straightforward method for the preparation of versatile heterocyclic compounds with a four-membered ring and is compatible with a wide range of functional groups.
Collapse
Affiliation(s)
- Yi-Chi Gang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Hu X, Zhao Y, He T, Niu C, Liu F, Jia W, Mu Y, Li X, Rong ZQ. Access to distal biaxial atropisomers by iridium catalyzed asymmetric C-H alkylation. Chem Sci 2024; 15:13541-13549. [PMID: 39183921 PMCID: PMC11339954 DOI: 10.1039/d4sc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Distal biaxial atropisomers are typical structures in chiral catalysts and ligands and offer a wide variety of applications in biology and materials technology, but the development of efficient synthesis of these valuable scaffolds is still in great demand. Herein, we describe a highly efficient iridium catalyzed asymmetric C-H alkylation reaction that provides a range of new distal biaxial atropisomers with excellent yields (up to 99%) and stereoselectivity (up to 99% ee and essentially one isomer). Based on this unprecedented strategy, a polycyclic skeleton with five successive chiral centers as well as C-C and C-N (or N-N) two distal chiral axes was created successfully in mild circumstances. In addition, the optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being potential candidate materials for CPL applications.
Collapse
Affiliation(s)
- Xueqing Hu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yunxu Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Caoyue Niu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Wei Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yi Mu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| |
Collapse
|
15
|
Wei F, Zhang Y. Ligand-Enabled Palladium-Catalyzed [3 + 2] Annulation of Aryl Iodides with Maleimides via C(sp 3)-H Activation. Org Lett 2024; 26:6209-6213. [PMID: 38994868 DOI: 10.1021/acs.orglett.4c02138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Palladium-catalyzed intermolecular [3 + 2] annulation reactions via C-H activation represent a powerful and charming tool for assembling cyclopentanes. Herein, we have developed a strategy for the palladium-catalyzed intermolecular alkene-relayed annulation reaction of aryl iodides and maleimides via C(sp3)-H activation for the construction of polycyclic structures. In contrast to directed-group-enabled intermolecular maleimide-relayed [3 + 2] annulation reactions, this protocol stands out for its utilization of aryl iodides as substrates. Notably, monoprotected amino acids played a crucial role as ligands in this reaction, which is rarely observed in C-H activation reactions initiated with organohalides.
Collapse
Affiliation(s)
- Feng Wei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| |
Collapse
|
16
|
Jiang AL, Zhou G, Jiang BY, Zhou T, Xu XT, Shi BF. Pd-Catalyzed Atroposelective C-H Olefination: Diverse Synthesis of Axially Chiral Biaryl-2-carboxylic Acids. Org Lett 2024; 26:5670-5675. [PMID: 38923904 DOI: 10.1021/acs.orglett.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Axially chiral carboxylic acids are important motifs in chiral catalysts and ligands. We herein reported the synthesis of axially chiral carboxylic acids via Pd(II)-catalyzed atroposelective C-H olefination using carboxylic acid as the native directing group. A broad range of axial chiral biaryl-2-carboxylic acids were synthesized in good yields with high enantioselectivities (up to 84% yield with 99% ee). Gram-scale reaction and further transformation reactions also provide a platform for synthetic applications of this method.
Collapse
Affiliation(s)
- Ao-Lian Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bo-Yang Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Bing-Feng Shi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
17
|
Li Q, Yu Z, Liu Q, Guo Y, Fu Z, Yang Y, Bin Z, Wu D, Lan J. Crafting 1,4-diaryl spirobifluorene hosts in OLEDs via interannular C-H arylation: synergistic effects of molecular linearity and orthogonality. Chem Sci 2024; 15:10547-10555. [PMID: 38994415 PMCID: PMC11234861 DOI: 10.1039/d4sc02178a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/30/2024] [Indexed: 07/13/2024] Open
Abstract
In this work, we present a design concept of introducing linear structures into the orthogonal configuration of 9,9'-spirobifluorene (SBF), aiming to enhance carrier mobilities while maintaining high triplet energies (E T), which are two critical parameters for optimizing host materials in organic light-emitting diodes (OLEDs). To validate our proposed design, four pivotal model molecules of 1,4-diaryl SBFs were synthesized via interannular C-H arylation of bi(hetero)aryl-2-formaldehydes, a task challenging to accomplish using previous synthetic methodologies. The orthogonal configuration and the steric hindrance of SBF lead to high E T through the conjugation breaking at C1 and C4 positions, rendering 1,4-diaryl SBFs suitable as universal pure hydrocarbon (PHC) hosts for red, green, and blue (RGB) phosphorescent OLEDs (PhOLEDs). Meanwhile, the linearity and relatively good planarity of the para-quaterphenyl structure promote high carrier mobilities through orderly intermolecular packing. The synergistic effects of linearity and orthogonality in 1-(para-biphenyl)-4-phenyl-SBF result in exceptional device performance with external quantum efficiencies (EQEs) of 26.0%, 26.1%, and 22.5% for RGB PhOLEDs, respectively. Notably, the green PhOLED exhibits minimal efficiency roll-off, positioning its device performances among the state-of-the-art in PHC hosts.
