1
|
Sah P, Gond AK, Saini G, Kapur M. A Sequential Transition Metal and Organocatalytic Approach to the Enantioselective Synthesis of C2-Spiroindoline Systems. Org Lett 2023; 25:9170-9175. [PMID: 38100382 DOI: 10.1021/acs.orglett.3c03716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
We report herein an organocatalyzed enantioselective spirocyclization strategy to access valuable C2-spiroindoline scaffolds bearing a quaternary stereocenter via an aza-Michael addition reaction, wherein the acid additive plays the role of dual functionality. The substrates for this key step were put together by an exo-selective, Pd-catalyzed γ-arylation of silyldienol ethers of the corresponding cyclohexenones. A close alliance between a low catalyst loading and a slow reaction rate yields C2-spiroindolines with good enantioselectivity.
Collapse
Affiliation(s)
- Pooja Sah
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Aakash Kumar Gond
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Gaurav Saini
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
2
|
Wu Y, Ao Y, Li Z, Liu C, Zhao J, Gao W, Li X, Wang H, Liu Y, Liu Y. Modulation of metal species as control point for Ni-catalyzed stereodivergent semihydrogenation of alkynes with water. Nat Commun 2023; 14:1655. [PMID: 36964163 PMCID: PMC10039052 DOI: 10.1038/s41467-023-37022-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/23/2023] [Indexed: 03/26/2023] Open
Abstract
A base-assisted metal species modulation mechanism enables Ni-catalyzed stereodivergent transfer semihydrogenation of alkynes with water, delivering both olefinic isomers smoothly using cheap and nontoxic catalysts and additives. Different from most precedents, in which E-alkenes derive from the isomerization of Z-alkene products, the isomers were formed in orthogonal catalytic pathways. Mechanistic studies suggest base as a key early element in modulation of the reaction pathways: by adding different bases, nickel species with disparate valence states could be accessed to initiate two catalytic cycles toward different stereoisomers. The practicability of the method is showcased with nearly 70 examples, including internal and terminal triple bonds, enynes and diynes, affording semi-hydrogenated products in high yields and selectivity.
Collapse
Affiliation(s)
- Yuanqi Wu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yuhui Ao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Zhiming Li
- Department of Chemistry, Fudan University, 200438, Shanghai, PR China.
| | - Chunhui Liu
- College of Chemical and Materials Engineering, Xuchang University, 461000, Xuchang, PR China
| | - Jinbo Zhao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Wenyu Gao
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Xuemeng Li
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Hui Wang
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yongsheng Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China
| | - Yu Liu
- Jilin Provincial Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 130012, Changchun, PR China.
| |
Collapse
|
3
|
Tse MH, Choy PY, Kwong FY. Facile Assembly of Modular-Type Phosphines for Tackling Modern Arylation Processes. Acc Chem Res 2022; 55:3688-3705. [PMID: 36472355 DOI: 10.1021/acs.accounts.2c00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This Account presents an overview of a promising collection of phosphine ligands simply made from the modular Fischer indolization process and their applications in modern arylation processes. Using one easily accessible 2-arylindole scaffold, three major phosphino-moiety-positioned ligand series can be readily generated. We have attempted to explore challenging electrophilic and nucleophilic partners for the coupling reaction using the modular ligand tool. For the electrophilic partner study, CM-phos-type ligands, where the phosphino group is located at the 2-arene position of 2-arylindole, allow the successful cross-coupling of aryl mesylates. The CM-phos ligand forms a palladacycle before entering the cross-coupling catalytic cycle. For the nucleophilic partner investigation, the indole C3-positioned phosphines show the first accomplishment of Pd-catalyzed organotitanium nucleophile arylation. Indeed, the aryl-titanium nucleophile undergoes cross-coupling more efficiently than does the organoboron coupling partner in particular cases. Moreover, in the indole C3-positioned phosphine series, the -PPh2-containing ligands perform better in the highly sterically hindered cross-coupling of aryl chlorides than do ligands containing the -PCy2 moiety. The catalyst loading can even be reduced to 0.2 mol % Pd for tetra-ortho-substituted biaryl synthesis. This finding offers a new perspective on the next-generation design of phosphine ligands in which the sterically bulky and electron-rich -PR2 group (R = alkyl) may not be necessary for the cross-coupling of aryl chlorides. In general, we hypothesize that a good balance of steric and electronic properties for entertaining the oxidative addition and reductive elimination steps is crucial to the success of the reaction. For the steric factor, the highly sterically congested -PR2 group normally favors the reductive elimination, yet we conjecture that this sterically bulky group would serve as an obstacle for the incoming aryl halides. For the electronic factor, the electron rich -PR2 group is believed to support the oxidative cleavage of the C(Ar)-Cl bond by donating more electron density to the corresponding σ* orbital. Nevertheless, the high electron richness of the -PR2 group may disfavor the reductive elimination electronically. Overall, an appropriate balance of both electron density and steric bulkiness is suggested to allow the sterically hindered cross-coupling to proceed smoothly. We have found that the -PPh2-containing ligand is a good starting point for this investigation. The formation of aromatic carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds from aryl chlorides was successfully realized using our proprietary phosphines.In addition to the indole-core-bearing ligand skeleton, we also explored the relevant imidazolyl and carbazolyl phosphines for their unique applications. Interestingly, the carbazolyl ligand, having more flexible C-N axial chirality, displays particular interchangeable Pd-N and Pd-arene coordination, which facilitates both oxidative addition and reductive elimination processes. Moreover, this C-N axially chiral ligand allows the successful asymmetric Suzuki-Miyaura coupling for attaining the most sterically hindered tetra-ortho-substituted biaryls with excellent enantioselectivity. The rationale behind these scientifically interesting findings is presented in detail.
