1
|
Yin T, Sui S, Li S, Chang J, Bai D. Nickel-catalyzed stereospecific reductive cross-coupling of vinyl chlorosilanes with axially chiral biaryl electrophiles. Chem Commun (Camb) 2024; 60:14204-14207. [PMID: 39530918 DOI: 10.1039/d4cc04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Enantioenriched organosilanes are important chiral molecules in materials science and organic synthesis. The synthesis of axially chiral organosilanes is particularly significant in terms of applications. Herein, we report a Ni-catalyzed reductive cross-electrophile coupling of vinyl chlorosilanes with sterically hindered chiral biaryl electrophiles for the synthesis of atropisomeric biaryl organosilanes. Various enantioenriched axially chiral vinylsilanes are accessible in high efficiency under mild conditions. The synthetic transformations and applications of new chiral silicon-containing alkene ligands are demonstrated.
Collapse
Affiliation(s)
- Tiantian Yin
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shiyuan Sui
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shuqi Li
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
2
|
Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Enantioselective Copper-Catalyzed Sequential Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202407391. [PMID: 39023320 DOI: 10.1002/anie.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98 % ee, >25 : 1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.
Collapse
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130024, China
| | - Lianghua Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
3
|
Shi Y, Qin Y, Li ZQ, Xu Y, Chen S, Zhang J, Li YA, Wu Y, Meng F, Zhong YW, Zhao D. Divergent Synthesis of Enantioenriched Silicon-Stereogenic Benzyl-, Vinyl- and Borylsilanes via Asymmetric Aryl to Alkyl 1,5-Palladium Migration. Angew Chem Int Ed Engl 2024; 63:e202405520. [PMID: 38896428 DOI: 10.1002/anie.202405520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.
Collapse
Affiliation(s)
- Yufeng Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yize Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shuhan Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-An Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yaxin Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
4
|
Ye ZT, Wu ZW, Zhang XX, Zhou J, Yu JS. Organocatalytic enantioselective construction of Si-stereocenters: recent advances and perspectives. Chem Soc Rev 2024; 53:8546-8562. [PMID: 39091219 DOI: 10.1039/d4cs00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Silicon-stereogenic chiral organosilanes have found increasing applications in synthetic chemistry, medicinal chemistry, and materials science. In this context, various asymmetric catalytic methods have been established for the diverse synthesis of silicon-stereogenic silanes. In particular, asymmetric organocatalysis is emerging as an important and complementary synthetic tool for the enantioselective construction of silicon-stereocenters, along with the rapid development of chiral-metal catalyzed protocols. Its advent provides a powerful platform to achieve functionalized silicon-stereogenic organosilanes with structural diversity, and should lead to great development in chiral organosilicon chemistry. In this Tutorial Review, we highlight these latest achievements from two aspects: desymmetrizations of prochiral tetraorganosilanes and dynamic kinetic asymmetric transformations of racemic organosilanes by employing five organocatalytic activation modes. The advantages, limitations and synthetic value of each protocol, as well as the synthetic opportunities still open for further exploration, are also discussed.
Collapse
Affiliation(s)
- Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
5
|
Han JT, Tsuji N, Zhou H, Leutzsch M, List B. Organocatalytic asymmetric synthesis of Si-stereogenic silacycles. Nat Commun 2024; 15:5846. [PMID: 38992000 PMCID: PMC11239892 DOI: 10.1038/s41467-024-49988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
A strong and confined Brønsted acid catalyzed enantioselective cyclization of bis(methallyl)silanes provides enantioenriched Si-stereogenic silacycles. High enantioselectivities of up to 96.5:3.5 er were obtained for a range of bis(methallyl)silanes. NMR and ESI-MS studies reveal that the formation of a covalent adduct irreversibly inhibits turnover. Remarkably, we found that acetic acid as an additive promotes the collapse of this adduct, enabling full turnover. Experimental investigation and density functional theory (DFT) calculations were conducted to elucidate the origin of this phenomenon and the observed enantioselectivity.
