1
|
Kumar G, Kumar M, Bhalla V. Dynamic Dance of Chirality and Morphology: Interplay of Solvent-Sensitive Self-Assembly in Topological Evolution and Chirality Amplification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62988-62998. [PMID: 39481036 DOI: 10.1021/acsami.4c13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The building block Pyra-Chol has been designed and synthesized, which exhibits different achiral morphologies in good solvents, forming nanospheres in THF and nanoflowers in 1,4-dioxane. In the presence of water as a poor cosolvent, Pyra-Chol demonstrates an agnostic behavior, generating left-handed superhelices in the water:THF (80:20) solvent system. However, when the good solvent is switched to 1,4-dioxane, a change in chirality is observed in the water:1,4-dioxane (30:70) solvent system, resulting in the formation of fused nanospheres. Interestingly, when the poor cosolvent is changed from water to MCH in THF, the chiral pattern remains unchanged, but the morphology changes completely. Supported by the collective spectroscopic and microscopic analysis, the present study efficaciously demonstrates the remarkable control of hydrophobic building block over the chiral sense and also highlights the fascinating influence of good as well as poor cosolvent in supporting the distinct molecular packing.
Collapse
Affiliation(s)
- Gaurav Kumar
- Department of Chemistry, UGC Centre of Advance Study-II, Guru Nanak Dev University, Amritsar143005, Punjab , India
| | - Manoj Kumar
- Department of Chemistry, UGC Centre of Advance Study-II, Guru Nanak Dev University, Amritsar143005, Punjab , India
| | - Vandana Bhalla
- Department of Chemistry, UGC Centre of Advance Study-II, Guru Nanak Dev University, Amritsar143005, Punjab , India
| |
Collapse
|
2
|
Zhao C, Wang Y, Jiang Y, Wu N, Wang H, Li T, Ouyang G, Liu M. Handedness-Inverted and Stimuli-Responsive Circularly Polarized Luminescent Nano/Micromaterials Through Pathway-Dependent Chiral Supramolecular Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403329. [PMID: 38625749 DOI: 10.1002/adma.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/18/2024]
Abstract
The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, this work reports that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which shows opposite and multistimuli responsive CPL signals. Specifically, NIHis display assembly-induced CPL from the polymorphic keto tautomer, which become predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals can be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical stimuli including grinding, acid fuming, and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol is developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering.
Collapse
Affiliation(s)
- Chenyang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ningning Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
3
|
Zhang Q, Song K, Hao A, Xing P. Chiral Superlattices Self-Assembled from Post-Modified Metal-Organic Polyhedra. NANO LETTERS 2023; 23:7691-7698. [PMID: 37540042 DOI: 10.1021/acs.nanolett.3c02413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Metal-organic polyhedra (MOPs) are inherently porous, discrete, and solvent-dispersive, and directing them into chiral superlattices through direct self-assembly remains a considerable challenge due to their nanoscale size and structural complexity. In this work, we illustrate a postmodification protocol to covalently conjugate a chiral cholesteryl pendant to MOPs. Postmodification retained the coordination cores and allowed for reaction-induced self-assembly in loosely packed nanosized columns without supramolecular chirality. Solvent-processed bottom-up self-assembly in aqueous media facilitated the well-defined packing into twisted superlattices with a 5 nm lattice parameter. Experimental and computational results validated the role of intercholesteryl forces in spinning the nanosized MOPs, which achieved the chirality transfer to supramolecular scale with chiral optics. This work establishes a novel protocol in rational design of MOP-based chiroptical materials for potential applications of enantioselective adsorption, catalysis, and separation.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Kepeng Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