Collapse
Affiliation(s)
- Man Ho Tse
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, Second Yuexing Road, Shenzhen 518507, China
| | - Pui Ying Choy
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, Second Yuexing Road, Shenzhen 518507, China
| | - Fuk Yee Kwong
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong, No. 10, Second Yuexing Road, Shenzhen 518507, China
| |
Collapse
|
4
|
Dimakos V, Canterbury DP, Monfette S, Roosen PC, Newman SG. A Morita–Baylis–Hillman Inspired Cross-Coupling Strategy for the Direct α-Arylation of Cyclic Enones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Victoria Dimakos
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Daniel P. Canterbury
- Pfizer Medicine Design, Pfizer Worldwide Research and Development, Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Philipp C. Roosen
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
5
|
Li S, Chen Q, Yang J, Zhang J. Palladium‐Catalyzed Enantioselective γ‐Arylation of β,γ‐Unsaturated Butenolides. Angew Chem Int Ed Engl 2022; 61:e202202046. [DOI: 10.1002/anie.202202046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Sanliang Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qiaoyu Chen
- Academy for Engineering and Technology Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junfeng Yang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
6
|
Ghosh S, Chattopadhyay SK. UNUSUAL REGIOSELECTIVITY IN PALLADIUM‐CATALYZED TANDEM C,H‐ARYLATION AND C,H‐AMIDATION OF CIS‐CINNAMYL HYDROXAMATES: FACILE SYNTHESIS OF 3‐ARYL‐2‐QUINOLONES. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Subhankar Ghosh
- University of Kalyani Faculty of Science Department of Chemistry B-block 741235 Kalyani INDIA
| | | |
Collapse
|
7
|
Chen Z, Gu C, Yuen OY, So CM. Palladium-catalyzed chemoselective direct α-arylation of carbonyl compounds with chloroaryl triflates at the C-Cl site. Chem Sci 2022; 13:4762-4769. [PMID: 35655875 PMCID: PMC9067565 DOI: 10.1039/d1sc06701j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/02/2022] [Indexed: 01/13/2023] Open
Abstract
This study described palladium-catalyzed chemoselective direct α-arylation of carbonyl compounds with chloroaryl triflates in the Ar–Cl bond. The Pd/SelectPhos system showed excellent chemoselectivity toward the Ar–Cl bond in the presence of the Ar–OTf bond with a broad substrate scope and excellent product yields. The electronic and steric hindrance offered by the –PR2 group of the ligand with the C2-alkyl group was found to be the key factor affecting the reactivity and chemoselectivity of the α-arylation reaction. The chemodivergent approach was also successfully employed in the synthesis of flurbiprofen and its derivatives (e.g., –OMe and –F). Palladium-catalyzed chemoselective direct α-arylation of carbonyl compounds with chloroaryl triflates in the Ar–Cl bond is reported. The effects of –PR2 and C2-alkyl groups of the ligands are investigated using experimental and computational methods.![]()
Collapse
Affiliation(s)
- Zicong Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Changxue Gu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - On Ying Yuen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Kowloon Hong Kong SAR China .,The Hong Kong Polytechnic University Shenzhen Research Institute Shenzhen 518057 Guangdong China
| |
Collapse
|
8
|
Li S, Chen Q, Yang J, Zhang J. Palladium‐Catalyzed Enantioselective γ‐Arylation of β,γ‐Unsaturated Butenolides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanliang Li
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Qiaoyu Chen
- Academy for Engineering and Technology Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junfeng Yang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Junliang Zhang
- Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
9
|
Ng SS, Chen Z, Yuen OY, So CM. An indole-amide-based phosphine ligand enabling a general palladium-catalyzed sterically hindered Suzuki-Miyaura cross-coupling reaction. Org Biomol Chem 2022; 20:1373-1378. [PMID: 35080549 DOI: 10.1039/d1ob02294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel family of indole-amide-based phosphine ligands was designed and synthesized. The Pd/InAm-phos (L1) catalytic system exhibited excellent efficiency in the Suzuki-Miyaura cross-coupling of sterically hindered (hetero)aryl chlorides to synthesize tri-ortho-substituted biaryls. Excellent product yields were obtained in a short reaction time (e.g., 10 min), and a Pd catalyst loading down to 50 ppm was also achieved. The oxidative addition adduct of Pd-L1 with 2-chlorotoluene was also well-characterized by single-crystal X-ray crystallography and showed a κ2-P,O-coordination of L1 with palladium.