Collapse
Affiliation(s)
- Qian Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Zhiqian Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Qianhui Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Yusong Guo
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Zhangyi Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Di Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| | - Jingbo Lan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 People's Republic of China
| |
Collapse
|
18
|
Sun T, Guo L, Li Q, Cao ZC. Nickel-Catalyzed Chemoselective Carbomagnesiation for Atroposelective Ring-Opening Difunctionalization. Angew Chem Int Ed Engl 2024; 63:e202401756. [PMID: 38651647 DOI: 10.1002/anie.202401756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
There is a pressing need for methods that can connect enantioenriched organic compounds with readily accessible building blocks via asymmetric functionalization of unreactive chemical bonds in organic synthesis and medicinal chemistry. Herein, the asymmetric chemoselective cleavage of two unactivated C(Ar)-O bonds in the same molecule is disclosed for the first time through an unusual nickel-catalyzed carbomagnesiation. This reaction facilitates the evolution of a novel atroposelective ring-opening difunctionalization. Utilizing readily available dibenzo bicyclic substrates, diverse valuable axially chiral biaryls are furnished with high efficiencies. Synthetic elaborations showcase the application potential of this method. The features of this method include good atom-economy, multiple roles of the nucleophile, and a simple catalytic system that enables the precise magnesiation of an α-C(Ar)-O bond and arylation of a β-C(Ar)-O bond.
Collapse
Affiliation(s)
- Tingting Sun
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| | - Linchao Guo
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| | - Qi Li
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| | - Zhi-Chao Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, Anhui Agricultural University, No. 130, Changjiangxilu, Hefei, Anhui, China, 230036
| |
Collapse
|
19
|
Tang J, Lu F, Zhang X, Gao Z, Gong S, Zhang E. Backbone-Enabled and Ester Groups Switched δ-C(sp 2)-H Amination/Fluorination: Cyclic Dipeptides Synthesis. Org Lett 2024; 26:5130-5135. [PMID: 38843448 DOI: 10.1021/acs.orglett.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
An efficient and concise strategy for the synthesis of cyclic dipeptides via Pd-catalyzed site-selective δ-C(sp2)-H amination/fluorination and N-to-C cyclization is disclosed. The backbone amides within the dipeptides serves as endogenous directing groups, while the desired products were switched by the C-terminal ester group. This chemistry presents a novel and robust alternative to construct cyclodipeptide fragments.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- Shengzhou Innovation Research Institute, Zhejiang Sci-Tech University, Shengzhou 312400, P. R. China
| | - Fengjie Lu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xinyi Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zhenqi Gao
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Shuo Gong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ensheng Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
20
|
Li X, Kong L, Yin S, Zhou H, Lin A, Yao H, Gao S. Palladium-Catalyzed Atroposelective Suzuki-Miyaura Coupling to Construct Axially Chiral Tetra-Substituted α-Boryl Styrenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309706. [PMID: 38602437 PMCID: PMC11199998 DOI: 10.1002/advs.202309706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Palladium-catalyzed Suzuki-Miyaura (SM) coupling is a valuable method for forming C─C bonds, including those between aryl moieties. However, achieving atroposelective synthesis of axially chiral styrenes via SM coupling remains challenging. In this study, a palladium-catalyzed atroposelective Suzuki-Miyaura coupling between gem-diborylalkenes and aryl halides is presented. Using the monophosphine ligand Me-BI-DIME (L2), a range of axially chiral tetra-substituted acyclic styrenes with high yields and excellent enantioselectivities are successfully synthesized. Control experiments reveal that the gem-diboryl group significantly influences the product enantioselectivities and the coupling prefers to occur at sites with lower steric hindrance. Additionally, the alkenyl boronate group in the products proves versatile, allowing for various transformations while maintaining high optical purities.
Collapse
Affiliation(s)
- Xiaorui Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Lingyu Kong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shuxin Yin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| |
Collapse
|
21
|
Wu LS, Zhou T, Shi BF. Pd(II)-Catalyzed Desymmetrizing gem-Dimethyl C(sp 3)-H Alkenylation/Aza-Wacker Cyclization Directed by PIP Auxiliary. Org Lett 2024; 26:4457-4462. [PMID: 38775281 DOI: 10.1021/acs.orglett.4c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Desymmetrization of gem-dimethyl groups has been developed as an efficient pathway to achieve asymmetric C(sp3)-H functionalization. Herein, we described a Pd(II)-catalyzed desymmetrizing gem-dimethyl C(sp3)-H alkenylation/aza-Wacker cyclization directed by a bidentate 2-pyridinylisopropyl auxiliary. Chiral α-methyl γ-lactams were obtained in good yields (up to 82%) and high enantioselectivities (up to 91.5% ee).
Collapse
Affiliation(s)
- Le-Song Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
22
|
Yi LN, Zhao T, Bu J, Long J, Yang Q. Directed C(sp 3)-H Arylation of Free α-Aminophosphonates: Dual Models Exploration via Palladium Catalysis. Org Lett 2024; 26:4132-4136. [PMID: 38717283 DOI: 10.1021/acs.orglett.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In this report, we present the dual activation models for transient directing group-directed and amino-self-directed Pd-catalyzed α-aminophosphonate side-chain C(sp3)-H arylation. Both strategies showed facile, efficient, and single regioselectivity in the reaction between free α-aminophosphonates and aryl iodides. Furthermore, the modification of amino and late-stage functionalization of the C(sp3)-P bond from products indicates potential applications for α-aminophosphonates.
