1
|
Kadakia RT, Ryan RT, Cooke DJ, Que EL. An Fe complex for 19F magnetic resonance-based reversible redox sensing and multicolor imaging. Chem Sci 2023; 14:5099-5105. [PMID: 37206407 PMCID: PMC10189869 DOI: 10.1039/d2sc05222a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
We report a first-in-class responsive, pentafluorosulfanyl (-SF5)-tagged 19F MRI agent capable of reversibly detecting reducing environments via an FeII/III redox couple. In the FeIII form, the agent displays no 19F MR signal due to paramagnetic relaxation enhancement-induced signal broadening; however, upon rapid reduction to FeII with one equivalent of cysteine, the agent displays a robust 19F signal. Successive oxidation and reduction studies validate the reversibility of the agent. The -SF5 tag in this agent enables 'multicolor imaging' in conjunction with sensors containing alternative fluorinated tags and this was demonstrated via simultaneous monitoring of the 19F MR signal of this -SF5 agent and a hypoxia-responsive agent containing a -CF3 group.
Collapse
Affiliation(s)
- Rahul T Kadakia
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Raphael T Ryan
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Daniel J Cooke
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| | - Emily L Que
- Department of Chemistry, University of Texas at Austin 105 E 24th St. Stop A5300 Austin TX 78712 USA
| |
Collapse
|
2
|
Li Y, Cui J, Li C, Zhou H, Chang J, Aras O, An F. 19 F MRI Nanotheranostics for Cancer Management: Progress and Prospects. ChemMedChem 2022; 17:e202100701. [PMID: 34951121 PMCID: PMC9432482 DOI: 10.1002/cmdc.202100701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Fluorine magnetic resonance imaging (19 F MRI) is a promising imaging technique for cancer diagnosis because of its excellent soft tissue resolution and deep tissue penetration, as well as the inherent high natural abundance, almost no endogenous interference, quantitative analysis, and wide chemical shift range of the 19 F nucleus. In recent years, scientists have synthesized various 19 F MRI contrast agents. By further integrating a wide variety of nanomaterials and cutting-edge construction strategies, magnetically equivalent 19 F atoms are super-loaded and maintain satisfactory relaxation efficiency to obtain high-intensity 19 F MRI signals. In this review, the nuclear magnetic resonance principle underlying 19 F MRI is first described. Then, the construction and performance of various fluorinated contrast agents are summarized. Finally, challenges and future prospects regarding the clinical translation of 19 F MRI nanoprobes are considered. This review will provide strategic guidance and panoramic expectations for designing new cancer theranostic regimens and realizing their clinical translation.
Collapse
Affiliation(s)
- Yanan Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jing Cui
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chenlong Li
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Huimin Zhou
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jun Chang
- College of Basic Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
3
|
Wang H, Cleary MB, Lewis LC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Enzyme Control Over Ferric Iron Magnetostructural Properties. Angew Chem Int Ed Engl 2022; 61:e202114019. [PMID: 34814231 PMCID: PMC8935392 DOI: 10.1002/anie.202114019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 01/19/2023]
Abstract
Fe3+ complexes in aqueous solution can exist as discrete mononuclear species or multinuclear magnetically coupled species. Stimuli-driven change to Fe3+ speciation represents a powerful mechanistic basis for magnetic resonance sensor technology, but ligand design strategies to exert precision control of aqueous Fe3+ magnetostructural properties are entirely underexplored. In pursuit of this objective, we rationally designed a ligand to strongly favor a dinuclear μ-oxo-bridged and antiferromagnetically coupled complex, but which undergoes carboxylesterase mediated transformation to a mononuclear high-spin Fe3+ chelate resulting in substantial T1 -relaxivity increase. The data communicated demonstrate proof of concept for a novel and effective strategy to exert biochemical control over aqueous Fe3+ magnetic, structural, and relaxometric properties.