Collapse
Affiliation(s)
- Shan Shan Ng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Zicong Chen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - On Ying Yuen
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
10
|
So CM, Yuen OY. Palladium-Catalyzed Site-Selective Arylation of α,β-Unsaturated Carbonyl Compounds through a Ligand-Controlled Strategy. Synlett 2022. [DOI: 10.1055/s-0040-1719877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractPalladium-catalyzed direct arylation of α,β-unsaturated carbonyl compounds is an efficient and attractive strategy to access arylated α,β-unsaturated carbonyl compounds through the construction of carbon–carbon bonds. This reaction has several challenges, especially in terms of the control of regioselectivity between α- and γ-arylation and the selectivity for monoarylation and multiple arylation. Herein, we discuss the recent development of γ-arylation of α,β-unsaturated carbonyl compounds and present the ligand-controlled, site-selective α- and γ-arylation of α,β-unsaturated carbonyl ketones with (hetero)aryl halides. The site selectivity of the reaction is switchable by simply changing the phosphine ligand.1 Introduction2 Reaction Development and Mechanistic Investigation3 Conclusion and Outlook
Collapse
Affiliation(s)
- Chau Ming So
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University
- The Hong Kong Polytechnic University Shenzhen Research Institute
| | - On Ying Yuen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University
| |
Collapse
|
11
|
Shao LD, Chen Y, Wang M, Xiao N, Zhang ZJ, Li D, Li RT. Palladium-Catalyzed Direct γ-C(sp3)-H Arylation of β-Alkoxy Cyclohexenones: Reaction Scope and Mechanistic Insights. Org Chem Front 2022. [DOI: 10.1039/d1qo01871j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct γ-C(sp3)-arylation of unactivated electron-rich enones is a long-standing challenge. Herein, we report a mild Pd-catalyzed method for direct γ-C(sp3)-arylation of various unactivated β-alkoxy cyclohexenones. The method is not only...
Collapse
|
12
|
Lin YC, Yen KW, Lin HJ, Yang YC, Wu YK. Haloarene-guided cascade arylation of cyclic vinylogous esters under palladium catalysis. Chem Commun (Camb) 2021; 57:12119-12122. [PMID: 34719697 DOI: 10.1039/d1cc05006k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A method is presented for the synthesis of diaryl cyclic vinylogous esters. The sequence of C(sp3)-H arylation events is programed under the differentiated reactivity of the aryl halides, and the optimized reaction system is effectively diverted from producing dihomo-arylated products. The site selectivity of the second arylation is notably modulated by the substitution pattern of the substrates.
Collapse
Affiliation(s)
- Yi-Ching Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan.
| | - Ko-Wang Yen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan.
| | - Hsuan-Jen Lin
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan.
| | - Yi-Chi Yang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan.
| | - Yen-Ku Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan.
| |
Collapse
|
13
|
Song Y, Xu S, Zhang S, Fu J, Lin G, Feng C. Palladium‐Catalyzed Tandem γ‐Arylation/Aromatization of Cyclohex‐2‐En‐1‐One Derivatives: A Route to 3,4‐Dihydroanthracen‐1(2
H
)‐Ones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yi‐Kang Song
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Si‐Yu Xu
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Shu‐Sheng Zhang
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Jian‐Guo Fu
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
| | - Guo‐Qiang Lin
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road Shanghai 200032 People's Republic of China
| | - Chen‐Guo Feng
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine Shanghai University of Traditional Chinese Medicine 1200 Cailun Road Shanghai 201203 People's Republic of China
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road Shanghai 200032 People's Republic of China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 People's Republic of China
| |
Collapse
|
14
|
Saini G, Kapur M. Palladium-catalyzed functionalizations of acidic and non-acidic C(sp 3)-H bonds - recent advances. Chem Commun (Camb) 2021; 57:1693-1714. [PMID: 33492315 DOI: 10.1039/d0cc06892f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tremendous upsurge has been seen in the recent decade for the proximal and remote functionalization of activated and unactivated substrates via palladium redox pathways. This feature article discusses some of the recent reports on direct as well as indirect C(sp3)-H functionalization via cross-coupling reactions under palladium catalysis. Activated substrates (possessing acidic C(sp3)-H) including enones, ketones, aldehydes, silylenol ethers, esters, silyl ketene acetals, amides, cyano, α-amino esters, and O-carbamates, capable of undergoing cross-coupling reactions at the α-, β-, γ-, δ- and ε-positions, will be discussed. To overcome the challenging task of achieving regioselectivity, a variety of innovative modifications have been reported. The reports of C-H activations based on directing group, and as native functionality have been illustrated at the β-, γ- and δ-positions. Substrates such as α-amino esters, carbonyls, carboxylic acids and their derivatives, afford site-selective C(sp3)-H functionalization via varied-sized reactive metallacycles and are a unique class of substrates whose C(sp3)-H functionalizations were earlier considered as very difficult.
Collapse
Affiliation(s)
- Gaurav Saini
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India.
| |
Collapse
|