Collapse
Affiliation(s)
- Li Na Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tao Zhao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jinghan Bu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiedi Long
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
23
|
Li C, Wang Z, Jin M, Song Z. Palladium-Catalyzed Arylation of C(sp 2)-H Bonds and C(sp 3)-H Bonds with 4-Amino-benzotriazole as the Bidentate Directing Group. J Org Chem 2024; 89:6966-6973. [PMID: 38691095 DOI: 10.1021/acs.joc.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The arylation of C(sp2)-H and C(sp3)-H bonds in carboxylic acids catalyzed by Pd(II) with 4-aminobentriazole as the directing group was investigated. In addition to activation of the C(sp2)-H bond, selective arylation of alkyl carboxylic acids and amino acids in the β position can also be achieved. This strategy involved a 5,5-bicyclic Pd intermediate complex whose structure was determined by X-ray single crystal diffraction analysis. Importantly, the DG (directing group) can be easily removed under mild conditions.
Collapse
Affiliation(s)
- Chengqian Li
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| | - Zhuo Wang
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| | - Meina Jin
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| | - Zhiguang Song
- College of Chemistry, Jilin University, Jilin, Changchun 130012, P. R. China
| |
Collapse
|
24
|
Zhao JH, Zheng L, Zou JY, Zhang SY, Shen HC, Wu Y, Wang P. Construction of Si-Stereogenic Silanols by Palladium-Catalyzed Enantioselective C-H Alkenylation. Angew Chem Int Ed Engl 2024; 63:e202402612. [PMID: 38410071 DOI: 10.1002/anie.202402612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The construction of silicon-stereogenic silanols via Pd-catalyzed intermolecular C-H alkenylation with the assistance of a commercially available L-pyroglutamic acid has been realized for the first time. Employing oxime ether as the directing group, silicon-stereogenic silanol derivatives could be readily prepared with excellent enantioselectivities, featuring a broad substrate scope and good functional group tolerance. Moreover, parallel kinetic resolution with unsymmetric substrates further highlighted the generality of this protocol. Mechanistic studies indicate that L-pyroglutamic acid could stabilize the Pd catalyst and provide excellent chiral induction. Preliminary computational studies unveil the origin of the enantioselectivity in the C-H bond activation step.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Long Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Jian-Ye Zou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Sheng-Ye Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Hua-Chen Shen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
25
|
Chen W, Xu H, Liu FX, Chen K, Zhou Z, Yi W. Chiral Osmium(II)/Salox Species Enabled Enantioselective γ-C(sp 3)-H Amidation: Integrated Experimental and Computational Validation For the Ligand Design and Reaction Development. Angew Chem Int Ed Engl 2024; 63:e202401498. [PMID: 38499469 DOI: 10.1002/anie.202401498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024]
Abstract
Herein, multiple types of chiral Os(II) complexes have been designed to address the appealing yet challenging asymmetric C(sp3)-H functionalization, among which the Os(II)/Salox species is found to be the most efficient for precise stereocontrol in realizing the asymmetric C(sp3)-H amidation. As exemplified by the enantioenriched pyrrolidinone synthesis, such tailored Os(II)/Salox catalyst efficiently enables an intramolecular site-/enantioselective C(sp3)-H amidation in the γ-position of dioxazolone substrates, in which benzyl, propargyl and allyl groups bearing various substituted forms are well compatible, affording the corresponding chiral γ-lactam products with good er values (up to 99 : 1) and diverse functionality (>35 examples). The unique performance advantage of the developed chiral Os(II)/Salox system in terms of the catalytic energy profile and the chiral induction has been further clarified by integrated experimental and computational studies.
Collapse
Affiliation(s)
- Weijie Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huiying Xu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Fu-Xiaomin Liu
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Kaifeng Chen
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zhi Zhou
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Wei Yi
- the Fifth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| |
Collapse
|
26
|
Zhang ZJ, Jacob N, Bhatia S, Boos P, Chen X, DeMuth JC, Messinis AM, Jei BB, Oliveira JCA, Radović A, Neidig ML, Wencel-Delord J, Ackermann L. Iron-catalyzed stereoselective C-H alkylation for simultaneous construction of C-N axial and C-central chirality. Nat Commun 2024; 15:3503. [PMID: 38664372 PMCID: PMC11045758 DOI: 10.1038/s41467-024-47589-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
The assembly of chiral molecules with multiple stereogenic elements is challenging, and, despite of indisputable advances, largely limited to toxic, cost-intensive and precious metal catalysts. In sharp contrast, we herein disclose a versatile C-H alkylation using a non-toxic, low-cost iron catalyst for the synthesis of substituted indoles with two chiral elements. The key for achieving excellent diastereo- and enantioselectivity was substitution on a chiral N-heterocyclic carbene ligand providing steric hindrance and extra represented by noncovalent interaction for the concomitant generation of C-N axial chirality and C-stereogenic center. Experimental and computational mechanistic studies have unraveled the origin of the catalytic efficacy and stereoselectivity.
Collapse
Affiliation(s)
- Zi-Jing Zhang
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Nicolas Jacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France
| | - Shilpa Bhatia
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Philipp Boos
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
- Department of Chemistry, Zhejiang University, 310027, Hangzhou, China
| | - Joshua C DeMuth
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Antonis M Messinis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Becky Bongsuiru Jei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - João C A Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Aleksa Radović
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, USA
| | - Michael L Neidig
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute-Alsace, ECPM, 67087, Strasbourg, France.
