1
|
Shi A, Wang H, Yang G, Gu C, Xiang C, Qian L, Lam JWY, Zhang T, Tang BZ. Multiple Chirality Switching of a Dye-Grafted Helical Polymer Film Driven by Acid & Base. Angew Chem Int Ed Engl 2024; 63:e202409782. [PMID: 38888844 DOI: 10.1002/anie.202409782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024]
Abstract
A stimuli-responsive multiple chirality switching material, which can regulate opposed chiral absorption characteristics, has great application value in the fields of optical modulation, information storage and encryption, etc. However, due to the rareness of effective functional systems and the complexity of material structures, developing this type of material remains an insurmountable challenge. Herein, a smart polymer film with multiple chirality inversion properties was fabricated efficiently based on a newly-designed acid & base-sensitive dye-grafted helical polymer. Benefited from the cooperative effects of various weak interactions (hydrogen bonds, electrostatic interaction, etc.) under the aggregated state, this polymer film exhibited a promising acid & base-driven multiple chirality inversion property containing record switchable chiral states (up to five while the solution showed three-state switching) and good reversibility. The creative exploration of such a multiple chirality switching material can not only promote the application progress of current chiroptical regulation technology, but also provide a significant guidance for the design and synthesis of future smart chiroptical switching materials and devices.
Collapse
Affiliation(s)
- Aiyan Shi
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Haoran Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Guojian Yang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Smart Materials for Architecture Research Lab Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, P. R. China
| | - Chang Gu
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Chaoyu Xiang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Lei Qian
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
| | - Ting Zhang
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Laboratory of Optoelectronic and Information Technology and Devices, Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Laboratory of Advanced Nano-Optoelectronic Materials and Devices, Qianwan Institute of CNITECH, Ningbo, 315300, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, 999077, Hong Kong, P. R. China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), 518172, P. R. China
| |
Collapse
|
2
|
Li W, Shao Y, Xu Z, Ge Y, Wang Z, Jiang H, Dong Z. Heterochiral π-Stacking Dimerization of Helical Secondary Structures with Emerging Supramolecular Chirality. Angew Chem Int Ed Engl 2024:e202414317. [PMID: 39171890 DOI: 10.1002/anie.202414317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
A specific interface mode type was observed between helical secondary structures, in which a left-handed (M) helix binds specifically to a right-handed (P) helix along the helical axis, leading to the formation of discrete heterochiral helical dimers. Moreover, a concealed supramolecular chirality within the meso-supramolecular dimers was unexpectedly discovered by chiral induction, and was further underpinned by covalent meso-helix structures.
Collapse
Affiliation(s)
- Wencan Li
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yiqi Shao
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zhaocheng Xu
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Yunpeng Ge
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zhenzhu Wang
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials, and Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
3
|
Yuan C, Shi G, Zhang J, Zhang Z, He Y, Zhang W, Qiao X, Liu M, Pang X. Dual-Regulation of Supramolecular Chirality in Achiral Side-Chain Azobenzene Liquid-Crystalline Polymers. Chirality 2024; 36:e23701. [PMID: 39034270 DOI: 10.1002/chir.23701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Azobenzene (Azo) liquid-crystalline polymers are intriguing due to their unique photo-induced isomerization and supramolecular chirality. However, clarification on multicomponent chiral induction towards Azo polymers remains ambiguous and challenging. Herein, chiral solvents and amines were employed to control the chiroptical activity of achiral Azo polymers. Methyl L-/D-lactate was added as the poor solvent and chiral inducer to achieve the first chiral induction in Azo aggregates. Chiral amines were utilized for the second chiral induction based on the acid-base interactions between the carboxyl groups of polymers and amines. The chiral enhancement and inversion of Azo units could be observed through the synergistic or antagonistic effect between solvents and amines. The impacts of solvent, chemical structures, feed ratio, enantiomeric excess, and temperature on supramolecular chirality were systematically studied. Furthermore, this system displayed the chiroptical switching property and chiral recovery under reversible irradiation.
