1
|
Yamada M. Perspectives on push-pull chromophores derived from click-type [2 + 2] cycloaddition-retroelectrocyclization reactions of electron-rich alkynes and electron-deficient alkenes. Beilstein J Org Chem 2024; 20:125-154. [PMID: 38292046 PMCID: PMC10825803 DOI: 10.3762/bjoc.20.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Various push-pull chromophores can be synthesized in a single and atom-economical step through [2 + 2] cycloaddition-retroelectrocyclization (CA-RE) reactions involving diverse electron-rich alkynes and electron-deficient alkenes. In this review, a comprehensive investigation of the recent and noteworthy advancements in the research on push-pull chromophores prepared via the [2 + 2] CA-RE reaction is conducted. In particular, an overview of the physicochemical properties of the family of these compounds that have been investigated is provided to clarify their potential for future applications.
Collapse
Affiliation(s)
- Michio Yamada
- Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi 4-1-1, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
2
|
Gao WB, Li Z, Tong T, Dong X, Qu H, Yang L, Sue ACH, Tian ZQ, Cao XY. Chiral Molecular Cage with Tunable Stereoinversion Barriers. J Am Chem Soc 2023; 145:17795-17804. [PMID: 37527407 DOI: 10.1021/jacs.3c04761] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The manipulation of chirality in molecular entities that rapidly interconvert between enantiomeric forms is challenging, particularly at the supramolecular level. Advances in controlling such dynamic stereochemical systems offer opportunities to understand chiral symmetry breaking and homochirality. Herein, we report the synthesis of a face-rotating tetrahedron (FRT), an organic molecular cage composed of tridurylborane facial units that undergo stereomutations between enantiomeric trefoil propeller-like conformations. After resolution, we show that the racemization barrier of the enantiopure FRT can be regulated in situ through the reversible binding of fluoride anions onto the tridurylborane moieties. Furthermore, the addition of an enantiopure phenylethanol to the FRT can effectively induce chirality of the molecular cage by preferentially binding to one of its enantiomeric conformers. This study presents a new paradigm for controlling dynamic chirality in supramolecular systems, which may have implications for asymmetric synthesis and dynamic stereochemistry.
Collapse
Affiliation(s)
- Wen-Bin Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhihao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tianyi Tong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xue Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hang Qu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Liulin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Andrew C-H Sue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
4
|
Ozcelik A, Pereira R, Peña-Gallego Á, Alonso Gómez JL. A Tetracyanobutadiene Spirobifluorene: Synthesis, Enantiomeric Resolution and Chiroptical Properties. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ani Ozcelik
- University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo Organic Chemistry SPAIN
| | - Raquel Pereira
- University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo Organic Chemistry SPAIN
| | - Ángeles Peña-Gallego
- University of Vigo - Lagoas Marcosende Campus: Universidade de Vigo Physical Chemistry SPAIN
| | | |
Collapse
|
5
|
Lavarda G, Labella J, Martínez-Díaz MV, Rodríguez-Morgade MS, Osuka A, Torres T. Recent advances in subphthalocyanines and related subporphyrinoids. Chem Soc Rev 2022; 51:9482-9619. [DOI: 10.1039/d2cs00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Subporphyrinoids constitute a class of extremely versatile and attractive compounds. Herein, a comprehensive review of the most recent advances in the fundamentals and applications of these cone-shaped aromatic macrocycles is presented.
Collapse
Affiliation(s)
- Giulia Lavarda
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Victoria Martínez-Díaz
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - M. Salomé Rodríguez-Morgade
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Atsuhiro Osuka
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
- Department of Chemistry, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain
- IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
6
|
Poddar M, Rout Y, Misra R. Donor‐Acceptor Based 1,8‐Naphthalimide Substituted Phenothiazines: Tuning of HOMO‐LUMO Gap. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Madhurima Poddar
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Yogajivan Rout
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| | - Rajneesh Misra
- Discipline of Chemistry Indian Institute of Technology Indore Indore 453552 India
| |
Collapse
|
7
|
Mateo LM, Sagresti L, Luo Y, Guldi DM, Torres T, Brancato G, Bottari G. Expanding the Chemical Space of Tetracyanobuta-1,3-diene (TCBD) through a Cyano-Diels-Alder Reaction: Synthesis, Structure, and Physicochemical Properties of an Anthryl-fused-TCBD Derivative. Chemistry 2021; 27:16049-16055. [PMID: 34494672 PMCID: PMC9292653 DOI: 10.1002/chem.202103079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/28/2022]
Abstract
Tetracyanobuta-1,3-diene (TCBD) is a powerful and versatile electron-acceptor moiety widely used for the preparation of electroactive conjugates. While many reports addressing its electron-accepting capability have appeared in the literature, significantly scarcer are those dealing with its chemical modification, a relevant topic which allows to broaden the chemical space of this interesting functional unit. Here, we report on the first example of a high-yielding cyano-Diels-Alder (CDA) reaction between TCBD, that is, where a nitrile group acts as a dienophile, and an anthryl moiety, that is, acting as a diene. The resulting anthryl-fused-TCBD derivative, which structure was unambiguously identified by X-ray diffraction, shows high thermal stability, remarkable electron-accepting capability, and interesting electronic ground- and excited-state features, as characterized by a thorough theoretical, electrochemical, and photophysical investigation. Moreover, a detailed kinetic analysis of the intramolecular CDA reaction transforming the anthryl-TCBD-based reactant into the anthryl-fused-TCBD product was carried out at different temperatures.