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
- Wöhler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
27
|
Xu S, Mi R, Zheng G, Li X. Cobalt- or rhodium-catalyzed synthesis of 1,2-dihydrophosphete oxides via C-H activation and formal phosphoryl migration. Chem Sci 2024; 15:6012-6021. [PMID: 38665527 PMCID: PMC11040647 DOI: 10.1039/d4sc00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
A highly stereo- and chemoselective intermolecular coupling of diverse heterocycles with dialkynylphosphine oxides has been realized via cobalt/rhodium-catalyzed C-H bond activation. This protocol provides an efficient synthetic entry to functionalized 1,2-dihydrophosphete oxides in excellent yields via the merger of C-H bond activation and formal 1,2-migration of the phosphoryl group. Compared with traditional methods of synthesis of 1,2-dihydrophosphetes that predominantly relied on stoichiometric metal reagents, this catalytic system features high efficiency, a relatively short reaction time, atom-economy, and operational simplicity. Photophysical properties of selected 1,2-dihydrophosphete oxides are also disclosed.
Collapse
Affiliation(s)
- Shengbo Xu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
| | - Ruijie Mi
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| | - Guangfan Zheng
- Department of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710062 P. R. China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
28
|
Zhang Y, Zhang JJ, Lou L, Lin R, Cramer N, Wang SG, Chen Z. Recent advances in Rh(I)-catalyzed enantioselective C-H functionalization. Chem Soc Rev 2024; 53:3457-3484. [PMID: 38411467 DOI: 10.1039/d3cs00762f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chiral carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds are pervasive and very essential in natural products, bioactive molecules, and functional materials, and their catalytic construction has emerged as one of the hottest research fields in synthetic organic chemistry. The last decade has witnessed vigorous progress in Rh(I)-catalyzed asymmetric C-H functionalization as a complement to Rh(II) and Rh(III) catalysis. This review aims to provide the most comprehensive and up-to-date summary covering the recent advances in Rh(I)-catalyzed C-H activation for asymmetric functionalization. In addition to the development of diverse reactions, chiral ligand design and mechanistic investigation (inner-sphere mechanism, outer-sphere mechanism, and 1,4-Rh migration) will also be highlighted.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lujun Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Nicolai Cramer
- Institute of Chemical Sciences and Engineering (ISIC), EPFL SB ISIC LCSA, BCH 4305, 1015 Lausanne, Switzerland.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
29
|
Teng MY, Wu YJ, Chen JH, Huang FR, Liu DY, Yao QJ, Shi BF. Cobalt-Catalyzed Enantioselective C-H Carbonylation towards Chiral Isoindolinones. Angew Chem Int Ed Engl 2024; 63:e202318803. [PMID: 38205884 DOI: 10.1002/anie.202318803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Transition metal-catalyzed enantioselective C-H carbonylation with carbon monoxide, an essential and easily available C1 feedstock, remains challenging. Here, we disclosed an unprecedented enantioselective C-H carbonylation catalyzed by inexpensive and readily available cobalt(II) salt. The reactions proceed efficiently through desymmetrization, kinetic resolution, and parallel kinetic resolution, affording a broad range of chiral isoindolinones in good yields with excellent enantioselectivities (up to 92 % yield and 99 % ee). The synthetic potential of this method was demonstrated by asymmetric synthesis of biological active compounds, such as (S)-PD172938 and (S)-Pazinaclone. The resulting chiral isoindolinones also serve as chiral ligands in cobalt-catalyzed enantioselective C-H annulation with alkynes to construct phosphorus stereocenter.
Collapse
Affiliation(s)
- Ming-Ya Teng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - De-Yang Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
30
|
Hore S, Singh A, Singh RP. Asymmetric 1,2-diaxial synthesis of bi-(hetero)aryl benzofulvene atropisomers via transient directing group-assisted dehydrogenative coupling. Chem Commun (Camb) 2024; 60:2524-2527. [PMID: 38328816 DOI: 10.1039/d3cc06011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The efficient cross-dehydrogenative coupling of electronically rich and sterically congested benzofulvene with bi-(hetero)aryl moieties to construct an axially chiral benzofulvene core remains a formidable task. In this study, we describe a highly efficient and practical palladium-catalyzed approach for atroposelective bi-(hetero)aryl benzofulvene synthesis, achieving excellent enantioselectivity with moderate yields. This protocol offers a remarkable opportunity for the direct regio- and enantioselective conversion of C-H bonds of benzofulvene to C-C bonds. Furthermore, the protocol permits the incorporation of benzofulvene with a 4-phenyl coumarin core, enabling access to a novel class of axially chiral coumarins.
Collapse
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
31
|
Zhang J, Wang K, Zhu C. Deracemization of Atropisomeric Biaryls Enabled by Copper Catalysis. JACS AU 2024; 4:502-511. [PMID: 38425940 PMCID: PMC10900502 DOI: 10.1021/jacsau.3c00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Atropisomeric biaryls have found crucial applications in versatile chiral catalysts as well as in ligands for transition metals. Herein, we have developed an efficient crystallization-induced deracemization (CID) method to access chiral biaryls from their racemates with a chiral ammonium salt under copper catalysis including BINOL, NOBIN, and BINAM derivatives. After being significantly accelerated by its bidentate diamine ligand, the copper catalyst exhibits high efficiency and selectivity in racemizing biaryl skeletons, and the cocrystal complex would be enantioselectively formed together with chiral ammonium salt, which on acid-quenching would directly deliver chiral biaryl without further chromatographic purification. This CID process is easily scalable, and the chiral ammonium salt was nicely recoverable. Ligand effect studies showed that bulky alkyl substitution was an indispensable element to ensure efficient racemization, which probably proceeds via a radical-cation intermediate and further allows axial rotation by forming a delocalized radical.
