1
|
Nnamdi FU, Sullivan R, Gorin B, Organ MG. Eliminating Bimolecular Decomposition to Address Sustainability in Cross-Coupling: Supported Pd-PEPPSI-IPent Cl. Org Lett 2025; 27:3865-3870. [PMID: 40178303 DOI: 10.1021/acs.orglett.5c00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Fine-chemical manufacturing, with its dismal E-factors, has been known for decades as being one of the worst contributors to the well-being of the environment. Further, mining practices that pursue precious metals used in catalysis lead to considerable destruction of the environment. Further contributing to this is the necessity for high catalyst loads due to the limited mortality of organometallic complexes in solution. Bimolecular decomposition (BD), in particular, is a significant contributor to this problem. Assisting in the sustainability of chemical synthesis is flow chemistry, whose "just-in-time" nature produces chemicals as needed, eliminating vast stockpiles of chemicals associated with batch manufacturing. In this work, Pd-PEPPSI-IPentCl, a high-reactivity, high-selectivity Pd catalyst, has been mounted onto the surface of silica, of which the spacing has eliminated BD. This material has been loaded into packed beds and used in Negishi coupling and Buchwald-Hartwig amination, where the active catalyst has shown tremendous resiliency while producing valuable small-molecule products with deft selectivity and speed with residence time in the order of minutes under mild conditions (e.g., Negishi couplings conducted at room temperature).
Collapse
Affiliation(s)
- Fred U Nnamdi
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ryan Sullivan
- Eurofins CDMO Alphora, Incorporated, 2070 Hadwen Road, Mississauga, Ontario L5K 2C9, Canada
| | - Boris Gorin
- Eurofins CDMO Alphora, Incorporated, 2070 Hadwen Road, Mississauga, Ontario L5K 2C9, Canada
| | - Michael G Organ
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Stang M, Hanada EM, Blum SA. Mechanisms of Activating Agents to Form Organozinc Reagents from Zinc Metal: Lessons for Reaction Design. J Org Chem 2025; 90:939-948. [PMID: 39745146 DOI: 10.1021/acs.joc.4c02726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Activating agents enable the efficient preparation of organozinc complexes from zinc metal and organohalides, but their mechanisms had been obscured by the heterogeneous nature of these systems. Fluorescence microscopy, with the sensitivity to detect surface reaction intermediates, reveals distinct activating mechanisms of widely used activation strategies: trimethylsilyl chloride, LiCl, DMSO, and Rieke zinc powder. The resulting development of mechanistic models provides a better understanding of the oxidative-addition-solubilization sequence in organozinc reagent formation and contains lessons for methods development.
Collapse
Affiliation(s)
- Martin Stang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Erin M Hanada
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
3
|
Li J, Lin Q, Dungan O, Fu Y, Ren S, Ruccolo S, Moor S, Phillips EM. Homogenous Palladium-Catalyzed Dehalogenative Deuteration and Tritiation of Aryl Halides with D 2/T 2 Gas. J Am Chem Soc 2024; 146:31497-31506. [PMID: 39514417 DOI: 10.1021/jacs.4c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Hydrogen isotopically labeled compounds have extensive utility across diverse domains, especially in drug discovery and development. However, synthesis of the labeled compounds with exclusive site selectivity and/or high isotope incorporation is challenging. One widely employed method is heterogeneous palladium(0)-catalyzed (such as Pd/C) dehalogenative deuteration and tritiation with D2/T2 gas. While commonly used, the method faces two long-standing challenges related to insufficient isotope incorporation and functional group tolerance, particularly with aryl bromides and chlorides. These long-standing issues pose a substantial obstacle in the synthesis of deuterated drug molecules and high-specific-activity tritium tracers. Herein, we present a novel palladium catalytic system using Zn(OAc)2 as an additive, enabling novel homogenous dehalogenative deuteration/tritiation using D2/T2 gas. Under mild reaction conditions, a wide range of drug-like aryl halides and pseudohalides undergo selective deuteration with complete isotope incorporation. The reaction displays excellent compatibility with diverse functional groups, including multiple bonds and O/N-benzyl, and cyano groups, which are frequently problematic in the Pd/C reactions. Furthermore, this method was successfully applied to the tritiation of four halogenated pharmaceutically relevant molecules, resulting in predictable high specific activity per halogen atom (26.5-27.7 Ci/mmol). Notably, the developed system allows gram-scale preparation of a deuterium-containing intermediate, a crucial step in synthesizing a deuterium-labeled drug molecule. A key intermediate, Pd(Ar)OAc, is proposed to activate hydrogen gas during dehalogenative deuteration and tritiation, and Zn(OAc)2 plays an essential role in inhibiting Pd poisoning by halides.