Collapse
Affiliation(s)
- Luis M. Mateo
- Departamento de Química OrgánicaUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- IMDEA-NanocienciaFaraday 9, Campus de Cantoblanco28049MadridSpain
| | - Luca Sagresti
- Scuola Normale Superiore and CSGIPiazza dei Cavalieri 756126PisaItaly
- Istituto Nazionale di Fisica NucleareLargo Pontecorvo 356100PisaItaly
| | - Yusen Luo
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Dirk M. Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergEgerlandstr. 391058ErlangenGermany
| | - Tomas Torres
- Departamento de Química OrgánicaUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- IMDEA-NanocienciaFaraday 9, Campus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| | - Giuseppe Brancato
- Scuola Normale Superiore and CSGIPiazza dei Cavalieri 756126PisaItaly
- Istituto Nazionale di Fisica NucleareLargo Pontecorvo 356100PisaItaly
| | - Giovanni Bottari
- Departamento de Química OrgánicaUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- IMDEA-NanocienciaFaraday 9, Campus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| |
Collapse
|
8
|
Tejerina L, Labella J, Martínez-Fernández L, Corral I, Victoria Martínez-Díaz M, Torres T. Subphthalocyaninato Boron(III) Hydride: Synthesis, Structure and Reactivity. Chemistry 2021; 27:12058-12062. [PMID: 34115440 PMCID: PMC8456786 DOI: 10.1002/chem.202101991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 12/15/2022]
Abstract
Subphthalocyanine (SubPc) chemistry has been limited so far by their high sensitivity toward strong nucleophiles. In particular, the substitution of the axial chlorine atom by a nucleophilic group in the case of less-reactive SubPcs, such as those bearing electron-withdrawing peripheral substituents, presents some limitations and requires harsh conditions. By taking advantage of the electrophilic character of DIBAL-H, it has been possible to prepare for the first time SubPc-hydride derivatives that exhibit high reactivity as hydroboration reagents of aldehydes. This hydride transfer requires using a typical carbonyl activator (trimethylsilyl triflate) and only one equivalent of aldehyde, affording SubPcs with an axial benzyloxy group in good yield. This transformation has proven to be a useful alternative method for the axial functionalisation of dodecafluoroSubPc, a paradigmatic SubPc derivative, by using electrophiles for the first time. Considering the increasing interest in SubPcs as electron-acceptor semiconductors with remarkable absorption in the visible range to replace fullerene in organic photovoltaic (OPV) devices, it is of the utmost importance to develop new synthetic methodologies for their axial functionalisation.
Collapse
Affiliation(s)
- Lara Tejerina
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Jorge Labella
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Lara Martínez-Fernández
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,Department of Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Inés Corral
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,Department of Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - M Victoria Martínez-Díaz
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Tomás Torres
- Department of Organic Chemistry, Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049, Madrid, Spain.,IMDEA-Nanociencia, c/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
9
|
Bottari G, de la Torre G, Guldi DM, Torres T. An exciting twenty-year journey exploring porphyrinoid-based photo- and electro-active systems. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Xu XH, Liu WB, Song X, Zhou L, Liu N, Zhu YY, Wu ZQ. Chain-end functionalization of living helical polyisocyanides through a Pd( ii)-mediated Sonogashira coupling reaction. Polym Chem 2021. [DOI: 10.1039/d1py00809a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Various functional helical polymers were constructed through chain-end functionalization of living helical polyisocyanides through a Pd(ii)-mediated Sonogashira coupling reaction.
Collapse
Affiliation(s)
- Xun-Hui Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Wen-Bin Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Xue Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Li Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Na Liu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Yuan-Yuan Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Zong-Quan Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| |
Collapse
|