1
|
Liu Y, Yuan L, Fan Z, Yang J, Wang Y, Dou C. Boron-doped double [6]carbohelicenes: a combination of helicene and boron-doped π-systems. Chem Sci 2024; 15:12819-12826. [PMID: 39148780 PMCID: PMC11322965 DOI: 10.1039/d4sc03124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Helicenes, featuring unique helical structures, have a long history as three-dimensional polycyclic aromatic hydrocarbons (PAHs). Incorporation of heteroatoms into helicenes may alter their electronic structures and achieve unexpected physical properties. Here, we disclose fusion of boron-doped π-systems onto helicenes as an efficient strategy to design boron-doped carbohelicenes. Two boron-doped double [6]carbohelicenes were synthesized, which possess the C58B2 and C86B2 polycyclic π-skeletons containing two [6]helicene subunits, respectively. The C86B2 molecule thus represents the largest-size helicene-based boron-doped PAH. A thorough investigation reveals that the helicene moieties and boron atoms endow the polycyclic π-systems with delocalized electronic structures, and well-tunable ground-state and excited-state photophysical properties. It is notable that the C58B2 molecule displays excited-state stimulated emission behavior and amplified spontaneous emission (ASE) properties in not only the blend films with various doped concentrations but also the pure film. To our knowledge, it is the first example of ASE-active [n]helicene (n ≥ 6), and moreover, such robust ASE performance has rarely been observed in PAHs, demonstrating the promising utility of boron-doped carbohelicenes for laser materials.
Collapse
Affiliation(s)
- Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Jingyuan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
2
|
Ikeno A, Hayakawa M, Sakai M, Tsutsui Y, Nakatsuka S, Seki S, Hatakeyama T. π-Extended 9b-Boraphenalenes: Synthesis, Structure, and Physical Properties. J Am Chem Soc 2024; 146:17084-17093. [PMID: 38861619 DOI: 10.1021/jacs.4c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Boraphenalenes, compounds in which one carbon atom in the phenalenyl skeleton is replaced with a boron atom, have attracted attention for their solid-state and electronic structures; however, the construction of boraphenalene skeletons remains challenging because of the lack of suitable methods. Through this study, we showed that the tandem borylative cyclization of C3-symmetric dehydrobenzo[12]annulenes produces a new class of fully fused boron-atom-embedded polycyclic hydrocarbons possessing a 9b-boraphenalene skeleton. The obtained compounds exhibited high electron-accepting characteristics, and their two-step redox process was reversible in the reductive region, involving interconversion of 9b-boraphenalene between Hückel aromaticity and antiaromaticity. Notably, the benzo[b]fluorene-fused derivative exhibited a stepwise single-crystal-to-single-crystal (SCSC) phase transition triggered by thermal annealing. Intermolecular electron coupling calculation of the crystal structures suggested a significant improvement of charge transporting ability associated with the SCSC phase transition. Moreover, adequate photoconductivity was observed for the single crystals before and after the SCSC phase transition through flash photolysis-time-resolved microwave conductivity.
Collapse
Affiliation(s)
- Atsuhiro Ikeno
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mugiho Sakai
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto 615-8510, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Hattori I, Hagai M, Ito M, Sakai M, Narita H, Fujimoto KJ, Yanai T, Yamaguchi S. In Silico Screening and Experimental Verification of Near-Infrared-Emissive Two-Boron-Doped Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2024; 63:e202403829. [PMID: 38556467 DOI: 10.1002/anie.202403829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Embedding two boron atoms into a polycyclic aromatic hydrocarbon (PAH) leads to the formation of a neutral analogue that is isoelectronic to the corresponding dicationic PAH skeleton, which can significantly alter its electronic structure. Based on this concept, we explore herein the identification of near-infrared (NIR)-emissive PAHs with the aid of an in silico screening method. Using perylene as the PAH scaffold, we embedded two boron atoms and fused two thiophene rings to it. Based on this design concept, all possible structures (ca. 2500 entities) were generated using a comprehensive structure generator. Time-dependent DFT calculations were conducted on all these structures, and promising candidates were extracted based on the vertical excitation energy, transition dipole moment, and atomization energy per bond. One of the extracted dithieno-diboraperylene candidates was synthesized and indeed exhibited emission at 724 nm with a quantum yield of 0.40 in toluene, demonstrating the validity of this screening method. This modification was further applied to other PAHs, and a series of thienobora-modified PAHs was synthesized.