Collapse
Affiliation(s)
- Jingwei Li
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Qiao Lin
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Otto Dungan
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yue Fu
- Modeling and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sumei Ren
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Serge Ruccolo
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Sarah Moor
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric M Phillips
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
4
|
Crovara F, Martí J, Costa AM, Vilarrasa J. Unexpected E-to- Z Isomerizations during the Negishi-Type Homocoupling of E-Iodoalkenes. J Org Chem 2024; 89:14483-14488. [PMID: 39287987 PMCID: PMC11580178 DOI: 10.1021/acs.joc.3c02957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/08/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The direct insertion of Zn into olefin-halide bonds is a challenge. When (E)-alkenyl iodides were treated with a very large excess of Zn nanoparticles, in the presence of Pd(PPh3)4, the dimerization was observed but, unexpectedly, yielding mainly Z,E-1,3-dienes. This apparently contrathermodynamic E-to-Z isomerization of organometallic intermediates is predicted to be general and is explained with the aid of DFT [principally M06/6-311+G(d,p)], MP2, and CCSD(T) calculations.
Collapse
Affiliation(s)
- Fernanda
A. Crovara
- Organic Chemistry Section, Facultat
de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Josep Martí
- Organic Chemistry Section, Facultat
de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Anna M. Costa
- Organic Chemistry Section, Facultat
de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| | - Jaume Vilarrasa
- Organic Chemistry Section, Facultat
de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Yamaguchi H, Takahashi F, Kurogi T, Yorimitsu H. Reductive anti-Dizincation of Arylacetylenes. Chem Asian J 2024; 19:e202400384. [PMID: 38647096 DOI: 10.1002/asia.202400384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Arylacetylenes undergo anti-1,2-dizincation to afford trans-1,2-dizincioalkenes. The process employs sodium dispersion as a reducing agent and zinc chloride TMEDA complex as a reduction-resistant zinc electrophile. This reductive anti-dizincation contrasts with the conventional additive syn-dimetalation like silylzincation. The resulting dizincated alkenes undergo the cross-coupling to yield multi-substituted alkenes stereoselectively.
Collapse
Affiliation(s)
- Haruka Yamaguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Fumiya Takahashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takashi Kurogi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
6
|
McDonald TR, Turner JA, Gabbey AL, Balasubramanian P, Rousseaux SAL. Synthesis of Borylated (Aminomethyl)cyclopropanes Using C 1-Bisnucleophiles. Org Lett 2024; 26:3822-3827. [PMID: 38669565 DOI: 10.1021/acs.orglett.4c00987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Lithiated 1,1-diborylalkanes have been used as nucleophilic coupling partners with a range of oxygen-based electrophiles, including esters, carbonyls, and epoxides. However, their reactivity with nitrogen-based electrophiles, such as aziridines, has remained relatively understudied. Herein, we show that lithiated 1,1-diborylalkanes react with α-halo and α-tosyl aziridines to yield borylated (aminomethyl)cyclopropanes-a privileged scaffold within medicinal chemistry. The reaction displays high levels of diastereoselectivity, enabling careful control of up to three stereocenters within a single transformation. DFT studies provide insight into the reaction mechanism, which diverges from that observed with analogous epihalohydrin starting materials. Derivatization studies were also performed on the products to demonstrate the utility of the boron and amine handles.
Collapse
Affiliation(s)
- Tyler R McDonald
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexis L Gabbey
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | - Sophie A L Rousseaux
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
7
|
Zhang Y, Cao Q, Xi Y, Wu X, Qu J, Chen Y. Nickel-Catalyzed Carbonylative Negishi Cross-Coupling of Unactivated Secondary Alkyl Electrophiles with 1 atm CO Gas. J Am Chem Soc 2024; 146:7971-7978. [PMID: 38483538 DOI: 10.1021/jacs.4c02023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
We describe a nickel-catalyzed carbonylative cross-coupling of unactivated secondary alkyl electrophiles with the organozinc reagent at atmospheric CO gas, thus allowing the expedient construction of unsymmetric dialkyl ketones with broad functional group tolerance. The leverage of a newly developed NN2-pincer type ligand enables the chemoselective three-component carbonylation by overcoming the competing Negishi coupling, the undesired β-hydride elimination, and dehalogenation of alkyl iodides side pathways. Both alkyl iodides and alkyl tosylates are compatible in the single electron transfer involved mechanism.
Collapse
Affiliation(s)
- Yetong Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qihang Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Xi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Liu Q, Lin T, Wang YE, Liang W, Cao L, Sheng X, Xiong D, Mao J. Nickel-Catalyzed Reductive Arylation of α-Bromo Sulfoxide. Org Lett 2023; 25:9153-9157. [PMID: 38096429 DOI: 10.1021/acs.orglett.3c03619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
A nickel-catalyzed cross-electrophile coupling of aryl iodides with α-bromo sulfoxide to access a diverse array of aryl benzyl sulfoxides has been discovered. These reactions occurred under mild conditions with excellent functional group tolerance so that optically enriched sulfoxides could be coupled with aryl iodides, generating corresponding sulfoxides with excellent stereochemical integrity. Furthermore, the scalability of this transformation was demonstrated. Initial mechanistic studies revealed that the reaction undergoes a radical pathway.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Tingzhi Lin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Wenbiao Liang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Liuying Cao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xutao Sheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
9
|
Kalinin DV, Ulven T. Functional-Group-Tolerant Pd-Catalyzed Carbonylative Negishi Coupling with Aryl Iodides. J Org Chem 2023; 88:16633-16638. [PMID: 37968936 DOI: 10.1021/acs.joc.3c00948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A chemoselective Pd-mediated carbonylative Negishi-type catalytic protocol for the synthesis of (hetero)aryl ketones is reported. The protocol employs the PEPPSI-IPr precatalyst and CO gas at atmospheric pressure (balloon) to foster the carbonylative coupling between diverse C(sp3)-hybridized organozinc reagents and a broad range of aryl iodides, including substrates carrying aldehyde, aniline, phenol, or carboxylic acid groups, and heteroaryls.