Collapse
Affiliation(s)
- Jung Tae Han
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Hui Zhou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan.
| |
Collapse
|
6
|
Gou FH, Ren F, Wu Y, Wang P. Catalytic Kinetic Resolution of Monohydrosilanes via Rhodium-Catalyzed Enantioselective Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2024; 63:e202404732. [PMID: 38605561 DOI: 10.1002/anie.202404732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
The catalytic access of silicon-stereogenic organosilanes remains a big challenge, and largely depends on the desymmetrization of the symmetric precursors with two identical substitutes attached to silicon atom. Here we report the construction of silicon-stereogenic organosilanes via catalytic kinetic resolution of racemic monohydrosilanes with good to excellent selectivity factors. Both Si-stereogenic dihydrobenzosiloles and Si-stereogenic monohydrosilanes could be efficiently accessed in one single operation via Rh-catalyzed enantioselective intramolecular hydrosilylation, employing (R,R)-Et-DuPhos as the optimal ligand. This catalytic protocol features mild conditions, a low catalyst loading (0.1 mol % [Rh(cod)Cl]2), high stereoinduction (S factor up to 152), and excellent scalability. Moreover, further derivatizations led to the efficient synthesis of uncommon middle-size (7- and 8-membered) Si-stereogenic silacycles. Preliminary mechanistic study indicates this reaction might undergo a modified Chalk-Harrod mechanism.
Collapse
Affiliation(s)
- Fei-Hu Gou
- College of Chemistry and Material Science, Shanghai Normal University, Shanghai, 200234, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Fei Ren
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Peng Wang
- College of Chemistry and Material Science, Shanghai Normal University, Shanghai, 200234, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
7
|
Zhao JH, Zheng L, Zou JY, Zhang SY, Shen HC, Wu Y, Wang P. Construction of Si-Stereogenic Silanols by Palladium-Catalyzed Enantioselective C-H Alkenylation. Angew Chem Int Ed Engl 2024; 63:e202402612. [PMID: 38410071 DOI: 10.1002/anie.202402612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
The construction of silicon-stereogenic silanols via Pd-catalyzed intermolecular C-H alkenylation with the assistance of a commercially available L-pyroglutamic acid has been realized for the first time. Employing oxime ether as the directing group, silicon-stereogenic silanol derivatives could be readily prepared with excellent enantioselectivities, featuring a broad substrate scope and good functional group tolerance. Moreover, parallel kinetic resolution with unsymmetric substrates further highlighted the generality of this protocol. Mechanistic studies indicate that L-pyroglutamic acid could stabilize the Pd catalyst and provide excellent chiral induction. Preliminary computational studies unveil the origin of the enantioselectivity in the C-H bond activation step.
Collapse
Affiliation(s)
- Jia-Hui Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Long Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Jian-Ye Zou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Sheng-Ye Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Hua-Chen Shen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
8
|
Zhang Y, Zhang JJ, Lou L, Lin R, Cramer N, Wang SG, Chen Z. Recent advances in Rh(I)-catalyzed enantioselective C-H functionalization. Chem Soc Rev 2024; 53:3457-3484. [PMID: 38411467 DOI: 10.1039/d3cs00762f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Chiral carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds are pervasive and very essential in natural products, bioactive molecules, and functional materials, and their catalytic construction has emerged as one of the hottest research fields in synthetic organic chemistry. The last decade has witnessed vigorous progress in Rh(I)-catalyzed asymmetric C-H functionalization as a complement to Rh(II) and Rh(III) catalysis. This review aims to provide the most comprehensive and up-to-date summary covering the recent advances in Rh(I)-catalyzed C-H activation for asymmetric functionalization. In addition to the development of diverse reactions, chiral ligand design and mechanistic investigation (inner-sphere mechanism, outer-sphere mechanism, and 1,4-Rh migration) will also be highlighted.
Collapse
Affiliation(s)
- Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, Jiangsu, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Lujun Lou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Nicolai Cramer
- Institute of Chemical Sciences and Engineering (ISIC), EPFL SB ISIC LCSA, BCH 4305, 1015 Lausanne, Switzerland.
| | - Shou-Guo Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
9
|
Huang WS, Xu H, Yang H, Xu LW. Catalytic Synthesis of Silanols by Hydroxylation of Hydrosilanes: From Chemoselectivity to Enantioselectivity. Chemistry 2024; 30:e202302458. [PMID: 37861104 DOI: 10.1002/chem.202302458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/21/2023]
Abstract
As a crucial class of functional molecules in organosilicon chemistry, silanols are found valuable applications in the fields of modern science and will be a potentially powerful framework for biologically active compounds or functional materials. It has witnessed an increasing demand for non-natural organosilanols, as well as the progress in the synthesis of these structural features. From the classic preparative methods to the catalytic selective oxidation of hydrosilanes, electrochemical hydrolysis of hydrosilanes, and then the construction of the most challenging silicon-stereogenic silanols. This review summarized the progress in the catalyzed synthesis of silanols via hydroxylation of hydrosilanes in the last decade, with a particular emphasis on the latest elegant developments in the desymmetrization strategy for the enantioselective synthesis of silicon-stereogenic silanols from dihydrosilanes.