Collapse
Affiliation(s)
| | | | - Can Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
32
|
Chen ZJ, Fan LJ, Xie PP, Qian PF, Hu X, Zhou T, Shi BF. Pd(II)-Catalyzed enantioselective C-H olefination toward the synthesis of P-stereogenic phosphinamides. Chem Commun (Camb) 2024; 60:1623-1626. [PMID: 38230709 DOI: 10.1039/d3cc05052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
P-Stereogenic phosphorus compounds are important structural elements in chiral ligands or organocatalysts. Herein, we report a Pd(II)-catalyzed enantioselective C-H olefination toward the synthesis of P-stereogenic phosphinamides using cheap commercially available L-pGlu-OH as a chiral ligand. A broad range of P-stereogenic phosphinamides were gained in good yields with high enantioselectivities (33 examples, up to 77% yield, 99% ee) via desymmetrization and kinetic resolution.
Collapse
Affiliation(s)
- Zi-Jia Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
| | - Ling-Jie Fan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Pei-Pei Xie
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
| | - Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
| | - Xinquan Hu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. taozhou.zju.edu.cn
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
| |
Collapse
|
33
|
Babu US, Kotipalli R, Nanubolu JB, Reddy MS. Pd-Catalyzed Vicinal Intermolecular Annulations of Iodoarenes, Indoles, and Carbazoles with Enynes. Chemistry 2024; 30:e202302788. [PMID: 37929623 DOI: 10.1002/chem.202302788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
Reaching the formidable C-H corners has been one of the top priorities of organic chemists in the recent past. This prompted us to disclose herein a vicinal annulation of 2-iodo benzoates, indoles, and carbazoles with N-embedded 1,6-enynes through 7-/8-membered palladacycles. The relay does not require the assistance of any directing group, leading to multicyclic scaffolds, which are readily diversified to an array of adducts (with new functional tethers and/or three contiguous stereocenters), in which we showcase a rare benzylic mono-oxygenation.
Collapse
Affiliation(s)
- Undamatla Suri Babu
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Ramesh Kotipalli
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Jagadeesh Babu Nanubolu
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Jagadeesh Babu Nanubolu, Analytical Department, CSIR-IICT, Hyderabad, 500007, India
| | - Maddi Sridhar Reddy
- Department of Oraganic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
34
|
Yang Y, Wu Y, Bin Z, Zhang C, Tan G, You J. Discovery of Organic Optoelectronic Materials Powered by Oxidative Ar-H/Ar-H Coupling. J Am Chem Soc 2024; 146:1224-1243. [PMID: 38173272 DOI: 10.1021/jacs.3c12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Efficient and streamlined synthetic methods that facilitate the rapid build-up of structurally diverse π-conjugated systems are of paramount importance in the quest for organic optoelectronic materials. Among these methods, transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions between two (hetero)arenes have emerged as a concise and effective approach for generating a wide array of bi(hetero)aryl and fused heteroaryl structures. This innovative approach bypasses challenges associated with substrate pre-activation processes, thereby allowing for the creation of frameworks that were previously beyond reach using conventional Ar-X/Ar-M coupling reactions. These inherent advantages have ushered in new design patterns for organic optoelectronic molecules that deviate from traditional methods. This ground-breaking approach enables the transcendence of the limitations of repetitive material structures, ultimately leading to the discovery of novel high-performance materials. In this Perspective, we provide an overview of recent advances in the development of organic optoelectronic materials through the utilization of transition-metal-catalyzed oxidative Ar-H/Ar-H coupling reactions. We introduce several notable synthetic strategies in this domain, covering both directed and non-directed oxidative Ar-H/Ar-H coupling strategies, dual chelation-assisted strategy and directed ortho-C-H arylation/cyclization strategy. Additionally, we shed light on the role of oxidative Ar-H/Ar-H coupling reactions in the advancement of high-performance organic optoelectronic materials. Finally, we discuss the current limitations of existing protocols and offer insights into the future prospects for this field.
Collapse
Affiliation(s)
- Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Yimin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Cheng Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China
| |
Collapse
|
35
|
Cai Y, Lv Y, Shu L, Jin Z, Chi YR, Li T. Access to Axially Chiral Aryl Aldehydes via Carbene-Catalyzed Nitrile Formation and Desymmetrization Reaction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0293. [PMID: 38628355 PMCID: PMC11020146 DOI: 10.34133/research.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 04/19/2024]
Abstract
An approach utilizing N-heterocyclic carbene for nitrile formation and desymmetrization reaction is developed. The process involves kinetic resolution, with the axially chiral aryl monoaldehydes obtained in moderate yields with excellent optical purities. These axially chiral aryl monoaldehydes can be conveniently transformed into functionalized molecules, showing great potential as catalysts in organic chemistry.
Collapse
Affiliation(s)
- Yuanlin Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Ya Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology,
Nanyang Technological University, Singapore 637371, Singapore
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| |
Collapse
|
36
|
Zhang XL, Wang MY, Liu HJ, Wang YQ. Palladium-Catalyzed Regioselective C4-H Acyloxylation of Indoles with Carboxylic Acids via a Transient Directing Groups Strategy. Org Lett 2024; 26:41-45. [PMID: 38149590 DOI: 10.1021/acs.orglett.3c03568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The development of an efficient method for the synthesis of C4 oxy-substituted indoles is an appealing yet challenging task. Herein, we report a general palladium-catalyzed TDG approach for the direct C4-H acyloxylation of indoles. The protocol features atom and step economy, excellent regioselectivity, and good tolerance of functional groups. Moreover, the reaction can accommodate a range of carboxylic acids including benzoic acids, phenylacetic acids, and aliphatic acids.