Collapse
Affiliation(s)
- Dmitrii V Kalinin
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, 48149 Münster, Germany
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Liu S, Zhang C, Xiong Q, Liu Y, Li L, Sun Y, Cheng B, Chen F. Syntheses of Substituted α,β-Unsaturated δ-Lactams from N-Boc-2,4-dioxopiperidine. J Org Chem 2023. [PMID: 37992127 DOI: 10.1021/acs.joc.3c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
A method for the syntheses of substituted α,β-unsaturated δ-lactams (2) from the commercially available compound N-Boc-2,4-dioxopiperidine (1) has been developed. The α-substituents were introduced by a reductive Knoevenagel condensation reaction, and the β-substituents were installed by palladium-catalyzed cross coupling reactions. More than 20 diverse examples were prepared in 2-3 steps. The synthesis was operationally simple, user-friendly, and easy to scale up.
Collapse
Affiliation(s)
- Saiya Liu
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Chenchen Zhang
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qihua Xiong
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuexin Liu
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Lu Li
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yongqiang Sun
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
| | - Bichu Cheng
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Fener Chen
- School of Science, Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Luo YC, Wang MK, Yu LC, Zhang X. Nickel-Catalyzed Selective C(sp 2 )-F Bond Alkylation of Industrially Relevant Hydrofluoroolefin HFO-1234yf. Angew Chem Int Ed Engl 2023; 62:e202308690. [PMID: 37470697 DOI: 10.1002/anie.202308690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The selective transition-metal catalyzed C-F bond functionalization of inexpensive industrial fluorochemicals represents one of the most attractive approaches to valuable fluorinated compounds. However, the selective C(sp2 )-F bond carbofunctionalization of refrigerant hydrofluoroolefins (HFOs) remains challenging. Here, we report a nickel-catalyzed selective C(sp2 )-F bond alkylation of HFO-1234yf with alkylzinc reagents. The resulting 2-trifluoromethylalkenes can serve as a versatile synthon for diversified transformations, including the anti-Markovnikov type hydroalkylation and the synthesis of bioactive molecule analogues. Mechanistic studies reveal that lithium salt is essential to promote the oxidative addition of Ni0 (Ln ) to the C-F bond; the less electron-rich N-based ligands, such as bipyridine and pyridine-oxazoline, feature comparable or even higher oxidative addition rates than the electron-rich phosphine ligands; the strong σ-donating phosphine ligands, such as PMe3 , are detrimental to transmetallation, but the less electron-rich and bulky N-based ligands, such as pyridine-oxazoline, facilitate transmetallation and reductive elimination to form the final product.
Collapse
Affiliation(s)
- Yun-Cheng Luo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Ming-Kuan Wang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Ling-Chao Yu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
12
|
Lin J, Chen K, Wang J, Guo J, Dai S, Hu Y, Li J. Salt-stabilized alkylzinc pivalates: versatile reagents for cobalt-catalyzed selective 1,2-dialkylation. Chem Sci 2023; 14:8672-8680. [PMID: 37592988 PMCID: PMC10430519 DOI: 10.1039/d3sc02345a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The construction of Csp3-Csp3 bonds through Negishi-type reactions using alkylzinc reagents as the pronucleophiles is of great importance for the synthesis of pharmaceuticals and agrochemicals. However, the use of air and moisture sensitive solutions of conventional alkylzinc halides, which show unsatisfying reactivity and limitation of generality in twofold Csp3-Csp3 cross-couplings, still represents drawbacks. We herein report the first preparation of solid and salt-stabilized alkylzinc pivalates by OPiv-coordination, which exhibit enhanced stability and a distinct advantage of reacting well in cobalt-catalyzed difluoroalkylation-alkylation of dienoates, thus achieving the modular and site-selective installation of CF2- and Csp3-groups across double bonds in a stereoretentive manifold. This reaction proceeds under simple and mild conditions and features broad substrate scope and functional group compatibility. Kinetic experiments highlight that OPiv-tuning on the alkylzinc pivalates is the key for improving their reactivity in twofold Csp3-Csp3 cross-couplings. Furthermore, facile modifications of bioactive molecules and fluorinated products demonstrate the synthetical utility of our salt-stabilized alkylzinc reagents and cobalt-catalyzed alkyldifluoroalkylation protocol.
