1
|
Vezzali E, Becker M, Romero-Palomo F, van Heerden M, Chipeaux C, Hamm G, Bangari DS, Lemarchand T, Lenz B, Munteanu B, Singh B, Thuilliez C, Yun SW, Smith A, Vreeken R. European Society of Toxicologic Pathology-Pathology 2.0 Mass Spectrometry Imaging Special Interest Group: Mass Spectrometry Imaging in Diagnostic and Toxicologic Pathology for Label-Free Detection of Molecules-From Basics to Practical Applications. Toxicol Pathol 2025:1926233241311269. [PMID: 39902784 DOI: 10.1177/01926233241311269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Mass Spectrometry Imaging (MSI) is a powerful tool to understand molecular pathophysiology and therapeutic and toxicity mechanisms, as well as for patient stratification and precision medicine. MSI, a label-free technique offering detailed spatial information on a large number of molecules in different tissues, encompasses various techniques including Matrix-Assisted Laser Desorption Ionization (MALDI), Desorption Electrospray Ionization (DESI), and Secondary Ion Mass Spectrometry (SIMS) that can be applied in diagnostic and toxicologic pathology. Given the utmost importance of high-quality samples, pathologists play a pivotal role in providing comprehensive pathobiology and histopathology knowledge, as well as information on tissue sampling, orientation, morphology, endogenous biomarkers, and pathogenesis, which are crucial for the correct interpretation of targeted experiments. This article introduces MSI and its fundamentals, and reports on case examples, determining the best suited technology to address research questions. High-level principles and characteristics of the most used modalities for spatial metabolomics, lipidomics and proteomics, sensitivity and specific requirements for sample procurement and preparation are discussed. MSI applications for projects focused on drug metabolism, nonclinical safety assessment, and pharmacokinetics/pharmacodynamics and various diagnostic pathology cases from nonclinical and clinical settings are showcased.
Collapse
Affiliation(s)
| | - Michael Becker
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Fernando Romero-Palomo
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | | | | | | | | | | | - Barbara Lenz
- Roche Pharma Research and Early Development (pRED), Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | | | - Bhanu Singh
- Gilead Sciences, Inc., Foster City, California, USA
| | | | - Seong-Wook Yun
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riss, Germany
| | - Andrew Smith
- University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Rob Vreeken
- Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
2
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
3
|
Lee DK, Rubakhin SS, Sweedler JV. Chemical Decrosslinking-Based Peptide Characterization of Formaldehyde-Fixed Rat Pancreas Using Fluorescence-Guided Single-Cell Mass Spectrometry. Anal Chem 2023; 95:6732-6739. [PMID: 37040477 DOI: 10.1021/acs.analchem.3c00612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Approaches for the characterization of proteins/peptides in single cells of formaldehyde-fixed (FF) tissues via mass spectrometry (MS) are still under development. The lack of a general method for selectively eliminating formaldehyde-induced crosslinking is a major challenge. A workflow is shown for the high-throughput peptide profiling of single cells isolated from FF tissues, here the rodent pancreas, which possesses multiple peptide hormones from the islets of Langerhans. The heat treatment is enhanced by a collagen-selective multistep thermal process assisting efficient isolation of islets from the FF pancreas and, subsequently, their dissociation into single islet cells. Hydroxylamine-based chemical decrosslinking helped restore intact peptide signals from individual isolated cells. Subsequently, an acetone/glycerol-assisted cell dispersion was optimized for spatially resolved cell deposition onto glass slides, while a glycerol solution maintained the hydrated state of the cells. This sample preparation procedure allowed peptide profiling in FF single cells by fluorescence-guided matrix-assisted laser desorption ionization MS. Here, 2594 single islet cells were analyzed and 28 peptides were detected, including insulin C-peptides and glucagon. T-distributed stochastic neighbor embedding (t-SNE) data visualization demonstrated that cells cluster based on cell-specific pancreatic peptide hormones. This workflow expands the sample availability for single-cell MS characterization to a wide range of formaldehyde-treated tissue specimens stored in biobanks.