Collapse
Affiliation(s)
- Xing-Long Zhang
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Meng-Yue Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| | - Hui-Jin Liu
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P.R. China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P.R. China
| |
Collapse
|
37
|
Bhattacharya T, Ghosh S, Dutta S, Guin S, Ghosh A, Ge H, Sunoj RB, Maiti D. Combinatorial Ligand Assisted Simultaneous Control of Axial and Central Chirality in Highly Stereoselective C-H Allylation. Angew Chem Int Ed Engl 2024; 63:e202310112. [PMID: 37997014 DOI: 10.1002/anie.202310112] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
The significance of stereoselective C-H bond functionalization thrives on its direct application potential to pharmaceuticals or complex chiral molecule synthesis. Complication arises when there are multiple stereogenic elements such as a center and an axis of chirality to control. Over the years cooperative assistance of multiple chiral ligands has been applied to control only chiral centers. In this work, we harness the essence of cooperative ligand approach to control two different stereogenic elements in the same molecule by atroposelective allylation to synthesize axially chiral biaryls from its racemic precursor. The crucial roles played by chiral phosphoric acid and chiral amino acid ligand in concert helped us to obtain one major stereoisomer out of four distinct possibilities.
Collapse
Affiliation(s)
- Trisha Bhattacharya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Subhabrata Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Srimanta Guin
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-, 400076, India
| |
Collapse
|
38
|
Naeem Y, Matsuo BT, Davies HML. Enantioselective Intermolecular C-H Functionalization of Primary Benzylic C-H Bonds Using ((Aryl)(diazo)methyl)phosphonates. ACS Catal 2024; 14:124-130. [PMID: 38205024 PMCID: PMC10775147 DOI: 10.1021/acscatal.3c04661] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Catalyst-controlled C-H functionalization using donor/acceptor carbenes has been shown to be an efficient process capable of high levels of site control and stereocontrol. This study demonstrated that the scope of the donor/acceptor carbene C-H functionalization can be extended to systems where the acceptor group is a phosphonate. When using the optimized dirhodium catalyst, Rh2(S-di-(4-Br)TPPTTL)4, ((aryl)(diazo)methyl)phosphonates undergo highly enantioselective (84-99% ee) and site-selective (>30:1 r.r.) benzylic C-H functionalization. The phosphonate group is much more sterically demanding than the previously studied carboxylate ester group, leading to much higher selectivity for a primary site versus more sterically crowded positions. The effectiveness of this methodology has been demonstrated by the late-stage primary C-H functionalization of estrone, adapalene, (S)-naproxen, clofibrate, and gemfibrozil derivatives.
Collapse
Affiliation(s)
- Yasir Naeem
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Bianca T. Matsuo
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
39
|
Hu P, Hu L, Li XX, Pan M, Lu G, Li X. Rhodium(I)-Catalyzed Asymmetric Hydroarylative Cyclization of 1,6-Diynes to Access Atropisomerically Labile Chiral Dienes. Angew Chem Int Ed Engl 2024; 63:e202312923. [PMID: 37971168 DOI: 10.1002/anie.202312923] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
Axially chiral open-chained olefins are an underexplored class of atropisomers, whose enantioselective synthesis represents a daunting challenge due to their relatively low racemization barrier. We herein report rhodium(I)-catalyzed hydroarylative cyclization of 1,6-diynes with three distinct classes of arenes, enabling highly enantioselective synthesis of a broad range of axially chiral 1,3-dienes that are conformationally labile (ΔG≠ (rac)=26.6-28.0 kcal/mol). The coupling reactions in each category proceeded with excellent enantioselectivity, regioselectivity, and Z/E selectivity under mild reaction conditions. Computational studies of the coupling of quinoline N-oxide system reveal that the reaction proceeds via initial oxidative cyclization of the 1,6-diyne to give a rhodacyclic intermediate, followed by σ-bond metathesis between the arene C-H bond and the Rh-C(vinyl) bond, with subsequent C-C reductive elimination being enantio-determining and turnover-limiting. The DFT-established mechanism is consistent with the experimental studies. The coupled products of quinoline N-oxides undergo facile visible light-induced intramolecular oxygen-atom transfer, affording chiral epoxides with complete axial-to-central chirality transfer.
Collapse
Affiliation(s)
- Panjie Hu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Lingfei Hu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiao-Xi Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| | - Mengxiao Pan
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, 710062, China
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
40
|
Kuang X, Li JJ, Liu T, Ding CH, Wu K, Wang P, Yu JQ. Cu-mediated enantioselective C-H alkynylation of ferrocenes with chiral BINOL ligands. Nat Commun 2023; 14:7698. [PMID: 38001060 PMCID: PMC10673954 DOI: 10.1038/s41467-023-43278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
A wide range of Cu(II)-catalyzed C-H activation reactions have been realized since 2006, however, whether a C-H metalation mechanism similar to Pd(II)-catalyzed C-H activation reaction is operating remains an open question. To address this question and ultimately develop ligand accelerated Cu(II)-catalyzed C-H activation reactions, realizing the enantioselective version and investigating the mechanism is critically important. With a modified chiral BINOL ligand, we report the first example of Cu-mediated enantioselective C-H activation reaction for the construction of planar chiral ferrocenes with high yields and stereoinduction. The key to the success of this reaction is the discovery of a ligand acceleration effect with the BINOL-based diol ligand in the directed Cu-catalyzed C-H alkynylation of ferrocene derivatives bearing an oxazoline-aniline directing group. This transformation is compatible with terminal aryl and alkyl alkynes, which are incompatible with Pd-catalyzed C-H activation reactions. This finding provides an invaluable mechanistic information in determining whether Cu(II) cleaves C-H bonds via CMD pathway in analogous manner to Pd(II) catalysts.