Collapse
Affiliation(s)
- Jie Lin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Kaixin Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jixin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jiawei Guo
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Siheng Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Ying Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou 215123 China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Feng Y, Yukioka T, Matsuyama M, Mori A, Okano K. Deprotonative Generation and Trapping of Haloaryllithium in a Batch Reactor. Org Lett 2023; 25:3013-3017. [PMID: 37083303 DOI: 10.1021/acs.orglett.3c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A method for the regioselective functionalization of haloarenes through deprotonative lithiation is disclosed. The generated haloaryllithiums were trapped in a batch reactor with a zinc chloride diamine complex to provide organozinc species without aryne formation, which reacted with electrophiles to afford the corresponding products in 38-98% yields. This method was applied to the five-step total synthesis of carbazomycin A on a gram scale in 33% overall yield.
Collapse
Affiliation(s)
- Yuxuan Feng
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Taro Yukioka
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mei Matsuyama
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Atsunori Mori
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kentaro Okano
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
14
|
Hu Y, Peng J, Hu B, Wang J, Jing J, Lin J, Liu X, Qi X, Li J. Stereoselective C-O silylation and stannylation of alkenyl acetates. Nat Commun 2023; 14:1454. [PMID: 36922528 PMCID: PMC10017796 DOI: 10.1038/s41467-023-37192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Facile formation of carbon-heteroatom bonds is a long-standing objective in synthetic organic chemistry. However, direct cross-coupling with readily accessible alkenyl acetates via inert C‒O bond-cleavage for the carbon-heteroatom bond construction remains challenging. Here we report a practical preparation of stereoselective tri- and tetrasubstituted alkenyl silanes and stannanes by performing cobalt-catalyzed C‒O silylation and stannylation of alkenyl acetates using silylzinc pivalate and stannylzinc chloride as the nucleophiles. This protocol features a complete control of chemoselectivity, stereoselectivity, as well as excellent functional group compatibility. The resulting alkenyl silanes and stannanes show high reactivities in arylation and alkenylation by Hiyama and Stille reactions. The synthetic utility is further illustrated by the facile late-stage modifications of natural products and drug-like molecules. Mechanistic studies suggest that the reaction might involve a chelation-assisted oxidative insertion of cobalt species to C‒O bond. We anticipate that our findings should prove instrumental for potential applications of this technology to organic syntheses and drug discoveries in medicinal chemistry.
Collapse
Affiliation(s)
- Ying Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, Suzhou, 215123, P. R. China
| | - Jiali Peng
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China.,School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, P. R. China
| | - Binjing Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, Suzhou, 215123, P. R. China
| | - Jixin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, Suzhou, 215123, P. R. China
| | - Jing Jing
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, Suzhou, 215123, P. R. China
| | - Jie Lin
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, Suzhou, 215123, P. R. China
| | - Xingchen Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, Suzhou, 215123, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Ren-Ai Road 199, Suzhou, 215123, P. R. China. .,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
15
|
Yan M, Zhou Q, Lu P. Collective Synthesis of Chiral Tetrasubstituted Cyclobutanes Enabled by Enantioconvergent Negishi Cross-Coupling of Cyclobutenones. Angew Chem Int Ed Engl 2023; 62:e202218008. [PMID: 36539352 DOI: 10.1002/anie.202218008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Cyclobutenones provide a straightforward four-carbon ring platform for further structural elaborations in that every carbon atom of the ring could be potentially functionalized. We report here a nickel catalyzed enantioconvergent Negishi coupling of 4-iodocyclobutenones with an array of aryl or alkenyl zinc reagents to access enantioenriched 4-substituted cyclobutenones, from which a modular approach to the synthesis of 1,2,3,4-tetrasubstituted cyclobutanes was demonstrated.
Collapse
Affiliation(s)
- Min Yan
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, 200433, Shanghai, P. R. China
| | - Qiang Zhou
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, 200433, Shanghai, P. R. China
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, 200433, Shanghai, P. R. China
| |
Collapse
|
16
|
Marcos-Ayuso G, Peñas-Defrutos MN, Gallego AM, García-Melchor M, Martínez-Ilarduya JM, Espinet P. Problematic Ar F-Alkynyl Coupling with Fluorinated Aryls. From Partial Success with Alkynyl Stannanes to Efficient Solutions via Mechanistic Understanding of the Hidden Complexity. J Am Chem Soc 2023; 145:527-536. [PMID: 36542758 PMCID: PMC9837839 DOI: 10.1021/jacs.2c10842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The synthesis of aryl-alkynyl compounds is usually achieved via Sonogashira catalysis, but this is inefficient for fluorinated aryls. An alternative method reported by Shirakawa and Hiyama, using alkynylstannanes and hemilabile PN ligands, works apparently fine for conventional aryls, but it is also poor for fluorinated aryls. The revision of the unusual literature cycle reveals the existence and nature of unreported byproducts and uncovers coexisting cycles and other aspects that explain the reasons for the conflict. This knowledge provides a full understanding of the real complexity of these aryl/alkynylstannane systems and the deviations of their evolution from that of a classic Stille process, providing the clues to design several very efficient alternatives for the catalytic synthesis of the desired ArF-alkynyl compounds in almost quantitative yield. The same protocols are also very efficient for the catalytic synthesis of alkynyl-alkynyl' hetero- and homocoupling.