Collapse
Affiliation(s)
- Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Michael B. Cleary
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Luke C. Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Jeffrey W. Bacon
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215, United States
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States,Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States,Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital/ Harvard Medical School, 149 Thirteenth Street, Charlestown, Massachusetts 02129, United States
| |
Collapse
|
4
|
Wang H, Cleary MB, Lewis LC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Enzyme Control Over Ferric Iron Magnetostructural Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huan Wang
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Michael B. Cleary
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Luke C. Lewis
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | | | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Hannah S. Shafaat
- Department of Chemistry and Biochemistry The Ohio State University Columbus OH 43210 USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging
- Institute for Innovation in Imaging Department of Radiology Massachusetts General Hospital/Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| |
Collapse
|
5
|
Shusterman‐Krush R, Tirukoti ND, Bandela AK, Avram L, Allouche‐Arnon H, Cai X, Gibb BC, Bar‐Shir A. Single Fluorinated Agent for Multiplexed
19
F‐MRI with Micromolar Detectability Based on Dynamic Exchange. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ronit Shusterman‐Krush
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Nishanth D. Tirukoti
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Anil Kumar Bandela
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Liat Avram
- Department of Chemical Research Support Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Hyla Allouche‐Arnon
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| | - Xiaoyang Cai
- Department of Chemistry Tulane University New Orleans LA 70118 USA
| | - Bruce C. Gibb
- Department of Chemistry Tulane University New Orleans LA 70118 USA
| | - Amnon Bar‐Shir
- Department of Organic Chemistry Faculty of Chemistry Weizmann Institute of Science Rehovot 7610001 Israel
| |
Collapse
|
6
|
Shusterman-Krush R, Tirukoti ND, Bandela AK, Avram L, Allouche-Arnon H, Cai X, Gibb BC, Bar-Shir A. Single Fluorinated Agent for Multiplexed 19 F-MRI with Micromolar Detectability Based on Dynamic Exchange. Angew Chem Int Ed Engl 2021; 60:15405-15411. [PMID: 33856080 DOI: 10.1002/anie.202100427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/30/2021] [Indexed: 12/12/2022]
Abstract
The weak thermal polarization of nuclear spins limits the sensitivity of MRI, even for MR-sensitive nuclei as fluorine-19. Therefore, despite being the source of inspiration for the development of background-free MRI for various applications, including for multiplexed imaging, the inability to map very low concentrations of targets using 19 F-MRI raises the need to further enhance this platform's capabilities. Here, we employ the principles of CEST-MRI in 19 F-MRI to obtain a 900-fold signal amplification of a biocompatible fluorinated agent, which can be presented in a "multicolor" fashion. Capitalizing on the dynamic interactions in host-guest supramolecular assemblies in an approach termed GEST, we demonstrate that an inhalable fluorinated anesthetic can be used as a single 19 F-probe for the concurrent detection of micromolar levels of two targets, with potential in vivo translatability. Further extending GEST with new designs could expand the applicability of 19 F-MRI to the mapping of targets that have so-far remained non-detectable.
Collapse
Affiliation(s)
- Ronit Shusterman-Krush
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Nishanth D Tirukoti
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Anil Kumar Bandela
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Hyla Allouche-Arnon
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Xiaoyang Cai
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Amnon Bar-Shir
- Department of Organic Chemistry, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
7
|
The Design of Abnormal Microenvironment Responsive MRI Nanoprobe and Its Application. Int J Mol Sci 2021; 22:ijms22105147. [PMID: 34067989 PMCID: PMC8152268 DOI: 10.3390/ijms22105147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
Magnetic resonance imaging (MRI) is often used to diagnose diseases due to its high spatial, temporal and soft tissue resolution. Frequently, probes or contrast agents are used to enhance the contrast in MRI to improve diagnostic accuracy. With the development of molecular imaging techniques, molecular MRI can be used to obtain 3D anatomical structure, physiology, pathology, and other relevant information regarding the lesion, which can provide an important reference for the accurate diagnosis and treatment of the disease in the early stages. Among existing contrast agents, smart or activatable nanoprobes can respond to selective stimuli, such as proving the presence of acidic pH, active enzymes, or reducing environments. The recently developed environment-responsive or smart MRI nanoprobes can specifically target cells based on differences in the cellular environment and improve the contrast between diseased tissues and normal tissues. Here, we review the design and application of these environment-responsive MRI nanoprobes.
Collapse
|
8
|
Bonnet CS, Tóth É. Metal-based environment-sensitive MRI contrast agents. Curr Opin Chem Biol 2021; 61:154-169. [PMID: 33706246 DOI: 10.1016/j.cbpa.2021.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/07/2021] [Accepted: 01/31/2021] [Indexed: 12/30/2022]
Abstract
Interactions of paramagnetic metal complexes with their biological environment can modulate their magnetic resonance imaging (MRI) contrast-enhancing properties in different ways, and this has been widely exploited to create responsive probes that can provide biochemical information. We survey progress in two rapidly growing areas: the MRI detection of biologically important metal ions, such as calcium, zinc, and copper, and the use of transition metal complexes as smart MRI agents. In both fields, new imaging technologies, which take advantage of other nuclei (19F) and/or paramagnetic contact shift effects, emerge beyond classical, relaxation-based applications. Most importantly, in vivo imaging is gaining ground, and the promise of molecular MRI is becoming reality, at least for preclinical research.