Collapse
Affiliation(s)
- Dong-Kyu Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V Sweedler
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Giampà M, Andersen MK, Krossa S, Denti V, Smith A, Moestue SA. Visualization of Small Intact Proteins in Breast Cancer FFPE Tissue. Methods Mol Biol 2023; 2688:161-172. [PMID: 37410292 DOI: 10.1007/978-1-0716-3319-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Molecular visualization of metabolites, lipids, and proteins by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) is becoming an in-demand analytical approach to aid the histopathological analysis of breast cancer. Particularly, proteins seem to play a role in cancer progression, and specific proteins are currently used in the clinic for staging. Formalin-fixed paraffin-embedded (FFPE) tissues are ideal for correlating the molecular markers with clinical outcomes due to their long-term storage. So far, to obtain proteomic information by MSI from this kind of tissue, antigen retrieval and tryptic digestion steps are required. In this chapter, we present a protocol to spatially detect small proteins in tumor and necrotic regions of patient-derived breast cancer xenograft FFPE tissues without employing any on-tissue digestion. This protocol can be used for other kinds of FFPE tissue following specific optimization of the sample preparation phases.
Collapse
Affiliation(s)
- Marco Giampà
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Maria K Andersen
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Sebastian Krossa
- Department of Circulation and Medical Imaging, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Vanna Denti
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, Vedano al Lambro, Italy
| | - Andrew Smith
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, Vedano al Lambro, Italy
| | - Siver Andreas Moestue
- Department of Clinical and Molecular Medicine, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Pharmacy, Nord University, Bodø, Norway
| |
Collapse
|
5
|
Tian S, Liu R, Wu Z, Zhang K. A Novel Strategy Based on Permanent Protein Modifications Induced by Formaldehyde for Food Safety Analysis. Anal Chem 2022; 94:17365-17369. [PMID: 36458654 DOI: 10.1021/acs.analchem.2c04069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The illegal additions of chemicals in food products are serious incidents threatening current public safety. To date, ideal methods to determine permanent traces of prohibited chemicals in foods are still lacking. For example, formaldehyde (FA) can be added illegally as a food preservative. However, most current methods that are dependent on the direct detection of FA are not able to determine if FA has ever been added once food products are rinsed completely. Herein, we present a novel approach relying upon protein modifications induced by FA (PMIF) to examine FA in foods. We reveal the entire catalog of PMIFs in food products by combining mass spectrometry analysis with unrestrictive identification of protein modifications. Consequently, four obvious PMIFs were identified and confirmed as markers to discriminate the addition of FA in foods. Our study demonstrates that the approach based on PMIFs enables detecting the imprinted trace of FA even if the food products have been washed thoroughly. Our work presents a novel strategy for analysis of chemical additives, offering broad potential applications in protein analysis and food safety.
Collapse
Affiliation(s)
- Shanshan Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Ranran Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhiyue Wu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China.,Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin 300070, China.,Tianjin Key Laboratory of Digestive Diseases, Department of Gastroenterology and Hepatology, Medical University General Hospital, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
6
|
Mass spectrometry imaging: the future is now. Bioanalysis 2022; 14:383-386. [PMID: 35249371 DOI: 10.4155/bio-2021-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Lin M, Eberlin LS, Seeley EH. Reduced Hemoglobin Signal and Improved Detection of Endogenous Proteins in Blood-Rich Tissues for MALDI Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:296-303. [PMID: 35061381 PMCID: PMC9041275 DOI: 10.1021/jasms.1c00300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Mass spectrometry imaging provides a powerful approach for the direct analysis and spatial visualization of molecules in tissue sections. Using matrix-assisted laser desorption/ionization mass spectrometry, intact protein imaging has been widely investigated for biomarker analysis and diagnosis in a variety of tissue types and diseases. However, blood-rich or highly vascular tissues present a challenge in molecular imaging due to the high ionization efficiency of hemoglobin, which leads to ion suppression of endogenous proteins. Here, we describe a protocol to selectively reduce hemoglobin signal in blood-rich tissues that can easily be integrated into mass spectrometry imaging workflows.