Collapse
Affiliation(s)
- Guillermo Marcos-Ayuso
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E-47071, Spain
| | - Marconi N Peñas-Defrutos
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E-47071, Spain.,School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Ana M Gallego
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E-47071, Spain
| | - Max García-Melchor
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Jesús M Martínez-Ilarduya
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E-47071, Spain
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, Valladolid E-47071, Spain
| |
Collapse
|
17
|
Borys AM, Dell'Aera M, Capriati V, Hevia E. Structural and synthetic insights into the chemistry of lithium tetraorganozincates. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2023. [DOI: 10.1016/bs.adomc.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
18
|
Cobalt-Catalyzed C–C Coupling Reactions with Csp3 Electrophiles. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
19
|
Firsan S, Sivakumar V, Colacot TJ. Emerging Trends in Cross-Coupling: Twelve-Electron-Based L 1Pd(0) Catalysts, Their Mechanism of Action, and Selected Applications. Chem Rev 2022; 122:16983-17027. [PMID: 36190916 PMCID: PMC9756297 DOI: 10.1021/acs.chemrev.2c00204] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Indexed: 01/25/2023]
Abstract
Monoligated palladium(0) species, L1Pd(0), have emerged as the most active catalytic species in the cross-coupling cycle. Today, there are methods available to generate the highly active but unstable L1Pd(0) catalysts from stable precatalysts. While the size of the ligand plays an important role in the formation of L1Pd(0) during in situ catalysis, the latter can be precisely generated from the precatalyst by various technologies. Computational, kinetic, and experimental studies indicate that all three steps in the catalytic cycle─oxidative addition, transmetalation, and reductive elimination─contain monoligated Pd. The synthesis of precatalysts, their mode of activation, application studies in model systems, as well as in industry are discussed. Ligand parametrization and AI based data science can potentially help predict the facile formation of L1Pd(0) species.
Collapse
Affiliation(s)
- Sharbil
J. Firsan
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| | - Vilvanathan Sivakumar
- Merck
Life Science Pvt Ltd, No-12, Bommasandra-Jigani Link Road, Industrial Area, Bangalore560100, India
| | - Thomas J. Colacot
- Science
and Lab Solutions−Chemistry, MilliporeSigma, 6000 North Teutonia Avenue, Milwaukee, Wisconsin53209, United States
| |
Collapse
|
20
|
Rio J, Perrin L, Payard P. Structure–Reactivity Relationship of Organozinc and Organozincate Reagents: Key Elements towards Molecular Understanding. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jordan Rio
- Univ Lyon Université Claude Bernard Lyon I CNRS INSA CPE UMR 5246 ICBMS Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires 1 rue Victor Grignard 69622 Villeurbanne cedex France
| | - Lionel Perrin
- Univ Lyon Université Claude Bernard Lyon I CNRS INSA CPE UMR 5246 ICBMS Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires 1 rue Victor Grignard 69622 Villeurbanne cedex France
| | - Pierre‐Adrien Payard
- Univ Lyon Université Claude Bernard Lyon I CNRS INSA CPE UMR 5246 ICBMS Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires 1 rue Victor Grignard 69622 Villeurbanne cedex France
| |
Collapse
|
21
|
Kremsmair A, Sunagatullina AS, Bole LJ, Mastropierro P, Graßl S, Wilke HR, Godineau E, Hevia E, Knochel P. Exploiting Coordination Effects for the Regioselective Zincation of Diazines Using TMPZnX⋅LiX (X=Cl, Br). Angew Chem Int Ed Engl 2022; 61:e202210491. [PMID: 35943036 PMCID: PMC9826189 DOI: 10.1002/anie.202210491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 01/11/2023]
Abstract
A new method for regioselective zincations of challenging N-heterocyclic substrates such as pyrimidines and pyridazine was reported using bimetallic bases TMPZnX⋅LiX (TMP=2,2,6,6-tetramethylpiperidyl; X=Cl, Br). Reactions occurred under mild conditions (25-70 °C, using 1.75 equivalents of base without additives), furnishing 2-zincated pyrimidines and 3-zincated pyridazine, which were then trapped with a variety of electrophiles. Contrasting with other s-block metalating systems, which lack selectivity in their reactions even when operating at low temperatures, these mixed Li/Zn bases enabled unprecedented regioselectivities that cannot be replicated by either LiTMP nor Zn(TMP)2 on their own. Spectroscopic and structural interrogations of organometallic intermediates involved in these reactions have shed light on the complex constitution of reaction mixtures and the origins of their special reactivities.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alisa S. Sunagatullina
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Leonie J. Bole
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Pasquale Mastropierro
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Simon Graßl
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Henrik R. Wilke
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Edouard Godineau
- Forschung & Entwicklung SteinSyngenta Crop Protection AGSchaffhauserstrasse 1014332SteinSwitzerland
| | - Eva Hevia
- Department für Chemie und BiochemieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Paul Knochel