Collapse
Affiliation(s)
- Xin Kuang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
- School of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| | - Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Tao Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China
| | - Chang-Hua Ding
- School of Science, Shanghai University, 99 Shang-Da Road, Shanghai, 200444, P. R. China
| | - Kevin Wu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P.R. China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P.R. China.
| | - Jin-Quan Yu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
41
|
Zhao H, Zhao CY, Chen L, Xia C, Hong X, Xu S. Aryl Chloride-Directed Enantioselective C(sp 2)-H Borylation Enabled by Iridium Catalysis. J Am Chem Soc 2023; 145:25214-25221. [PMID: 37934914 DOI: 10.1021/jacs.3c08129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We herein report the iridium-catalyzed enantioselective C-H borylation of aryl chlorides. A variety of prochiral biaryl compounds could be well-tolerated, affording a vast array of axially chiral biaryls with high enantioselectivities. The current method exhibits a high turnover number (TON) of 7000, which represents the highest in functional-group-directed asymmetric C-H activation. The high TON was attributed to a weak catalyst-substrate interaction that was caused by mismatched chirality between catalyst and substrate. We also demonstrated the synthetic application of the current method by C-B, ortho-C-H, and C-Cl bond functionalization, including programmed Suzuki-Miyaura coupling for the synthesis of axially chiral polyarenes.
Collapse
Affiliation(s)
- Hongliang Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao-Yue Zhao
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo 315300, China
| | - Lili Chen
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
42
|
Jiang W, Yang X, Lin L, Yan C, Zhao Y, Wang M, Shi Z. Merging Visible Light Photocatalysis and P(III)-Directed C-H Activation by a Single Catalyst: Modular Assembly of P-Alkyne Hybrid Ligands. Angew Chem Int Ed Engl 2023; 62:e202309709. [PMID: 37814137 DOI: 10.1002/anie.202309709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
Metal-catalyzed C-H activation strategies provide an efficient approach for synthesis by minimizing atom, step, and redox economy. Developing milder, greener, and more effective protocols for these strategies is always highly desirable to the scientific community. In this study, the utilization of a single rhodium complex enabled the visible-light-induced late-stage C-H activation of biaryl-type phosphines with alkynyl bromides, employing inherent phosphorus atoms as directing groups. This chemistry combines P(III)-directed C-H activation with visible light photocatalysis, under exogenous photosensitizer-free conditions, offering a unique platform for ligand design and preparation. Furthermore, this study also explores the asymmetric catalysis and coordination chemistry of the resulting P-alkyne hybrid ligands with specific transition metals. Experimental results and density functional theory calculations demonstrate the mechanistic intricacies of this transformation.
Collapse
Affiliation(s)
- Wang Jiang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xiuxiu Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chaoguo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
43
|
Louis H, Chukwuemeka K, Agwamba EC, Abdullah HY, Pembere AMS. Molecular simulation of Cu, Ag, and Au-decorated Si-doped graphene quantum dots (Si@QD) nanostructured as sensors for SO 2 trapping. J Mol Graph Model 2023; 124:108551. [PMID: 37399776 DOI: 10.1016/j.jmgm.2023.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023]
Abstract
In view of the numerous environmental hazards and health challenges linked to sulfur (iv) oxide (SO2), an indirect greenhouse gas, and the resultant need to develop efficient gas nanosensor devices, this research had as its principal focus on the theoretical evaluation of the gas sensing potential of metals: Ag, Au and Cu functionalized silicon-doped quantum dots (Si@QD) for the detection and adsorption of SO2 gas investigated using the first-principles density functional theory (DFT) computation at the B3LYP-D3(BJ)/def2-SVP level of theory. Eight (8) possible adsorption modes: SO2_O_Si@QD, SO2_O_Ag_Si@QD, SO2_O_Au_Si@QD, SO2_O_Cu_Si@QD, SO2_S_Si@QD, SO2_S_Ag_Si@QD, SO2_S_Au_Si@QD, and SO2_S_Cu_Si@QD were considered based on SO2 interactions with the studied materials at the -S and -O sites of the SO2 molecule. The counterpoise correction (BSSE) showed that five of the eight interactions had favorable Ead + BSSE values ranging from -0.31 to -1.98 eV. All the eight interactions were observed to be thermodynamically favorable with ΔG and ΔH ranging from -129.01 to -200.24 kcal/mol and -158.26 to -229.73 kcal/mol respectively. Results from the topology analysis reveal that van der Waals forces occurred the greatest at the gas-sensor interphase while SO2_S_ Cu_Si@QD is predicted to have the highest sensing potency based on the conductivity and recovery time estimations. These results confirm the potential efficient feasibility of real-world device application of the metals (Ag, Au, Cu) functionalized Si-doped QDs.