Collapse
Affiliation(s)
- Wei-Sheng Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
10
|
Shen B, Pan D, Xie W, Li XX, Yu S, Huang G, Li X. Rhodium-Catalyzed Enantioselective Formal [4+1] Cyclization of Benzyl Alcohols and Benzaldimines: Facile Access to Silicon-Stereogenic Heterocycles. Angew Chem Int Ed Engl 2024; 63:e202315230. [PMID: 37938113 DOI: 10.1002/anie.202315230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
The carbon-to-silicon switch in formation of bioactive sila-heterocycles with a silicon-stereogenic center has garnered significant interest in drug discovery. However, metal-catalyzed synthesis of such scaffolds is still in its infancy. Herein, a rhodium-catalyzed enantioselective formal [4+1] cyclization of benzyl alcohols and benzaldimines has been realized by enantioselective difunctionalization of a secondary silane reagent, affording chiral-at-silicon cyclic silyl ethers and sila-isoindolines, respectively. Mechanistic studies reveal a dual role of the rhodium-hydride catalyst. The coupling system proceeds via rhodium-catalyzed enantio-determining dehydrogenative OH silylation of the benzyl alcohol or hydrosilylation of the imine to give an enantioenriched silyl ether or silazane intermediate, respectively. The same rhodium catalyst also enables subsequent intramolecular cyclative C-H silylation directed by the pendent Si-H group. Experimental and DFT studies have been conducted to explore the mechanism of the OH bond silylation of benzyl alcohol, where the Si-O reductive elimination from a Rh(III) hydride intermediate has been established as the enantiodetermining step.
Collapse
Affiliation(s)
- Bingxue Shen
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Wanying Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Songjie Yu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xingwei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
11
|
Liu CX, Zhao F, Gu Q, You SL. Enantioselective Rh(I)-Catalyzed C-H Arylation of Ferroceneformaldehydes. ACS CENTRAL SCIENCE 2023; 9:2036-2043. [PMID: 38033798 PMCID: PMC10683487 DOI: 10.1021/acscentsci.3c00748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 12/02/2023]
Abstract
As an important class of platform molecules, planar chiral ferrocene carbonyl compounds could be transformed into various functional groups offering facile synthesis of chiral ligands and catalysts. However, developing efficient and straightforward methods for accessing enantiopure planar chiral ferrocene carbonyl compounds, especially ferroceneformaldehydes, remains highly challenging. Herein, we report a rhodium(I)/phosphoramidite-catalyzed enantioselective C-H bond arylation of ferroceneformaldehydes. Readily available aryl halides such as aryl iodides, aryl bromides, and even aryl chlorides are suitable coupling partners in this transformation, leading to a series of planar chiral ferroceneformaldehydes in good yields and excellent enantioselectivity (up to 83% yield and >99% ee). The aldehyde group could be transformed into diverse functional groups smoothly, and enantiopure Ugi's amine and PPFA analogues could be synthesized efficiently. The latter was found to be a highly efficient ligand in Pd-catalyzed asymmetric allylic alkylation reactions. Mechanistic experiments supported the formation of imine intermediates as the key step during the reaction.
Collapse
Affiliation(s)
| | | | - Qing Gu
- New Cornerstone Science Laboratory,
State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| | - Shu-Li You
- New Cornerstone Science Laboratory,
State Key Laboratory of Organometallic Chemistry, Shanghai Institute
of Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People’s Republic of China
| |
Collapse
|
12
|
Chen H, Hu X, Wang W, Gao L, Song Z. Recent Progress in the Synthesis of Silaspiranes. Chemistry 2023:e202302371. [PMID: 37739927 DOI: 10.1002/chem.202302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Silaspiranes bearing a spiro-silicon center are promising ring frameworks for the synthesis of novel spirocyclic molecules possessing unique properties. Development of efficient methods towards these ring structures has therefore attracted considerable attentions of synthetic chemists. This minireview highlights the representative advances in the field, and is categorized into four parts according to the ring formation strategies: cyclization, annulation, ring expansion and cycloaddition.