Collapse
Affiliation(s)
- Chenrong Yuan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Junle Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
- Faculty of Engineering, Huanghe Science and Technology College, Zhengzhou, China
| | - Zhenqian Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
- College of Materials Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
4
|
Rey-Tarrío F, Simón-Fuente S, Cuerva JM, Miguel D, Ribagorda M, Quiñoá E, Freire F. Metallo-Supramolecular Helical Fibres from Chiral Phenylacetylene Monomers: Cation Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202318454. [PMID: 38185794 DOI: 10.1002/anie.202318454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Chiral metallo-supramolecular fibres can be easily obtained by mixing a chloroform solution of a phenylacetylene monomer (PA) that bears a chiral sulfoxide group as pendant, with different equivalents of a methanolic solution of AgClO4 . Thus, while the PA is found molecularly dissolved in chloroform, the addition of Ag+ ions induce its aggregation through the formation of an axially chiral metallo-supramolecular aggregate with high thermal stable properties. In this case, the ability of the metal ion to coordinate the PA triple bond, combined with the argentophilicity of the metal ion and the planarity of the phenylacetylene drives to the formation of a helical coordination polymer, whose P or M axial chirality is determined by the chirality of the sulfoxide used as substituent of the PA. Depending on the PA/Ag+ (mol/mol) ratio, it is possible to tune the morphology of the metallo-supramolecular aggregate from chiral fibers to chiral gel.
Collapse
Affiliation(s)
- Francisco Rey-Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Silvia Simón-Fuente
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Juan M Cuerva
- Departamento de Química Orgánica. Facultad de Ciencias, Universidad de Granada (UGR), Unidad de Excelencia de Química Aplicada a la Biomedicina y Medioambiente (UEQ), 18071, Granada, Spain
| | - Delia Miguel
- Departamento de Fisicoquímica. Facultad de Farmacia, Universidad de Granada (UGR, UEQ), 18071, Granada, Spain
| | - Maria Ribagorda
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
6
|
Zhao T, Wu W, Yang C. Chiroptical regulation of macrocyclic arenes with flipping-induced inversion of planar chirality. Chem Commun (Camb) 2023; 59:11469-11483. [PMID: 37691554 DOI: 10.1039/d3cc03829g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Studies on various macrocyclic arenes have received increasing attention due to their straightforward syntheses, convenient derivatization, and unique complexation properties. Represented by pillar[n]arenes, several distinctive macrocyclic arenes have recently emerged with the following characteristics: they possess a pair of enantiomeric planar chiral conformations, and interconversion between these enantiomeric conformations can be achieved through the flipping of ring units. Complexation of a chiral guest with these macrocyclic arenes will lead to a shift of the equilibrium between the Rp and Sp conformers, leading to intriguing possibilities for chiral induction and sensing. By the introduction of bulky substituents on the rims, employing rotaxanation or pseudocatenation, planar chirality could be locked, enabling the enantiomeric separation of the chiral structures. The induced or separated chiral conformers/compounds exhibit significant chiroptical properties. These macrocyclic arenes, with flipping-induced inversion of planar chirality, demonstrated intriguing chiral induction dynamics and kinetics. In this featured review, we systematically summarize the progress in chiroptical induction/regulation of these macrocyclic arenes, particularly in the fields of chiral sensing, molecular machines, molecular recognition, and assembly.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry Institution, Sichuan University Chengdu, Chengdu 610064, China.
| |
Collapse
|
7
|
Rey-Tarrío F, Quiñoá E, Fernández G, Freire F. Multi-chiral materials comprising metallosupramolecular and covalent helical polymers containing five axial motifs within a helix. Nat Commun 2023; 14:3348. [PMID: 37291098 DOI: 10.1038/s41467-023-39014-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023] Open
Abstract
Supramolecular and covalent polymers share multiple structural effects such as communication mechanisms among monomer repeating units, which are related to their axial helical structure. Herein, a unique multi-helical material combining information from both metallosupramolecular and covalent helical polymers is presented. In this system, the helical structure described by the poly(acetylene) (PA) backbone (cis-cisoidal, cis-transoidal) guides the pendant groups in a fashion where a tilting degree emerges between a pendant and the adjacent ones. As a result, a multi-chiral material is formed comprising four or five axial motifs when the polyene skeleton adopts either a cis-transoidal or cis-cisoidal configuration: the two coaxial helices-internal and external-and the two or three chiral axial motifs described by the bispyridyldichlorido PtII complex array. These results show that complex multi-chiral materials can be obtained by polymerizing appropriate monomers that combine both point chirality and the ability to generate chiral supramolecular assemblies.