Collapse
Affiliation(s)
- Izumi Hattori
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masaya Hagai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Masato Ito
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Hiroki Narita
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Kazuhiro J Fujimoto
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University Furo, Chikusa, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
4
|
Li Y, Tamizmani M, Akram MO, Martin CD. Carborane-arene fused boracyclic analogues of polycyclic aromatic hydrocarbons accessed by intramolecular borylation. Chem Sci 2024; 15:7568-7575. [PMID: 38784749 PMCID: PMC11110167 DOI: 10.1039/d4sc00990h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/13/2024] [Indexed: 05/25/2024] Open
Abstract
Arenes are 2D aromatics while dicarbadodecaborane clusters are branded as 3D aromatic molecules. In this work we prepare molecules that feature fused 2D/3D aromatic systems that represent boron-doped analogues of polycyclic aromatic hydrocarbons. The electron withdrawing nature of the ortho-carborane substituent enables swift arene borylation on boron bromide or hydride precursors to furnish five- and six-membered boracycles in conjugation with the arene. The mechanism was modeled by DFT computations implying a concerted transition state and analyzing the photophysical properties revealed high quantum yields in the six-membered systems.
Collapse
Affiliation(s)
- Yijie Li
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| | - Masilamani Tamizmani
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| | - Manjur O Akram
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| | - Caleb D Martin
- Baylor University, Department of Chemistry and Biochemistry One Bear Place #97348 Waco TX 76798 USA
| |
Collapse
|
5
|
Zhang Z, Hu X, Qiu S, Su J, Bai R, Zhang J, Tian W. Boron-Nitrogen-Embedded Polycyclic Aromatic Hydrocarbon-Based Controllable Hierarchical Self-Assemblies through Synergistic Cation-π and C-H···π Interactions for Bifunctional Photo- and Electro-Catalysis. J Am Chem Soc 2024. [PMID: 38602776 DOI: 10.1021/jacs.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Boron-Nitrogen-embedded polycyclic aromatic hydrocarbons (BN-PAHs) as novel π-conjugated systems have attracted immense attention owing to their superior optoelectronic properties. However, constructing long-range ordered supramolecular assemblies based on BN-PAHs remains conspicuously scarce, primarily attributed to the constraints arising from coordinating multiple noncovalent interactions and the intrinsic characteristics of BN-PAHs, which hinder precise control over delicate self-assembly processes. Herein, we achieve the successful formation of BN-PAH-based controllable hierarchical assemblies through synergistically leveraged cation-π and C-H···π interactions. By carefully adjusting the solvent conditions in two progressive assembly hierarchies, the one-dimensional (1D) supramolecular assemblies with "rigid yet flexible" assembled units are first formed by cation-π interactions, and then they can be gradually fused into two-dimensional (2D) structures under specific C-H···π interactions, thus realizing the precise control of the transformation process from BN-PAH-based 1D primary structures to 2D higher-order assemblies. The resulting 2D-BNSA, characterized by enhanced electrical conductivity and ordered 2D layered structure, provides anchoring and dispersion sites for loading two appropriate nanocatalysts, thus facilitating the efficient photocatalytic CO2 reduction (with a remarkable CH4 evolution rate of 938.7 μmol g-1 h-1) and electrocatalytic acetylene semihydrogenation (reaching a Faradaic efficiency for ethylene up to 98.5%).
Collapse
Affiliation(s)
- Zhelin Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiao Hu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junlong Su
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rui Bai
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jian Zhang
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
6
|
Pan WC, Mützel C, Haldar S, Hohmann H, Heinze S, Farrell JM, Thomale R, Bode M, Würthner F, Qi J. Diboraperylene Diborinic Acid Self-Assembly on Ag(111)-Kagome Flat Band Localized States Imaged by Scanning Tunneling Microscopy and Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202400313. [PMID: 38316614 DOI: 10.1002/anie.202400313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Replacement of sp2-hybridized carbon in polycyclic aromatic hydrocarbons (PAHs) by boron affords electron-deficient π-scaffolds due to the vacant pz-orbital of three-coordinate boron with the potential for pronounced electronic interactions with electron-rich metal surfaces. Using a diboraperylene diborinic acid derivative as precursor and a controlled on-surface non-covalent synthesis approach, we report on a self-assembled chiral supramolecular kagome network on an Ag(111) surface stabilized by intermolecular hydrogen-bonding interactions at low temperature. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal a flat band at ca. 0.33 eV above the Fermi level which is localized at the molecule center, in good agreement with tight-binding model calculations of flat bands characteristic for kagome lattices.