Collapse
Affiliation(s)
- Hua Chen
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Xuejiao Hu
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
- Key Laboratory of Organosilicon Chemistry and, Material Technology of Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
13
|
Yang B, Gao J, Tan X, Ge Y, He C. Chiral PSiSi-Ligand Enabled Iridium-Catalyzed Atroposelective Intermolecular C-H Silylation. Angew Chem Int Ed Engl 2023; 62:e202307812. [PMID: 37462125 DOI: 10.1002/anie.202307812] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
Catalytic enantioselective intermolecular C-H silylation offers an efficient approach for the rapid construction of chiral organosilicon compounds, but remains a significant challenge. Herein, a new type of chiral silyl ligand is developed, which enables the first iridium-catalyzed atroposelective intermolecular C-H silylation reaction of 2-arylisoquinolines. This protocol features mild reaction conditions, high atom economy, and remarkable yield with excellent stereoselectivity (up to 99 % yield, 99 % ee), delivering enantioenriched axially chiral silane platform molecules with facile convertibility. Key to the success of this unprecedented transformation relies on a novel chiral PSiSi-ligand, which facilitates the intermolecular C-H silylation process with perfect chem-, regio- and stereo-control via a multi-coordinated silyl iridium complex.
Collapse
Affiliation(s)
- Bo Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jihui Gao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xingfa Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yicong Ge
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
14
|
Liu CX, Yin SY, Zhao F, Yang H, Feng Z, Gu Q, You SL. Rhodium-Catalyzed Asymmetric C-H Functionalization Reactions. Chem Rev 2023; 123:10079-10134. [PMID: 37527349 DOI: 10.1021/acs.chemrev.3c00149] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
This review summarizes the advancements in rhodium-catalyzed asymmetric C-H functionalization reactions during the last two decades. Parallel to the rapidly developed palladium catalysis, rhodium catalysis has attracted extensive attention because of its unique reactivity and selectivity in asymmetric C-H functionalization reactions. In recent years, Rh-catalyzed asymmetric C-H functionalization reactions have been significantly developed in many respects, including catalyst design, reaction development, mechanistic investigation, and application in the synthesis of complex functional molecules. This review presents an explicit outline of catalysts and ligands, mechanism, the scope of coupling reagents, and applications.
Collapse
Affiliation(s)
- Chen-Xu Liu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Si-Yong Yin
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Fangnuo Zhao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Hui Yang
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Zuolijun Feng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
15
|
Arii H, Nakane D, Nakao K, Masuda H, Kawashima T. Dehydrogenative Annulation of Silylated 1 H-Indoles with Alkynes via Silyl Migration. Org Lett 2023. [PMID: 37449923 DOI: 10.1021/acs.orglett.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
We investigated the dehydrogenative annulation of silylated 1H-indole derivatives with alkynes to synthesize a silole-fused indole. The addition of the in situ generated silylium ion to alkynes was followed by the sila-Friedel-Crafts reaction via silyl migration, realizing regioselective dehydrogenative annulation controlled by the steric bulkiness of a base. The optical properties of the obtained siloloindoles indicated fluorescence of which the intensity depends on the location of the fused silole.
Collapse
Affiliation(s)
- Hidekazu Arii
- Faculty of Education, University of Miyazaki, 1-1 Gakuen Kibanadai Nishi, Miyazaki 889-2192, Japan
| | - Daisuke Nakane
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Kenichi Nakao
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Takayuki Kawashima
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Gunma, Japan
| |
Collapse
|
16
|
Chen F, Liu L, Zeng W. Synthetic strategies to access silacycles. Front Chem 2023; 11:1200494. [PMID: 37398981 PMCID: PMC10313416 DOI: 10.3389/fchem.2023.1200494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
In comparison with all-carbon parent compounds, the incorporation of Si-element into carboskeletons generally endows the corresponding sila-analogues with unique biological activity and physical-chemical properties. Silacycles have recently shown promising application potential in biological chemistry, pharmaceuticals industry, and material chemistry. Therefore, the development of efficient methodology to assemble versatile silacycles has aroused increasing concerns in the past decades. In this review, recent advances in the synthesis of silacycle-system are briefly summarized, including transition metal-catalytic and photocatalytic strategies by employing arylsilanes, alkylsilane, vinylsilane, hydrosilanes, and alkynylsilanes, etc. as starting materials. Moreover, a clear presentation and understanding of the mechanistic aspects and features of these developed reaction methodologies have been high-lighted.
Collapse
|
17
|
Liu MM, Xu Y, He C. Catalytic Asymmetric Dehydrogenative Si-H/N-H Coupling: Synthesis of Silicon-Stereogenic Silazanes. J Am Chem Soc 2023; 145:11727-11734. [PMID: 37204933 DOI: 10.1021/jacs.3c02263] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite growing progress in the construction of silazanes, the catalytic asymmetric synthesis of silicon-stereogenic silazanes is significantly less explored and remains a considerable challenge. Herein, we report a highly enantioselective synthesis of silicon-stereogenic silazanes via catalytic dehydrogenative coupling of dihydrosilanes with anilines. The reaction readily produces a wide range of chiral silazanes and bis-silazanes in excellent yields and stereoselectivities (up to 99% ee). Further utility of this process is demonstrated by the construction of polycarbosilazanes featuring configurational main chain silicon-stereogenic chirality. In addition, the straightforward transformation of the enantioenriched silazanes delivers various chiral silane compounds in a stereospecific fashion, illustrating their potential utilities as synthons for the synthesis of novel silicon-containing functional molecules.