- Department Chemie & BiochemieLudwig Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
22
|
Oderinde MS, Jin S, Das J, Jorge C, Yip S, Ramirez A, Wu DR, Li Y, Kempson J, Meanwell NA, Mathur A, Dhar TGM. Photo-Initiated Nickel Catalysis (PiNiC): Unmasking Dimethylnickel with Light. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martins S. Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Soomin Jin
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Jayanta Das
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Christine Jorge
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Shiuhang Yip
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Antonio Ramirez
- Chemical & Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Dauh-Rurng Wu
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Ying Li
- Separation & Analysis Technology Team, Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - James Kempson
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Nicholas A. Meanwell
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - Arvind Mathur
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| | - T. G. Murali Dhar
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206, Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|
23
|
Hu Y, Wong MJ, Lipshutz BH. ppm Pd‐Containing Nanoparticles as Catalysts for Negishi Couplings …
in Water. Angew Chem Int Ed Engl 2022; 61:e202209784. [DOI: 10.1002/anie.202209784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yuting Hu
- Department of Chemistry & Biochemistry University of California Santa Barbara CA 93106 USA
| | - Madison J. Wong
- Department of Chemistry & Biochemistry University of California Santa Barbara CA 93106 USA
| | - Bruce H. Lipshutz
- Department of Chemistry & Biochemistry University of California Santa Barbara CA 93106 USA
| |
Collapse
|
24
|
Kremsmair A, Sunagatullina AS, Bole LJ, Mastropierro P, Graßl S, Wilke HR, Godineau E, Hevia E, Knochel P. Exploiting Coordination Effects for the Regioselective Zincation of Diazines Using TMPZnX·LiX (X = Cl, Br). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Leonie J. Bole
- Universität Bern: Universitat Bern Department für Chemie und Biochemie SWITZERLAND
| | | | - Simon Graßl
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry GERMANY
| | - Henrik R. Wilke
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry GERMANY
| | - Edouard Godineau
- Syngenta Crop Protection AG Forschung & Entwicklung Stein SWITZERLAND
| | - Eva Hevia
- Universität Bern: Universitat Bern Chemie und Biochemie SWITZERLAND
| | - Paul Knochel
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry Butenandtstr. 5-13 81377 München GERMANY
| |
Collapse
|
25
|
Hu Y, Wong MJ, Lipshutz BH. ppm Pd‐Containing Nanoparticles as Catalysts for Negishi Couplings… in Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuting Hu
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Madison J Wong
- University of California, Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Bruce Howard Lipshutz
- University of California Department of Chemistry University of California 93106 Santa Barbara UNITED STATES
| |
Collapse
|
26
|
Hanada EM, Tagawa TKS, Kawada M, Blum SA. Reactivity Differences of Rieke Zinc Arise Primarily from Salts in the Supernatant, Not in the Solids. J Am Chem Soc 2022; 144:12081-12091. [PMID: 35767838 PMCID: PMC9970556 DOI: 10.1021/jacs.2c02471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Contrary to prevailing thought, the salt content of supernatants is found to dictate reactivity differences of different preparation methods of Rieke zinc toward oxidative addition of organohalides. This conclusion is established through combined single-particle microscopy and ensemble spectroscopy experiments, coupled with careful removal or keeping of the supernatants during Rieke zinc preparations. Fluorescence microscopy experiments with single-Rieke-zinc-particle resolution determined the microscale surface reactivity of the Rieke zinc in the absence of supernatants, thus pinpointing its inherent reactivity independent of the convoluting supernatant composition. In parallel experiments, scanning electron microscopy, energy-dispersive spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma-mass spectrometry characterized the zinc metal chemical composition at the bulk and single-particle levels. Proton nuclear magnetic resonance spectroscopy kinetics characterized bench-scale Rieke zinc reactivity in the presence and absence of different supernatants and exogenous salt additives. Together, these experiments show that the differences in reactivity from sodium-reduced vs lithium-reduced Rieke zinc arise from the residual salts in the supernatant rather than the differing salt compositions of the solids. This supernatant salt also determines the structure of the ultimate organozinc product, generating either the diorganozinc or monoorganozinc halide complex. That different organozinc complexes formed upon direct insertion to different preparations of Rieke zinc was not previously reported, despite Rieke zinc's widespread use. These findings impact organozinc-reagent and nanomaterial synthesis by showing that, unexpectedly, desired Rieke zinc reactivity can be achieved through simple addition of soluble salts to solutions that were used to prepare the metals─a substantially easier synthetic manipulation than solid composition and morphology control.