Collapse
Affiliation(s)
- Wun-Chang Pan
- Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Carina Mützel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Soumyajyoti Haldar
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
| | - Hendrik Hohmann
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Stefan Heinze
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098, Kiel, Germany
| | - Jeffrey M Farrell
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
- Department of Chemistry, National Taiwan University, Roosevelt Road, 10617, Taipei, Taiwan
| | - Ronny Thomale
- Institut für Theoretische Physik und Astrophysik, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Bode
- Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Jing Qi
- Experimentelle Physik 2, Physikalisches Institut, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
7
|
Bardi B, Vygranenko KV, Koszarna B, Vakuliuk O, Dobrzycki Ł, Gryko DT, Terenziani F, Painelli A. Novel Method for the Synthesis of Merocyanines: New Photophysical Possibilities for a Known Class of Fluorophores. Chemistry 2023; 29:e202300979. [PMID: 37203589 DOI: 10.1002/chem.202300979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/20/2023]
Abstract
A new, transformative method for the preparation of rhodols and other merocyanines from readily available tetrafluorohydroxybenzaldehyde and aminophenols has been developed. It is now possible to prepare merocyanines bearing three fluorine atoms and additional conjugated rings, and the whole one-pot process occurs under neutral, mild conditions. Three heretofore unknown merocyanine-based architectures were prepared using this strategy from aminonaphthols and 4-hydroxycoumarins. The ability to change the structure of original rhodol chromophore into π-expanded merocyanines translates to a comprehensive method for the modulation of photophysical properties, such as shifting the absorption and emission bands across almost the entire visible spectrum, reaching a huge Stokes shift i. e. 4800 cm-1 , brightness approximately 80.000 M-1 cm-1 , two-photon absorption cross-section above 150 GM and switching-on/off solvatofluorochromism. A detailed investigation allowed to rationalize the different spectroscopic behavior of rhodols and new merocyanines, addressing solvatochromism and two-photon absorption.
Collapse
Affiliation(s)
- Brunella Bardi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124, Parma, Italy
| | | | - Beata Koszarna
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Olena Vakuliuk
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry Polish Academy of Sciences, Warsaw, Poland
| | - Francesca Terenziani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124, Parma, Italy
| | - Anna Painelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124, Parma, Italy
| |
Collapse
|
8
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022; 61:e202209271. [DOI: 10.1002/anie.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Jiaxiang Guo
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 P. R. China
| |
Collapse
|
9
|
Sun W, Guo J, Fan Z, Yuan L, Ye K, Dou C, Wang Y. Ribbon‐Type Boron‐Doped Polycyclic Aromatic Hydrocarbons: Conformations, Dynamic Complexation and Electronic Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Kaiqi Ye
- Jilin University College of Chemistry CHINA
| | - Chuandong Dou
- Jilin University State Key Laboratory of Supramolecular Structure and Materials No.2699 Qianjin Street 130012 Changchun CHINA
| | - Yue Wang
- Jilin University College of Chemistry CHINA
| |
Collapse
|
10
|
Zhang J, Ma J, Feng X. Precision Synthesis of Boron‐doped Graphene Nanoribbons: Recent Progress and Perspectives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Dresden Germany
- Department of Synthetic Materials and Functional Devices Max Planck Institute of Microstructure Physics Halle Germany
| |
Collapse
|
11
|
Yuan L, Liu Y, Sun W, Ye K, Dou C, Wang Y. PO-containing dibenzopentaarenes: facile synthesis, structures and optoelectronic properties. Dalton Trans 2022; 51:11892-11898. [PMID: 35876191 DOI: 10.1039/d2dt01889f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporation of heteroatoms into polyarenes has been developed as an effective approach to alter their intrinsic structures and properties. Herein, we designed and synthesized two PO-containing dibenzopentaarene isomers (5a and 5b) and studied their structures and properties, along with those of dibenzopentaarenes containing six-membered Si- and B-heterocycles (3 and 4). These heterocyclic polyarenes have similar frameworks to well-known heptazethrene, and thus can be regarded as members of the heteroatom-doped zethrene system. The heterocycles greatly affect not only the molecular and packing structures but also the electronic structures and properties. Notably, while compounds 3 and 4 adopt almost planar geometries, 5a possesses a clearly curved conformation, leading to its brick-type slipped and dense π-π stacking mode. Moreover, the electron-withdrawing PO groups endow 5a and 5b with simultaneously lowered lowest unoccupied molecular orbital (LUMO)/highest occupied molecular orbital (HOMO) levels, whereas the p-π conjugation of the B atoms in 4 leads to its smaller energy gap and thus remarkably red-shifted absorption and fluorescence bands by over 80 nm, though all of these molecules possess similar closed-shell structures. This study thus deepens the understanding of heteroatom-doping effects, which may be expanded to develop other heteroatom-doped zethrene materials.