4
|
Wu Y, Li M, Zheng ZG, Yu ZQ, Zhu WH. Liquid Crystal Assembly for Ultra-dissymmetric Circularly Polarized Luminescence and Beyond. J Am Chem Soc 2023. [PMID: 37276078 DOI: 10.1021/jacs.3c01122] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Circularly polarized luminescence (CPL) is attracting much interest because it can carry extensive optical information. CPL shows left- or right-handedness and can be regarded as part of high-level visual perception to supply an extra dimension of information with regard to regular light. A key to meeting the needs for practical applications is to develop the emerging field of ultra-dissymmetric CPL. Chiral liquid crystal (LC) assemblies─otherwise referred to as cholesteric liquid crystals (CLCs)─are essentially organized helical superstructures with a highly ordered one-dimensional orientation, and distinctly superior to regular helical supramolecules. CLCs can achieve a perfect equilibrium of molecular short-range interaction and long-range orientational order, enabling molecule-scale chirality on a helical pitch and observable scale. LC assembly could be an ideal strategy for amplifying chirality, making it accessible to ultra-dissymmetric CPL. Herein, we focused on some basic but important issues regarding CPL: (i) How can CPL be created from chiral dyes? (ii) Is the chirality of luminescent dyes an essential factor for the generation of CPL? That is, can all chiral dyes emit CPL and vice versa? (iii) How can CPL be transferred within intermolecular systems, and what principles of CPL transmission should be followed? Given these queries and our work, in this Perspective we discuss the generation, transmission, and modulation of CPL with chiral LC assembly, aiming to design and build up novel chiroptical materials. Recent applications of CPL-active LC microstructures in three-dimensional displays, circularly polarized lasers, and asymmetric catalysis are also discussed.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518037, China
| | - Mengqi Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhi-Gang Zheng
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen-Qiang Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518037, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
He S, Zhang Y, Zhao C, Wang X, Baddi S, Wu B, Dou X, Feng C. Assembly of Helical Nanostructures: Solvent-Induced Morphology Transition and Its Effect on Cell Adhesion. Chemistry 2023; 29:e202202735. [PMID: 36404280 DOI: 10.1002/chem.202202735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022]
Abstract
Being able to precisely manipulate both the morphology and chiroptical signals of supramolecular assemblies will help to better understand the natural biological self-assembly mechanism. Two simple l/d-phenylalanine-based derivatives (L/DPFM) have been designed, and their solvent-dependent morphology evolutions are illustrated. It was found that, as the content of H2 O in aqueous ethanol solutions was increased, LPFM self-assembles first into right-handed nanofibers, then flat fibrous structures, and finally inversed left-handed nanofibers. Assemblies in ethanol and H2 O exhibit opposite conformations and circular dichroism (CD) signals even though they are constructed from the same molecules. Thus, the morphology-dependent cell adhesion and proliferation behaviors are further characterized. Left-handed nanofibers are found to be more favorable for cell adhesion than right-handed nanostructures. Quantitative AFM analysis showed that the L929 cell adhesion force on left-handed LPFM fibers is much higher than that on structures with inversed handedness. Moreover, the value of cell Young's modulus is lower for left-handed nanofibrous films, which indicates better flexibility. The difference in cell-substrate interactions might lead to different effects on cell behavior.