Collapse
Affiliation(s)
- Francisco Rey-Tarrío
- Research Center in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Research Center in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain
| | - Gustavo Fernández
- University of Münster, Institute of Organic Chemistry, Corrensstraße 36, 48149, Münster, Germany.
| | - Félix Freire
- Research Center in Biological Chemistry and Molecular Materials (CiQUS), Universidade de Santiago de Compostela, E-15782, Santiago de Compostela, Spain.
| |
Collapse
|
8
|
Cheng X, Gan Y, Zhang G, Song Q, Zhang Z, Zhang W. Conformationally supramolecular chirality prevails over configurational point chirality in side-chain liquid crystalline polymers. Chem Sci 2023; 14:5116-5124. [PMID: 37206386 PMCID: PMC10189893 DOI: 10.1039/d3sc00975k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
In nature, the communication of primary amino acids in the polypeptides influences molecular-level packing, supramolecular chirality, and the resulting protein structures. In chiral side-chain liquid crystalline polymers (SCLCPs), however, the hierarchical chiral communication between supramolecular mesogens is still determined by the parent chiral source due to the intermolecular interactions. Herein, we present a novel strategy to enable the tunable chiral-to-chiral communication in azobenzene (Azo) SCLCPs, in which the chiroptical properties are not dominated by the configurational point chirality but by the conformationally supramolecular chirality that emerged. The communication of dyads biases supramolecular chirality with multiple packing preference, thereby overruling the configurational chirality of the stereocenter. The chiral communication mechanism between the side-chain mesogens is revealed through the systematic study of the chiral arrangement at the molecular level, including mesomorphic properties, stacking modes, chiroptical dynamics and further morphological dimensions.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Yijing Gan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Gong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Qingping Song
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University Wuhu 241000 P. R. China
| |
Collapse
|
9
|
Rey-Tarrío F, Rodríguez R, Quiñoá E, Freire F. Screw sense excess and reversals of helical polymers in solution. Nat Commun 2023; 14:1742. [PMID: 36990975 DOI: 10.1038/s41467-023-37405-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractThe helix reversal is a structural motif found in helical polymers in the solid state, but whose existence is elusive in solution. Herein, we have shown how the photochemical electrocyclization (PEC) of poly(phenylacetylene)s (PPAs) can be used to determine not only the presence of helix reversals in polymer solution, but also to estimate the screw sense excess. To perform these studies, we used a library of well folded PPAs and different copolymers series made by enantiomeric comonomers that show chiral conflict effect. The results obtained indicate that the PEC of a PPA will depend on the helical scaffold adopted by the PPA backbone and on its folding degree. Then, from these studies it is possible to determine the screw sense excess of a PPA, highly important in applications such as chiral stationary phases in HPLC or asymmetric synthesis.
Collapse
|
10
|
Xiao X, Cheng Q, Bao ST, Jin Z, Sun S, Jiang H, Steigerwald ML, Nuckolls C. Single-Handed Helicene Nanoribbons via Transfer of Chiral Information. J Am Chem Soc 2022; 144:20214-20220. [DOI: 10.1021/jacs.2c09288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qian Cheng
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Si Tong Bao
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Zexin Jin
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Shantao Sun
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Haoyu Jiang
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | | | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
11
|
Sogawa H. Development of chiral functional materials based on natural chiral compounds. Polym J 2022. [DOI: 10.1038/s41428-022-00677-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E, Freire F. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022; 61:e202115070. [DOI: 10.1002/anie.202115070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Juan José Tarrío
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Rafael Rodríguez
- WPI Nano Life Science Institute (WPI-NanoLSI) Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan
| | - Berta Fernández
- Departamento de Química Física Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
13
|
Freire F, Tarrío JJ, Rodríguez R, Fernández B, Quiñoá E. Dissymmetric Chiral Poly(diphenylacetylene)s: Secondary Structure Elucidation and Dynamic Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Freire
- Universidade de Santiago de Compostela Centre for Research in Biological Chemistry and Molecular Materials Jenaro de la Fuente street s/n 15782 Santiago de Compostela SPAIN
| | - Juan José Tarrío