Collapse
Affiliation(s)
- Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Wenting Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Kaiqi Ye
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| |
Collapse
|
12
|
Milián A, Fernández-Rodríguez MA, Merino E, Vaquero JJ, García-García P. Metal-Free Temperature-Controlled Regiodivergent Borylative Cyclizations of Enynes: BCl 3 -Promoted Skeletal Rearrangement. Angew Chem Int Ed Engl 2022; 61:e202205651. [PMID: 35510716 PMCID: PMC9401584 DOI: 10.1002/anie.202205651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/04/2022]
Abstract
Metal‐free borylative cyclization of biphenyl‐embedded 1,3,5‐trien‐7‐ynes in the presence of simple and inexpensive BCl3 provided synthetically useful borylated building blocks. The outcome of the process depends on the reaction temperature, with borylated phenanthrenes obtained at 60 °C and phenanthrene‐fused borylated cyclobutanes formed at 0 °C. Based on DFT calculations, a mechanism for these novel transformations has been proposed, which involves an uncommon skeletal rearrangement, including migration of a methyl group and alkyne fragmentation, unprecedented in BCl3‐promoted cyclization reactions.
Collapse
Affiliation(s)
- Ana Milián
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain
| | - Manuel A Fernández-Rodríguez
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain
| | - Estíbaliz Merino
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain
| | - Juan J Vaquero
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain
| | - Patricia García-García
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia, Autovía A-II, Km 33.1, 28805-Alcalá de Henares, Madrid, Spain
| |
Collapse
|
13
|
Milián A, Fernández‐Rodríguez MA, Merino E, Vaquero JJ, García‐García P. Metal‐Free Temperature‐Controlled Regiodivergent Borylative Cyclizations of Enynes: BCl
3
‐Promoted Skeletal Rearrangement. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ana Milián
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica Instituto de Investigación Química “Andrés M. del Río” (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia Autovía A-II, Km 33.1 28805-Alcalá de Henares Madrid Spain
| | - Manuel A. Fernández‐Rodríguez
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica Instituto de Investigación Química “Andrés M. del Río” (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia Autovía A-II, Km 33.1 28805-Alcalá de Henares Madrid Spain
| | - Estíbaliz Merino
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica Instituto de Investigación Química “Andrés M. del Río” (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia Autovía A-II, Km 33.1 28805-Alcalá de Henares Madrid Spain
| | - Juan J. Vaquero
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica Instituto de Investigación Química “Andrés M. del Río” (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia Autovía A-II, Km 33.1 28805-Alcalá de Henares Madrid Spain
| | - Patricia García‐García
- Universidad de Alcalá (IRYCIS). Departamento de Química Orgánica y Química Inorgánica Instituto de Investigación Química “Andrés M. del Río” (IQAR). Campus Científico-Tecnológico, Facultad de Farmacia Autovía A-II, Km 33.1 28805-Alcalá de Henares Madrid Spain
| |
Collapse
|
14
|
Chen C, Wang MW, Zhao XY, Yang S, Chen XY, Wang XY. Pushing the Length Limit of Dihydrodiboraacenes: Synthesis and Characterizations of Boron-Embedded Heptacene and Nonacene. Angew Chem Int Ed Engl 2022; 61:e202200779. [PMID: 35253330 DOI: 10.1002/anie.202200779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 12/24/2022]
Abstract
Boron-embedded heteroacenes (boraacenes) have attracted enormous interest in organic chemistry and materials science. However, extending the skeleton of boraacenes to higher acenes (N≥6) is synthetically challenging because of their limited stability under ambient conditions. Herein, we report the synthesis of boron-embedded heptacene (DBH) and nonacene (DBN) as the hitherto longest boraacenes. The former is highly stable (even after 240 h in tetrahydrofuran), while the latter is air-sensitive with the half-life (t1/2 ) of 11.8 min. The structures of both compounds are verified by single-crystal X-ray diffraction, revealing a linear backbone with an antiaromatic C4 B2 core. Photophysical characterizations associated with theoretical calculations indicate that both compounds exhibit highly efficient anti-Kasha emissions. Remarkably, the air-stable DBH manifests an ultrahigh photoluminescence quantum yield (PLQY) of 98±2 % and can be chemically reduced to its radical anion and dianion states, implying the value of boron-doped higher acenes as novel functional materials.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ming-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing-Yu Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuang Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xing-Yu Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