Collapse
Affiliation(s)
- Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria; Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Kelechi Chukwuemeka
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Chemistry, Covenant University, Ota, Nigeria
| | - Hewa Y Abdullah
- Physics Education Department, Tishk International University, Erbil, Iraq
| | - Anthony M S Pembere
- Department of Chemical Sciences, Jaramogi Odinga University of Science and Technology, Bondo, Kenya
| |
Collapse
|
44
|
Sau S, Mukherjee K, Kondalarao K, Gandon V, Sahoo AK. Probing Chiral Sulfoximine Auxiliaries in Ru(II)-Catalyzed One-Pot Asymmetric C-H Hydroarylation and Annulations with Alkynes. Org Lett 2023; 25:7667-7672. [PMID: 37844260 DOI: 10.1021/acs.orglett.3c02969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Developed herein is a chiral sulfoximine-enabled Ru(II)-catalyzed asymmetric C-H activation/functionalization involving intramolecular hydroarylation and functionalization/annulation of alkynes. This process constructs dihydrobenzofuran- or indoline-fused isoquinolinones having a tertiary or quaternary stereocenter with good yields and enantioselectivities (up to 97:3 enantiomeric ratio). The chiral sulfoxide precursor used in synthesizing the enantiopure sulfoximines is spontaneously eliminated during the reaction. It can be recovered without losing enantiopurity (∼99% enantiomeric excess) and reused.
Collapse
Affiliation(s)
- Somratan Sau
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Kallol Mukherjee
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Koneti Kondalarao
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, 91405 Orsay, France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
45
|
Arjun V, Jeganmohan M. Chiral Transient Ligand Enabled Enantioselective Synthesis of Atropisomers Decorated with Unactivated Olefins via a Palladium-Catalyzed C-H Olefination. Org Lett 2023; 25:7606-7611. [PMID: 37843003 DOI: 10.1021/acs.orglett.3c02721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, atroposelective synthesis of axially chiral biaryls with unactivated olefins by a palladium-catalyzed C-H olefination using a chiral transient directing group strategy has been disclosed. This protocol is well compatible with a variety of biaryl-2-aldehydes as well as various olefins such as allyl sulfonamides and allyl sulfones to provide the atroposelective olefinated products in synthetically useful yields with excellent enantioselectivities up to >99% ee. In addition, a wide number of axially chiral biaryl alcohols were synthesized by the simple diversification of the products in excellent enantioselectivity.
Collapse
Affiliation(s)
- Vadivel Arjun
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
46
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
47
|
Qian PF, Zhou T, Shi BF. Transition-metal-catalyzed atroposelective synthesis of axially chiral styrenes. Chem Commun (Camb) 2023; 59:12669-12684. [PMID: 37807950 DOI: 10.1039/d3cc03592a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Axially chiral styrenes, a type of atropisomer analogous to biaryls, have attracted great interest because of their unique presence in natural products and asymmetric catalysis. Since 2016, a number of methodologies have been developed for the atroposelective construction of these chiral skeletons, involving both transition metal catalysis and organocatalysis. In this feature article, we aim to provide a comprehensive understanding of recent advances in the asymmetric synthesis of axially chiral styrenes catalyzed by transition metals, integrating scattered work with different catalytic systems together. This feature article is cataloged into five sections according to the strategies, including asymmetric coupling, enantioselective C-H activation, central-to-axial chirality transfer, asymmetric alkyne functionalization, and atroposelective [2+2+2] cycloaddition.
Collapse
Affiliation(s)
- Pu-Fan Qian
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Tao Zhou
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| |
Collapse
|
48
|
Wu YJ, Wang ZK, Jia ZS, Chen JH, Huang FR, Zhan BB, Yao QJ, Shi BF. Synthesis of Axially Chiral Biaryls through Cobalt(II)-Catalyzed Atroposelective C-H Arylation. Angew Chem Int Ed Engl 2023; 62:e202310004. [PMID: 37585308 DOI: 10.1002/anie.202310004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
Highly efficient synthesis of axially chiral biaryl amines through cobalt-catalyzed atroposelective C-H arylation using easily accessible cobalt(II) salt and salicyloxazoline ligand has been reported. This methodology provides a straightforward and sustainable access to a broad range of enantioenriched biaryl-2-amines in good yields (up to 99 %) with excellent enantioselectivities (up to 99 % ee). The synthetic utility of the unprecedented method is highlighted by its scalability and diverse transformations.
Collapse
Affiliation(s)
- Yong-Jie Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhen-Kai Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Zhen-Sheng Jia
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Fan-Rui Huang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bei-Bei Zhan
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
49
|
Chao B, Bai C, Yan H, Zhao R, Liu D, Muschin T, Bao A, Eerdun C, Bao YS. Suzuki-Miyaura Type Regioselective C-H Arylation of Aromatic Aldehydes by a Transient Directing Strategy. Org Lett 2023; 25:6823-6829. [PMID: 37695625 DOI: 10.1021/acs.orglett.3c02307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Herein, we disclose a common approach for palladium-catalyzed direct coupling of the ortho-C-H bond of aromatic aldehydes with various organoboronic reagents by a transient directing strategy. In contrast to widely used cross-coupling reactions of C-H bonds with aryl halides, which generally need silver salt as a halide removal reagent, the method which used BQ/TFA as weak oxidation system for the PdII/Pd0 redox cycle is cost-effective, ecofriendly, and more aligned with green catalysis. This broadly applicable method opens up a new and efficient Suzuki-Miyaura coupling route for the direct formation of carbon-carbon bonds by C-H bond activation.
Collapse
Affiliation(s)
- Bao Chao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - He Yan
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ruisheng Zhao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Tegshi Muschin
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Agula Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Chaolu Eerdun
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot 010022, China
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| |
Collapse
|
50
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|