Collapse
Affiliation(s)
- Sijia He
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Yaqian Zhang
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Xueqian Wang
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Sravan Baddi
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Beibei Wu
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P.R. China
| |
Collapse
|
6
|
Shi Z, Wang Q, Yi J, Zhao C, Chen S, Tian H, Qu D. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022; 61:e202207405. [DOI: 10.1002/anie.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shao‐Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
7
|
Yue B, Jia X, Baryshnikov GV, Jin X, Feng X, Lu Y, Luo M, Zhang M, Shen S, Ågren H, Zhu L. Photoexcitation‐Based Supramolecular Access to Full‐Scale Phase‐Diagram Structures through in situ Phase‐Volume Ratio Phototuning. Angew Chem Int Ed Engl 2022; 61:e202209777. [DOI: 10.1002/anie.202209777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Bingbing Yue
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Xiaoyong Jia
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
- Henan Center for Outstanding Overseas Scientists College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 China
| | - Glib V. Baryshnikov
- Laboratory of Organic Electronics Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Xin Jin
- Institute of Lasers and Biophotonics School of Biomedical Engineering Wenzhou Medical University Wenzhou Zhejiang 325035 China
| | - Xicheng Feng
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yunle Lu
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Mengkai Luo
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| | - Hans Ågren
- Henan Center for Outstanding Overseas Scientists College of Chemistry and Chemical Engineering Henan University Kaifeng Henan 475004 China
- Department of Physics and Astronomy Uppsala University 75120 Uppsala Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Fudan University Shanghai 200438 China
| |
Collapse
|
8
|
Yue B, Jia X, Baryshnikov GV, Jin X, Feng X, Lu Y, Luo M, Zhang M, Shen S, Ågren H, Zhu L. Photoexcitation‐based Supramolecular Access to Full‐scale Phase‐diagram Structures through in situ Phase‐volume Ratio Phototuning. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bingbing Yue
- Fudan University Department of Macromolecular Science CHINA
| | - Xiaoyong Jia
- Fudan University Department of Macromolecular Science CHINA
| | | | - Xin Jin
- Wenzhou Medical College - Chashan Campus: Wenzhou Medical University School of Biomedical Engineering CHINA
| | - Xicheng Feng
- USST: University of Shanghai for Science and Technology School of Materials and Chemistry CHINA
| | - Yunle Lu
- Fudan University Department of Macromolecular Science CHINA
| | - Mengkai Luo
- Fudan University Department of Macromolecular Science CHINA
| | - Man Zhang
- Fudan University Department of Macromolecular Science CHINA
| | - Shen Shen
- Fudan University Department of Macromolecular Science CHINA
| | - Hans Ågren
- Uppsala Universitet Department of Physics and Astronomy Roslagstullsbacken 15 10691 Stockholm SWEDEN
| | - Liangliang Zhu
- Fudan University Department of Macromolecular Science 220 Handan RoadYangpu District 200433 Shanghai CHINA
| |
Collapse
|
9
|
Shi ZT, Wang Q, Yi J, Zhao C, Chen SY, Tian H, Qu DH. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboretory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Joint Research Center East China University of Science and Technology CHINA
| | - Qian Wang
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Chengxi Zhao
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Jiont Research Center East China University of Science and Technology CHINA
| | - Shao-Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - He Tian
- Key Laboratory for Advanced Materials and Joint Internation Research Laboratory of Precision Chemistry and Molecular Enginering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
10
|
Xue C, Jiang Y, Wang H, Du C, Xu L, Li T, Liu M. Excitation‐Dependent Circularly Polarized Luminescence from Helical Assemblies Based on Tartaric Acid‐Derived Acylhydrazones. Angew Chem Int Ed Engl 2022; 61:e202205633. [DOI: 10.1002/anie.202205633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Chenlu Xue
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nano-science and Technology No.11 ZhongGuanCun BeiYiTiao Beijing 100190 China
| | - Han‐Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Lifei Xu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
11
|
Liu L, Chen J, Yu T, Hu R, Yang G, Zeng Y, Li Y. Amplified circularly polarized luminescence enabled by photon upconversion in spin-coating cellulose matrix. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Xue C, Jiang Y, Wang H, Du C, Xu L, Li T, Liu M. Excitation‐Dependent Circularly Polarized Luminescence from Helical Assemblies Based on Tartaric Acid‐Derived Acylhydrazones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenlu Xue
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nano-science and Technology No.11 ZhongGuanCun BeiYiTiao Beijing 100190 China
| | - Han‐Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Lifei Xu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Wang S, Gao L, Su N, Yang L, Gao F, Dou X, Feng C. Inversion of Supramolecular Chirality by In Situ Hydrolyzation of Achiral Diethylene Glycol Motifs. J Phys Chem B 2022; 126:1325-1333. [PMID: 35113541 DOI: 10.1021/acs.jpcb.1c10018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chiral inversion of supramolecular assemblies is of great research interest due to its broad practical applications. However, chiral structure transition induced by in situ regulation of building molecules has remained a challenge. Herein, left-handed fibrous assemblies were constructed by C2-symmetic l-phenylalanine coupled with diethylene glycol (LPFEG) molecules. In situ hydrolyzing terminal diethylene glycol motifs in LPFEG successfully inverted the chirality of the nanofibers from left- to right-handedness. The transition of right-handed fibers into left-handed fibers could also be achieved via hydrolyzing DPFEG molecules. Circular dichroism (CD) spectroscopy, 1D and 2D nuclear magnetic resonance (NMR) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy revealed that the back-folded achiral diethylene glycol played a vital role in L/DPFEG molecular arrangements and removing terminal diethylene glycol could induce the opposite rotation of molecular assemblies. Thanks to this merit, the enantioselective separation of racemic phenylalanine was obtained and the enantiomeric excess (ee) values could achieve around ±20% after separation. This study not only provides a new strategy to regulate the chiral structure via dynamic modulation of terminal substituents but also presents a promising application in the field of enantioselective separation.