15
|
Chen C, Wang M, Zhao X, Yang S, Chen X, Wang X. Pushing the Length Limit of Dihydrodiboraacenes: Synthesis and Characterizations of Boron‐Embedded Heptacene and Nonacene. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Cheng Chen
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Ming‐Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xing‐Yu Zhao
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shuang Yang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xing‐Yu Chen
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
16
|
Zhang JJ, Ma J, Liu F, Cui LS, Fu Y, Yang L, Popov AA, Weigand JJ, Liu J, Feng X. Large Acene Derivatives with B-N Lewis Pair Doping: Synthesis, Characterization, and Application. Org Lett 2022; 24:1877-1882. [PMID: 35244403 DOI: 10.1021/acs.orglett.2c00033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here, we report the synthesis of a novel class of B-N Lewis pair (LPB/N)-doped large acene derivatives (1a-1d) from the well-designed phenanthridine-based precursors. The resultant LPB/N-doped benzo-tetracene (1a), dibenzo-heptacene (1b), dibenzo-octacene (1c), and V-shaped tribenzo-nonacene (1d) are thoroughly characterized by X-ray crystallography, cyclic voltammetry, UV-vis absorption, and fluorescence spectroscopies together with DFT calculations. As a proof of concept, a 1a-based organic light-emitting diode device is fabricated to demonstrate the promising application in organic optoelectronics.
Collapse
Affiliation(s)
- Jin-Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Fupin Liu
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Lin-Song Cui
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026 Anhui China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Alexey A Popov
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Junzhi Liu
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Rokfulam Road, Hong Kong, P. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| |
Collapse
|
17
|
Mützel C, Farrell JM, Shoyama K, Würthner F. 12b,24b-Diborahexabenzo[a,c,fg,l,n,qr]pentacene: A Low-LUMO Boron-Doped Polycyclic Aromatic Hydrocarbon. Angew Chem Int Ed Engl 2022; 61:e202115746. [PMID: 34914168 PMCID: PMC9305547 DOI: 10.1002/anie.202115746] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/09/2022]
Abstract
Herein we devise and execute a new synthesis of a pristine boron-doped nanographene. Our target boron-doped nanographene was designed based on DFT calculations to possess a low LUMO energy level and a narrow band gap derived from its precise geometry and B-doping arrangement. Our synthesis of this target, a doubly B-doped hexabenzopentacene (B2 -HBP), employs six net C-H borylations of an alkene, comprising consecutive hydroboration/electrophilic borylation/dehydrogenation and BBr3 /AlCl3 /2,6-dichloropyridine-mediated C-H borylation steps. As predicted by our calculations, B2 -HBP absorbs strongly in the visible region and emits in the NIR up to 1150 nm in o-dichlorobenzene solutions. Furthermore, B2 -HBP possesses a very low LUMO level, showing two reversible reductions at -1.00 V and -1.17 V vs. Fc+ /Fc. Our methodology is surprisingly selective despite its implementation of unfunctionalized precursors and offers a new approach to the synthesis of pristine B-doped polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Carina Mützel
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Jeffrey M. Farrell
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Kazutaka Shoyama
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Frank Würthner
- Institut für Organische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
18
|
Varghese EV, Gao CF, Chang YL, Chen HY, Chen CH. Synthesis of Distorted Nitrogen-Doped Nanographenes by Partially Oxidative Cyclodehydrogenation Reaction. Chem Asian J 2022; 17:e202200114. [PMID: 35137559 DOI: 10.1002/asia.202200114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Indexed: 11/11/2022]
Abstract