Collapse
Affiliation(s)
- Monica Lin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
| | - Livia S. Eberlin
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
- Department of Surgery, Baylor College of Medicine, Houston, TX 77030
- to whom correspondence may be addressed: ,
| | - Erin H. Seeley
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712
- to whom correspondence may be addressed: ,
| |
Collapse
|
8
|
Denti V, Andersen MK, Smith A, Bofin AM, Nordborg A, Magni F, Moestue SA, Giampà M. Reproducible Lipid Alterations in Patient-Derived Breast Cancer Xenograft FFPE Tissue Identified with MALDI MSI for Pre-Clinical and Clinical Application. Metabolites 2021; 11:577. [PMID: 34564393 PMCID: PMC8467053 DOI: 10.3390/metabo11090577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/20/2022] Open
Abstract
The association between lipid metabolism and long-term outcomes is relevant for tumor diagnosis and therapy. Archival material such as formalin-fixed and paraffin embedded (FFPE) tissues is a highly valuable resource for this aim as it is linked to long-term clinical follow-up. Therefore, there is a need to develop robust methodologies able to detect lipids in FFPE material and correlate them with clinical outcomes. In this work, lipidic alterations were investigated in patient-derived xenograft of breast cancer by using a matrix-assisted laser desorption ionization mass spectrometry (MALDI MSI) based workflow that included antigen retrieval as a sample preparation step. We evaluated technical reproducibility, spatial metabolic differentiation within tissue compartments, and treatment response induced by a glutaminase inhibitor (CB-839). This protocol shows a good inter-day robustness (CV = 26 ± 12%). Several lipids could reliably distinguish necrotic and tumor regions across the technical replicates. Moreover, this protocol identified distinct alterations in the tissue lipidome of xenograft treated with glutaminase inhibitors. In conclusion, lipidic alterations in FFPE tissue of breast cancer xenograft observed in this study are a step-forward to a robust and reproducible MALDI-MSI based workflow for pre-clinical and clinical applications.
Collapse
Affiliation(s)
- Vanna Denti
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, MB, Italy; (V.D.); (A.S.); (F.M.)
| | - Maria K. Andersen
- Department of Circulation and Medical Imaging, NTNU–Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - Andrew Smith
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, MB, Italy; (V.D.); (A.S.); (F.M.)
| | - Anna Mary Bofin
- Department of Clinical and Molecular Medicine, NTNU–Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.M.B.); (S.A.M.)
| | - Anna Nordborg
- Department of Biotechnology and Nanomedicine, SINTEF, 7034 Trondheim, Norway;
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, MB, Italy; (V.D.); (A.S.); (F.M.)
| | - Siver Andreas Moestue
- Department of Clinical and Molecular Medicine, NTNU–Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.M.B.); (S.A.M.)
- Department of Pharmacy, Nord University, 8026 Bodø, Norway
| | - Marco Giampà
- Department of Clinical and Molecular Medicine, NTNU–Norwegian University of Science and Technology, 7491 Trondheim, Norway; (A.M.B.); (S.A.M.)
| |
Collapse
|
9
|
Mao Y, Wang X, Huang P, Tian R. Spatial proteomics for understanding the tissue microenvironment. Analyst 2021; 146:3777-3798. [PMID: 34042124 DOI: 10.1039/d1an00472g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human body comprises rich populations of cells, which are arranged into tissues and organs with diverse functionalities. These cells exhibit a broad spectrum of phenotypes and are often organized as a heterogeneous but sophisticatedly regulated ecosystem - tissue microenvironment, inside which every cell interacts with and is reciprocally influenced by its surroundings through its life span. Therefore, it is critical to comprehensively explore the cellular machinery and biological processes in the tissue microenvironment, which is best exemplified by the tumor microenvironment (TME). The past decade has seen increasing advances in the field of spatial proteomics, the main purpose of which is to characterize the abundance and spatial distribution of proteins and their post-translational modifications in the microenvironment of diseased tissues. Herein, we outline the achievements and remaining challenges of mass spectrometry-based tissue spatial proteomics. Exciting technology developments along with important biomedical applications of spatial proteomics are highlighted. In detail, we focus on high-quality resources built by scalpel macrodissection-based region-resolved proteomics, method development of sensitive sample preparation for laser microdissection-based spatial proteomics, and antibody recognition-based multiplexed tissue imaging. In the end, critical issues and potential future directions for spatial proteomics are also discussed.
Collapse
Affiliation(s)
- Yiheng Mao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China. and Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xi Wang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China and Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518020, China
| | - Peiwu Huang
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruijun Tian
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|