Collapse
Affiliation(s)
- Shuting Wang
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nan Su
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fengli Gao
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Materials Science and Engineering, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Sun M, Peng S, Nie L, Zou Y, Yang L, Gao L, Dou X, Zhao C, Feng C. Three-Dimensional Chiral Supramolecular Microenvironment Strategy for Enhanced Biocatalysis. ACS NANO 2021; 15:14972-14984. [PMID: 34491712 DOI: 10.1021/acsnano.1c05212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
How the three-dimensional (3D) chiral environment affects the biocatalysis remains an important issue, thereby inspiring the development of a microenvironment that highly mimics the natural features of enzyme to guarantee enhanced biocatalysis. In this study, two gelators bearing d/l-phenylalanine as chiral centers are designed to construct the 3D chiral catalytic microenvironment for enhancing the biocatalysis of lipase. Such a microenvironment is programmed through chiral transmission of chirality from molecular chirality to achiral polymers. It shows that the chirality of the microenvironment evidently influences the catalytic efficiency of immobilized lipase inside the system, and the 3D microenvironment constructed by right-handed helical nanostructures can enhance the catalytic activity of lipase inside as high as 10-fold for catalyzing 4-nitrophenyl palmitate (NPP) to 4-nitrophenol (NP) and 1.4-fold for catalyzing lipids to triglycerides (TGs) in 3T3-L1 cells than that of the achiral microenvironment. Moreover, the 3D chiral microenvironment has the merits of good catalytic efficiency, high storage stability, and efficient recyclability. This strategy of designing a 3D chiral microenvironment suitable for biocatalysis will overcome the present limitations of enzymatic immobilization in traditional materials and enhance the understanding of biocatalysis.
Collapse
Affiliation(s)
- Meng Sun
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Shiqiao Peng
- Shanghai Diabetes Institute, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yunqing Zou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Laiben Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
15
|
Liang J, Zhang H, Hao A, Xing P. Hierarchically Evolved Supramolecular Chirality Mediated by Arene-Perfluoroarene Interaction. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29170-29178. [PMID: 34105347 DOI: 10.1021/acsami.1c07720] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rational utilization of diverse weak forces in directing multiple-constituent chiral coassemblies is of vital importance in fabricating functional chiroptical materials. In this work, arene-perfluoroarene (AP) and hydrogen bonds were orthogonally employed to afford synergistic binary and ternary coassemblies. On the supramolecular scale, amino acids were connected to achiral pyrene moieties, which packed into supramolecular tilt chirality individually. The modified aromatic amino acids coassembled with melamine and octafluoronaphthalene (OFN) through multiple hydrogen bond and AP interactions, respectively, to construct binary and ternary systems. The introduction of hydrogen bonds and AP interactions shall alter the nanostructures and luminescent properties. Emergence of macroscopic chirality at nanoscale was realized, accompanied by the inversion of circularly polarized luminescence. These interactions working in an orthogonal way regulated the supramolecular chirality, emission properties, nanostructure transformation, and chiroptical activities, which enriched the protocols in designing functional chiral composites.
Collapse
Affiliation(s)
- Juncong Liang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Heng Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|