A series of partially fused N-doped nanographenes are synthesized via the oxidative cyclodehydrogenation of oligoaryl-substituted dibenzo[ e,l ]pyrene ( 1 ), including compounds ( 2 - 4 ) with five, six, and seven new C-C bonds are formed, respectively, implying stepwise C-C bond fusion and extended π-conjugation. Single-crystal X-ray diffraction analysis of compound 4a revealed that the presence of sterically demanding groups hindered the formation of planar and fully fused nanographene in the oxidative cyclodehydrogenation reaction step. Optical study of compounds 2 to 4 showed that extended π-conjugation leads to a regular stepwise bathochromic shift in the absorption and emission spectra. Furthermore, the HOMO-LUMO gaps of these compounds exhibit a decrease as C-C bond formation proceeds. Thus, the optoelectronic properties of nanographenes are highly dependent on the formation of new C-C bonds in the molecular skeleton.
Collapse
Affiliation(s)
- Eldhose V Varghese
- KMU: Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, TAIWAN
| | - Chen-Feng Gao
- KMU: Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, TAIWAN
| | - Yu-Lun Chang
- KMU: Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, TAIWAN
| | - Hsing-Yin Chen
- KMU: Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, TAIWAN
| | - Chia-Hsiang Chen
- Kaohsiung Medical University, Department of Medicinal and Applied Chemistry, No.100, Shin-Chuan 1st Road, 807, Kaohsiung, TAIWAN
| |
Collapse
|
19
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
20
|
Mützel C, Farrell JM, Shoyama K, Würthner F. 12b,24b‐Diborahexabenzo[
a
,
c
,
fg
,
l
,
n
,
qr
]pentacene: A Low‐LUMO Boron‐Doped Polycyclic Aromatic Hydrocarbon. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carina Mützel
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Jeffrey M. Farrell
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kazutaka Shoyama
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
21
|
Zhang J, Yang L, Liu F, Fu Y, Liu J, Popov AA, Ma J, Feng X. A Modular Cascade Synthetic Strategy Toward Structurally Constrained Boron‐Doped Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Fupin Liu
- Center of Spectroelectrochemistry Leibniz Institute for Solid State and Materials Research (IFW) Dresden Helmholtzstrasse 20 01069 Dresden Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Junzhi Liu
- Department of Chemistry State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| | - Alexey A. Popov
- Center of Spectroelectrochemistry Leibniz Institute for Solid State and Materials Research (IFW) Dresden Helmholtzstrasse 20 01069 Dresden Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01062 Dresden Germany
- Max Planck Institute of Microstructure Physics Weinberg 2 06120 Halle Germany
| |
Collapse
|
22
|
Zhang J, Yang L, Liu F, Fu Y, Liu J, Popov AA, Ma J, Feng X. A Modular Cascade Synthetic Strategy Toward Structurally Constrained Boron-Doped Polycyclic Aromatic Hydrocarbons. Angew Chem Int Ed Engl 2021; 60:25695-25700. [PMID: 34623744 PMCID: PMC9298420 DOI: 10.1002/anie.202109840] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2021] [Indexed: 11/28/2022]
Abstract
A novel synthetic strategy was developed for the construction of difficult-to-access structurally constrained boron-doped polycyclic aromatic hydrocarbons (sc-B-PAHs) via a cascade reaction from the readily available ortho-aryl-substituted diarylalkynes. This domino process involves borylative cyclization, 1,4-boron migration and successive two-fold electrophilic borylation. Two types of sc-B-PAHs bearing B-doped [4]helicene (1 a-1 i) or BN-doped [4]helicene (1 n-1 t) and double [4]helicene (1 u-1 v) are constructed by this cascade reaction. Remarkably, this synthetic strategy is characterized by modest yields (20-50 %) and broad substrate scope (18 examples) with versatile functional group tolerance. The resultant sc-B-PAHs show good stability under ambient conditions and are thoroughly investigated by X-ray crystallography, UV/Vis absorption and fluorescence spectroscopy, and cyclic voltammetry. Interestingly enough, BN-doped [4]helicene 1 o forms a unique alternating π-stacked dimer of enantiomers within a helical columnar superstructure, while BN-doped double [4]helicene 1 u establishes an unprecedented π-stacked trimeric sandwich structure with a rare 2D lamellar π-stacking. The synthetic approach reported herein represents a powerful tool for the rapid generation of novel sc-B-PAHs, which are highly attractive for the elucidation of the structure-property relationship and for potential optoelectronic applications.