Collapse
Affiliation(s)
- Célia S Bonnet
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, Orléans, 45071, France
| | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, Orléans, 45071, France.
| |
Collapse
|
9
|
Kurz H, Schötz K, Papadopoulos I, Heinemann FW, Maid H, Guldi DM, Köhler A, Hörner G, Weber B. A Fluorescence-Detected Coordination-Induced Spin State Switch. J Am Chem Soc 2021; 143:3466-3480. [PMID: 33636077 DOI: 10.1021/jacs.0c12568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The response of the spin state to in situ variation of the coordination number (CISSS) is a promising and viable approach to smart sensor materials, yet it suffers to date from insensitive detection. Herein, we present the synthetic access to a family of planar nickel(II) complexes, whose CISSS is sensitively followed by means of fluorescence detection. For this purpose, nickel(II) complexes with four phenazine-based Schiff base-like ligands were synthesized and characterized through solution-phase spectroscopy (NMR and UV-vis), solid-state structure analysis (single-crystal XRD), and extended theoretical modeling. All of them reveal CISSS in solution through axial ligating a range of N- and O-donors. CISSS correlates nicely with the basicity of the axial ligand and the substitution-dependent acidity of the nickel(II) coordination site. Remarkably, three out of the four nickel(II) complexes are fluorescent in noncoordinating solvents but are fluorescence-silent in the presence of axial ligands such as pyridine. As these complexes are rare examples of fluorescent nickel(II) complexes, the photophysical properties with a coordination number of 4 were studied in detail, including temperature-dependent lifetime and quantum yield determinations. Most importantly, fluorescence quenching upon adding axial ligands allows a "black or white", i.e. digital, sensoring of spin state alternation. Our studies of fluorescence-detected CISSS (FD-CISSS) revealed that absorption-based CISSS and FD-CISSS are super proportional with respect to the pyridine concentration: FD-CISSS features a higher sensitivity. Overall, our findings indicate a favored ligation of these nickel(II) complexes in the excited state in comparison to the ground state.
Collapse
Affiliation(s)
- Hannah Kurz
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Konstantin Schötz
- Soft Matter Optoelectronics, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Ilias Papadopoulos
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Inorganic Chemistry, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Harald Maid
- Organic Chemistry II, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Physical Chemistry I, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen, Germany
| | - Anna Köhler
- Soft Matter Optoelectronics, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany.,Bayreuth Institute of Macromolecular Research (BIMF) and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Gerald Hörner
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| | - Birgit Weber
- Inorganic Chemistry IV, University of Bayreuth, Universitätsstraße 30, NW I, 95447 Bayreuth, Germany
| |
Collapse
|
10
|
Wang H, Wong A, Lewis LC, Nemeth GR, Jordan VC, Bacon JW, Caravan P, Shafaat HS, Gale EM. Rational Ligand Design Enables pH Control over Aqueous Iron Magnetostructural Dynamics and Relaxometric Properties. Inorg Chem 2020; 59:17712-17721. [PMID: 33216537 DOI: 10.1021/acs.inorgchem.0c02923] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complexes of Fe3+ engage in rich aqueous solution speciation chemistry in which discrete molecules can react with solvent water to form multinuclear μ-oxo and μ-hydroxide bridged species. Here we demonstrate how pH- and concentration-dependent equilibration between monomeric and μ-oxo-bridged dimeric Fe3+ complexes can be controlled through judicious ligand design. We purposed this chemistry to develop a first-in-class Fe3+-based MR imaging probe, Fe-PyCy2AI, that undergoes relaxivity change via pH-mediated control of monomer vs dimer speciation. The monomeric complex exists in a S = 5/2 configuration capable of inducing efficient T1-relaxation, whereas the antiferromagnetically coupled dimeric complex is a much weaker relaxation agent. The mechanisms underpinning the pH dependence on relaxivity were interrogated by using a combination of pH potentiometry, 1H and 17O relaxometry, electronic absorption spectroscopy, bulk magnetic susceptibility, electron paramagnetic resonance spectroscopy, and X-ray crystallography measurements. Taken together, the data demonstrate that PyCy2AI forms a ternary complex with high-spin Fe3+ and a rapidly exchanging water coligand, [Fe(PyCy2AI)(H2O)]+ (ML), which can deprotonate to form the high-spin complex [Fe(PyCy2AI)(OH)] (ML(OH)). Under titration conditions of 7 mM Fe complex, water coligand deprotonation occurs with an apparent pKa 6.46. Complex ML(OH) dimerizes to form the antiferromagnetically coupled dimeric complex [(Fe(PyCy2AI))2O] ((ML)2O) with an association constant (Ka) of 5.3 ± 2.2 mM-1. The relaxivity of the monomeric complexes are between 7- and 18-fold greater than the antiferromagnetically coupled dimer at applied field strengths ranging between 1.4 and 11.7 T. ML(OH) and (ML)2O interconvert rapidly within the pH 6.0-7.4 range that is relevant to human pathophysiology, resulting in substantial observed relaxivity change. Controlling Fe3+ μ-oxo bridging interactions through rational ligand design and in response to local chemical environment offers a robust mechanism for biochemically responsive MR signal modulation.
Collapse
Affiliation(s)
| | | | - Luke C Lewis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | | | | - Jeffrey W Bacon
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | | | - Hannah S Shafaat
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | | |
Collapse
|