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| | - Rafael Rodríguez
- Kanazawa University - Kakuma Campus: Kanazawa Daigaku Organic Chemsitry JAPAN
| | - Berta Fernández
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela Physical Chemistry RWANDA
| | - Emilio Quiñoá
- Universidade de Santiago de Compostela - Campus de Santiago: Universidade de Santiago de Compostela CiQUS SPAIN
| |
Collapse
|
14
|
Pandey S, Mandal S, Danielsen MB, Brown A, Hu C, Christensen NJ, Kulakova AV, Song S, Brown T, Jensen KJ, Wengel J, Lou C, Mao H. Chirality transmission in macromolecular domains. Nat Commun 2022; 13:76. [PMID: 35013247 PMCID: PMC8748818 DOI: 10.1038/s41467-021-27708-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2021] [Indexed: 11/17/2022] Open
Abstract
Chiral communications exist in secondary structures of foldamers and copolymers via a network of noncovalent interactions within effective intermolecular force (IMF) range. It is not known whether long-range chiral communication exists between macromolecular tertiary structures such as peptide coiled-coils beyond the IMF distance. Harnessing the high sensitivity of single-molecule force spectroscopy, we investigate the chiral interaction between covalently linked DNA duplexes and peptide coiled-coils by evaluating the binding of a diastereomeric pair of three DNA-peptide conjugates. We find that right-handed DNA triple helices well accommodate peptide triple coiled-coils of the same handedness, but not with the left-handed coiled-coil stereoisomers. This chiral communication is effective in a range (<4.5 nm) far beyond canonical IMF distance. Small-angle X-ray scattering and molecular dynamics simulation indicate that the interdomain linkers are tightly packed via hydrophobic interactions, which likely sustains the chirality transmission between DNA and peptide domains. Our findings establish that long-range chiral transmission occurs in tertiary macromolecular domains, explaining the presence of homochiral pairing of superhelices in proteins. Chiral communication can propagate in secondary structures within the effective intermolecular force (IMF) range but it is not known whether long-range chiral communication exists between tertiary peptide structures. Here, the authors use single-molecule force spectroscopy to investigate chiral interaction between DNA duplexes/triplexes and peptide coiled-coils and demonstrate chiral communication beyond the IMF distance.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Mathias Bogetoft Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Asha Brown
- ATDBio Ltd., Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford, OX4 4GA, UK
| | - Changpeng Hu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Niels Johan Christensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | | | - Shixi Song
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tom Brown
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Knud J Jensen
- Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
15
|
Wang S, Hu D, Guan X, Cai S, Shi G, Shuai Z, Zhang J, Peng Q, Wan X. Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Deping Hu
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xiaoyan Guan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Siliang Cai
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ge Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhigang Shuai
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Qian Peng
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Polymer Chemistry and Physics of Ministry of Education College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
16
|
Wang S, Hu D, Guan X, Cai S, Shi G, Shuai Z, Zhang J, Peng Q, Wan X. Brightening up Circularly Polarized Luminescence of Monosubstituted Polyacetylene by Conformation Control: Mechanism, Switching, and Sensing. Angew Chem Int Ed Engl 2021; 60:21918-21926. [PMID: 34309164 DOI: 10.1002/anie.202108010] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/15/2021] [Indexed: 11/09/2022]
Abstract
The first example of luminescent monosubstituted polyacetylenes (mono-PAs) is presented, based on a contracted cis-cisoid polyene backbone. It has an excellent circularly polarized luminescence (CPL) performance with a high dissymmetric factor (up to the order of 10-1 ). The luminescence stems from the helical cis-cisoid PA backbone, which is tightly fixed by the strong intramolecular hydrogen bonds, thereby reversing the energy order of excited states and enabling an emissive energy dissipation. CPL switches are facilely achieved by the solvent and temperature through reversible conformational transition. By taking advantages of fast response and high sensitivity, the thin film of mono-PAs could be used as a CPL-based probe for quantitative detection of trifluoroacetic acid with a wider linear dynamic range than those of photoluminescence and circular dichroism. This work opens a new avenue to develop novel smart CPL materials through modulating conformational transition.