Collapse
Affiliation(s)
- Jin‐Jiang Zhang
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Lin Yang
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Fupin Liu
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Junzhi Liu
- Department of ChemistryState Key Laboratory of Synthetic ChemistryThe University of Hong KongPokfulam RoadHong KongChina
| | - Alexey A. Popov
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstrasse 2001069DresdenGermany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) &Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401062DresdenGermany
- Max Planck Institute of Microstructure PhysicsWeinberg 206120HalleGermany
| |
Collapse
|
23
|
Biagiotti G, Perini I, Richichi B, Cicchi S. Novel Synthetic Approach to Heteroatom Doped Polycyclic Aromatic Hydrocarbons: Optimizing the Bottom-Up Approach to Atomically Precise Doped Nanographenes. Molecules 2021; 26:6306. [PMID: 34684887 PMCID: PMC8537472 DOI: 10.3390/molecules26206306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The success of the rational bottom-up approach to nanostructured carbon materials and the discovery of the importance of their doping with heteroatoms puts under the spotlight all synthetic organic approaches to polycyclic aromatic hydrocarbons. The construction of atomically precise heteroatom doped nanographenes has evidenced the importance of controlling its geometry and the position of the doping heteroatoms, since these parameters influence their chemical-physical properties and their applications. The growing interest towards this research topic is testified by the large number of works published in this area, which have transformed a once "fundamental research" into applied research at the cutting edge of technology. This review analyzes the most recent synthetic approaches to this class of compounds.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Ilaria Perini
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
| | - Barbara Richichi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy; (G.B.); (I.P.)
- National Interuniversity Consortium for Materials Science and Technology (INSTM), Via G. Giusti, 9, 50121 Firenze, Italy
- Institute of Chemistry of Organometallic Compounds, ICCOM-CNR, Via Madonna del Piano, 10, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
24
|
You C, Sakai M, Daniliuc CG, Bergander K, Yamaguchi S, Studer A. Regio‐ and Stereoselective 1,2‐Carboboration of Ynamides with Aryldichloroboranes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Mika Sakai
- Department of Chemistry Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University Furo, Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (ITbM) Nagoya University Furo, Chikusa Nagoya 464-8601 Japan
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
25
|
You C, Sakai M, Daniliuc CG, Bergander K, Yamaguchi S, Studer A. Regio- and Stereoselective 1,2-Carboboration of Ynamides with Aryldichloroboranes. Angew Chem Int Ed Engl 2021; 60:21697-21701. [PMID: 34310824 PMCID: PMC8518048 DOI: 10.1002/anie.202107647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Catalyst‐free 1,2‐carboboration of ynamides is presented. Readily available aryldichloroboranes react with alkyl‐ or aryl‐substituted ynamides in high yields with complete regio‐ and stereoselectivity to valuable β‐boryl‐β‐alkyl/aryl α‐aryl substituted enamides which belong to the class of trisubstituted alkenylboronates. The 1,2‐carboboration reaction is experimentally easy to conduct, shows high functional group tolerance and broad substrate scope. Gram‐scale reactions and diverse synthetic transformations convincingly demonstrate the synthetic potential of this method. The reaction can also be used to access 1‐boraphenalenes, a class of boron‐doped polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|