Collapse
Affiliation(s)
- Erin M Hanada
- Chemistry Department, University of California, Irvine, Irvine, California 92697-2025, United States
| | | | - Masamu Kawada
- Chemistry Department, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Chemistry Department, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
27
|
Zhang X, Zhang Y, Gu X, Zhang Z, Wei W, Liang T. Synthesis of 3-halogenated 2,3'-biindoles by a copper-mediated 2,3-difunctionalization of indoles. Org Biomol Chem 2021; 19:10403-10407. [PMID: 34842891 DOI: 10.1039/d1ob02024b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A copper-mediated 2,3-difunctionalization of indoles to afford 3-halogenated 2,3'-biindoles is described herein. The protocol uses readily available feedstocks and a naturally abundant copper catalyst system, which allows the regioselective formation of C-C and C-X (X = Cl & Br) bonds in one single operation. Here the copper metal salt serves not only as a catalyst but also as a reactant to provide the source of halogen. This operationally simple procedure avoids the utilization of environmentally unfriendly reagents and displays good functional group compatibility. Noteworthily, the introduction of halogen into molecules would offer great potential for further chemical transformations.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Yingying Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Xiaoting Gu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Wanxing Wei
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China.
| |
Collapse
|
28
|
Uzelac M, Yuan K, Nichol GS, Ingleson MJ. Formation of a hydride containing amido-zincate using pinacolborane. Dalton Trans 2021; 50:14018-14026. [PMID: 34546250 PMCID: PMC8507400 DOI: 10.1039/d1dt02580e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amido-zincates containing hydrides are underexplored yet potentially useful complexes. Attempts to access this type of zincate through combining amido-organo zincates and pinacolborane (HBPin) via Zn–C/H–BPin exchange led instead to preferential formation of amide–BPin and/or [amide–BPin(Y)]− (Y = Ph, amide, H), when the amide is hexamethyldisilazide or 2,2,6,6-tetramethylpiperidide and the hydrocarbyl group was phenyl or ethyl. In contrast, the use of a dipyridylamide (dpa) based arylzinc complex led to Zn–C/H–BPin metathesis being the major outcome. Independent synthesis and full characterisation of two LnLi[(dpa)ZnPh2] (L = THF, n = 3; L = PMDETA, n = 1) complexes, 1 and 3, respectively, enabled reactivity studies that demonstrated that these species display zincate type reactivity (by comparison to the lower reactivity of the neutral complex (Me-dpa)ZnPh2, 4, Me-dpa = 2,2′-dipyridyl-N-methylamine). This included 1 performing the rapid deprotonation of 4-ethynyltoluene and also phenyl transfer to α,α,α-trifluoroacetophenone in contrast to neutral complex 4. Complex 1 reacted with one equivalent of HBPin to give predominantly PhBPin (ca. 90%) and a lithium amidophenylzincate containing a hydride unit, complex 7-A, as the major zinc containing product. Complex 7-A transfers hydride to an electrophile preferentially over phenyl, indicating it reacts as a hydridozincate. Attempts to react 1 with >1 equivalent of HBPin or with catecholborane led to more complex outcomes, which included significant borane and dpaZn substituent scrambling, two examples of which were crystallographically characterised. While this work provides proof of principle for Zn–C/H–BPin exchange as a route to form an amido-zincate containing a hydride, amido-organozincates that undergo more selective Zn–C/H–BPin exchange still are required. Careful tuning of the nature of the amide ligand in amido-zincates allows for selective Zn–C over Zn–N exchange with HBPin affording a hydride containing amido-zincate. The mixed hydrido-phenyl zincate preferentially transfers hydride over phenyl.![]()
Collapse
Affiliation(s)
- Marina Uzelac
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Kang Yuan
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Gary S Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - Michael J Ingleson
- EaStCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
29
|
Semeniuchenko V, Braje WM, Organ MG. Sodium Butylated Hydroxytoluene: A Functional Group Tolerant, Eco-Friendly Base for Solvent-Free, Pd-Catalysed Amination. Chemistry 2021; 27:12535-12539. [PMID: 34190367 DOI: 10.1002/chem.202101617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 01/02/2023]
Abstract
NaBHT (sodium 2,6-di-tert-butyl-4-methylphenolate), a strong, but hindered and lipophilic base, has been effectively paired with similarly lipophilic, high-reactivity Pd-NHC (N-heterocyclic carbene) catalysts to produce an ideal combination for performing solvent-free (melt) cross-coupling amination. The mild nucleophilicity of NaBHT, coupled with the anti-oxidant properties of its conjugate acid byproduct, BHT means the process seems to have no functional group incompatibilities. Highly effective coupling of base-sensitive and redox-active functional groups was observed in all cases with only 0.1-0.2 mol percent catalyst. Comparisons using the standard base for this reaction, KOtBu, led to poor couplings or complete degradation in most applications - only NaBHT works.