Collapse
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Deping Hu
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaoyan Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Siliang Cai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ge Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhigang Shuai
- Key Laboratory of Organic OptoElectronics and Molecular, Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
17
|
Chen Z, Chi Z, Sun Y, Lv Z. Chirality in peptide-based materials: From chirality effects to potential applications. Chirality 2021; 33:618-642. [PMID: 34342057 DOI: 10.1002/chir.23344] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/24/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022]
Abstract
Chirality is ubiquitous in nature with primary cellular functions that include construction of right-/left-handed helix and selective communications among diverse biomolecules. Of particularly intriguing are the chiral peptide-based materials that can be deliberately designed to change physicochemistry properties via tuning peptide sequences. Critically, understanding their chiral effects are fundamental for the development of novel materials in chemistry and biomedicine fields. Here, we review recent researches on chirality in peptide-based materials, summarizing relevant typical chiral effects towards recognition, amplification, and induction. Driven forces for the chiral discrimination in affinity interaction as well as the handedness preferences in supramolecular structure formation at both the macroscale and microscale are illustrated. The implementation of such chirality effects of artificial copolymers, assembled aggregates and their composites in the fields of bioseparation and bioenrichment, cell incubation, protein aggregation inhibitors, chiral smart gels, and bionic electro devices are also presented. At last, the challenges in these areas and possible directions are pointed out. The diversity of chiral roles in the origin of life and chirality design in different organic or composite systems as well as their applications in drug development and chirality detection in environmental protection are discussed.
Collapse
Affiliation(s)
- Zhonghui Chen
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Zhenguo Chi
- Guangdong Engineering Technology Research Center for High performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of OEMT, School of Chemistry, Sun Yat-sen University, Guangzhou, China
| | - Yifeng Sun
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| |
Collapse
|
18
|
Hierarchical communication of chirality for aromatic oligoamide sequences. Nat Commun 2021; 12:2659. [PMID: 33976219 PMCID: PMC8113567 DOI: 10.1038/s41467-021-22984-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 04/07/2021] [Indexed: 11/24/2022] Open
Abstract
The communication of chirality at a molecular and supramolecular level is the fundamental feature capable of transmitting and amplifying chirality information. Yet, the limitation of one-step communication mode in many artificial systems has precluded the ability of further processing the chirality information. Here, we report the chirality communication of aromatic oligoamide sequences within the interpenetrated helicate architecture in a hierarchical manner, specifically, the communication is manipulated by three sequential steps: (i) coordination, (ii) concentration, and (iii) ion stimulus. Such approach enables the information to be implemented progressively and reversibly to different levels. Furthermore, the chiral information on the side chains can be accumulated and transferred to the helical backbones of the sequences, resulting in that one of ten possible diastereoisomers of the interpenetrated helicate is finally selected. The circular dichroism experiments with a mixture of chiral and achiral ligands demonstrate a cooperative behavior of these communications, leading to amplification of chiral information. Communication of chirality at a molecular level is the fundamental for transmitting chirality information but one-step communication modes in many artificial systems limits further processing the chirality information. Here, the authors report chirality communication of aromatic oligoamide sequences within interpenetrated helicate architecture in a hierarchical manner.
Collapse
|
19
|
Van Zee NJ, Mabesoone MFJ, Adelizzi B, Palmans ARA, Meijer EW. Biasing the Screw-Sense of Supramolecular Coassemblies Featuring Multiple Helical States. J Am Chem Soc 2020; 142:20191-20200. [PMID: 33169999 PMCID: PMC7705959 DOI: 10.1021/jacs.0c10456] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 12/15/2022]
Abstract
By enchaining a small fraction of chiral monomer units, the helical sense of a dynamic polymer constructed from achiral monomer units can be disproportionately biased. This phenomenon, known as the sergeants-and-soldiers (S&S) effect, has been found to be widely applicable to dynamic covalent and supramolecular polymers. However, it has not been exemplified with a supramolecular polymer that features multiple helical states. Herein, we demonstrate the S&S effect in the context of the temperature-controlled supramolecular copolymerization of chiral and achiral biphenyl tetracarboxamides in alkanes. The one-dimensional helical structures presented in this study are unique because they exhibit three distinct helical states, two of which are triggered by coassembling with monomeric water that is codissolved in the solvent. The self-assembly pathways are rationalized using a combination of mathematical fitting and simulations with a thermodynamic mass-balance model. We observe an unprecedented case of an "abnormal" S&S effect by changing the side chains of the achiral soldier. Although the molecular structure of these aggregates remains elusive, the coassembly of water is found to have a profound impact on the helical excess.
Collapse
Affiliation(s)
- Nathan J. Van Zee
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
- Chimie
Moléculaire, Macromoléculaire, Matériaux, ESPCI
Paris, Université PSL, CNRS, 75005 Paris, France
| | - Mathijs F. J. Mabesoone
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Beatrice Adelizzi
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems and Laboratory of Macromolecular and
Organic Chemistry, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|