Collapse
Affiliation(s)
- Volodymyr Semeniuchenko
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | - Wilfried M Braje
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Discovery Research, Knollstrasse, 67061, Ludwigshafen, Germany
| | - Michael G Organ
- Centre for Catalysis Research and Innovation (CCRI), Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| |
Collapse
|
30
|
Mason JD, Terwilliger DW, Pote AR, Myers AG. Practical Gram-Scale Synthesis of Iboxamycin, a Potent Antibiotic Candidate. J Am Chem Soc 2021; 143:11019-11025. [PMID: 34264649 DOI: 10.1021/jacs.1c03529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A gram-scale synthesis of iboxamycin, an antibiotic candidate bearing a fused bicyclic amino acid residue, is presented. A pivotal transformation in the route involves an intramolecular hydrosilylation-oxidation sequence to set the ring-fusion stereocenters of the bicyclic scaffold. Other notable features of the synthesis include a high-yielding, highly diastereoselective alkylation of a pseudoephenamine amide, a convergent sp3-sp2 Negishi coupling, and a one-pot transacetalization-reduction reaction to form the target compound's oxepane ring. Implementation of this synthetic strategy has provided ample quantities of iboxamycin to allow for its in vivo profiling in murine models of infection.
Collapse
Affiliation(s)
- Jeremy D Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel W Terwilliger
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Aditya R Pote
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Andrew G Myers
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
31
|
Vogt N, Sandleben A, Kletsch L, Schäfer S, Chin MT, Vicic DA, Hörner G, Klein A. Role of the X Coligands in Cyclometalated [Ni(Phbpy)X] Complexes (HPhbpy = 6-Phenyl-2,2′-bipyridine). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nicolas Vogt
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| | - Aaron Sandleben
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| | - Lukas Kletsch
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| | - Sascha Schäfer
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| | - Mason T. Chin
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - David A. Vicic
- Department of Chemistry, Lehigh University, 6 East Packer Avenue, Bethlehem, Pennsylvania 18015, United States
| | - Gerald Hörner
- Institut für Chemie, Anorganische Chemie IV, Universität Bayreuth, Universitätsstraße 30, D-95440 Bayreuth, Germany
| | - Axel Klein
- Department für Chemie, Institut für Anorganische Chemie, Universität zu Köln, Greinstraße 6, D-50939 Köln, Germany
| |
Collapse
|
32
|
Wei B, Ren Q, Bein T, Knochel P. Transition-Metal-Free Synthesis of Polyfunctional Triarylmethanes and 1,1-Diarylalkanes by Sequential Cross-Coupling of Benzal Diacetates with Organozinc Reagents. Angew Chem Int Ed Engl 2021; 60:10409-10414. [PMID: 33625773 PMCID: PMC8252654 DOI: 10.1002/anie.202101682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 12/02/2022]
Abstract
A variety of functionalized triarylmethane and 1,1-diarylalkane derivatives were prepared via a transition-metal-free, one-pot and two-step procedure, involving the reaction of various benzal diacetates with organozinc reagents. A sequential cross-coupling is enabled by changing the solvent from THF to toluene, and a two-step SN 1-type mechanism was proposed and evidenced by experimental studies. The synthetic utility of the method is further demonstrated by the synthesis of several biologically relevant molecules, such as an anti-tuberculosis agent, an anti-breast cancer agent, a precursor of a sphingosine-1-phosphate (S1P) receptor modulator, and a FLAP inhibitor.
Collapse
Affiliation(s)
- Baosheng Wei
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Qianyi Ren
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Thomas Bein
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
33
|
Gioria E, del Pozo J, Lledós A, Espinet P. Understanding the Use of Phosphine-(EWO) Ligands in Negishi Cross-Coupling: Experimental and Density Functional Theory Mechanistic Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Estefanía Gioria
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Juan del Pozo
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Pablo Espinet
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain
| |
Collapse
|
34
|
Yang ZP, Freas DJ, Fu GC. The Asymmetric Synthesis of Amines via Nickel-Catalyzed Enantioconvergent Substitution Reactions. J Am Chem Soc 2021; 143:2930-2937. [PMID: 33567209 PMCID: PMC8336453 DOI: 10.1021/jacs.0c13034] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chiral dialkyl carbinamines are important in fields such as organic chemistry, pharmaceutical chemistry, and biochemistry, serving for example as bioactive molecules, chiral ligands, and chiral catalysts. Unfortunately, most catalytic asymmetric methods for synthesizing dialkyl carbinamines do not provide general access to amines wherein the two alkyl groups are of similar size (e.g., CH2R versus CH2R1). Herein, we report two mild methods for the catalytic enantioconvergent synthesis of protected dialkyl carbinamines, both of which use a chiral nickel catalyst to couple an alkylzinc reagent (1.1-1.2 equiv) with a racemic partner, specifically, an α-phthalimido alkyl chloride or an N-hydroxyphthalimide (NHP) ester of a protected α-amino acid. The methods are versatile, providing dialkyl carbinamine derivatives that bear an array of functional groups. For couplings of NHP esters, we further describe a one-pot variant wherein the NHP ester is generated in situ, allowing the generation of enantioenriched protected dialkyl carbinamines in one step from commercially available amino acid derivatives; we demonstrate the utility of this method by applying it to the efficient catalytic enantioselective synthesis of a range of interesting target molecules.
Collapse
Affiliation(s)
- Ze-Peng Yang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dylan J Freas
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|