Collapse
Affiliation(s)
- Meng-Meng Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yankun Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
18
|
Liao X, Zhou H, Chen X, Xu J. Isothiourea-Catalyzed Acylative Desymmetrization of Silicon-Centered Bisphenols. Org Lett 2023; 25:3099-3103. [PMID: 37129310 DOI: 10.1021/acs.orglett.3c00946] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The preparation of optically pure organosilicon compounds bearing a stereogenic center at the silicon atom is an attractive but challenging enterprise. Herein we disclose an isothiourea (ITU)-catalyzed monoacylation reaction of silicon-centered bisphenols with 2,2-diphenylacetic pivalic anhydride, delivering tetrasubstituted organosilanes in moderate to excellent yields (36-91%) with moderate to excellent enantiomeric ratios (68:32-97.5:2.5). This organocatalytic desymmetrization approach can be performed on gram scale, and the products can be converted to other valuable compounds.
Collapse
Affiliation(s)
- Xuanlong Liao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
19
|
Chen H, Zhang H, Du H, Kuang Y, Pang Q, Gao L, Wang W, Yang C, Song Z. Enantioselective Synthesis of 6/5-Spirosilafluorenes by Asymmetric Ring Expansion of 4/5-Spirosilafluorenes with Alkynes. Org Lett 2023; 25:1558-1563. [PMID: 36847236 DOI: 10.1021/acs.orglett.3c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A rhodium-catalyzed asymmetric ring expansion of 4/5-spirosilafluorenes with terminal alkynes has been developed using sterically demanding binaphthyl phosphoramidite ligand. The reaction is not only strategically distinct from cyclization or cycloaddition but also showcases the first enantioselective synthesis of axially chiral 6/5-spirosilafluorenes.
Collapse
Affiliation(s)
- Hua Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haixia Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuzhong Kuang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Zhang XX, Gao Y, Zhang YX, Zhou J, Yu JS. Highly Enantioselective Construction of Multifunctional Silicon-Stereogenic Silacycles by Asymmetric Enamine Catalysis. Angew Chem Int Ed Engl 2023; 62:e202217724. [PMID: 36625565 DOI: 10.1002/anie.202217724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
We report the first highly enantioselective construction of silicon-stereocenters by asymmetric enamine catalysis. An unprecedented desymmetric intramolecular aldolization of prochiral siladials was thus developed for the facile access of multifunctional silicon-stereogenic silacycles in high to excellent enantioselectivity. With an enal moiety, these adducts could be readily elaborated for the diverse synthesis of silicon-stereogenic compounds, and for late-stage modification.
Collapse
Affiliation(s)
- Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Yan-Xue Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
21
|
Ling FY, Ye F, Fang XJ, Zhou XH, Huang WS, Xu Z, Xu LW. An unusual autocatalysis with an air-stable Pd complex to promote enantioselective synthesis of Si-stereogenic enynes. Chem Sci 2023; 14:1123-1131. [PMID: 36756338 PMCID: PMC9891361 DOI: 10.1039/d2sc06181c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Given the powerful potential of chiral-at-silicon chemistry, enantioselective synthesis of Si-stereogenic centers has attracted substantial research interest in recent years. However, the catalytic asymmetric synthesis of Si-stereogenic organosilicon compounds remains an appealing venture and is a challenging subject because of the difficulty in achieving high reactivity and stereoselectivity for "silicon-center" transformations. Herein, we disclose a highly enantioselective palladium-catalyzed hydrosilylation of 1,3-diynes with dihydrosilanes, which enables the facile preparation of Si-stereogenic enynes and an enyne-linked chiral polymer (polyenyne) in good yields and excellent ees (up to >99%) by desymmetrization. The unusual stereoselectivity in this reaction is achieved by precisely controlling the steric hindrance and electronic effect of the newly developed chiral ligands, resulting in a wide range of chiral silanes and a Si-containing polymer bearing a Si-stereogenic center which is otherwise difficult to access. The key to the high enantioselectivity relies on catalyst aggregation-induced non-covalent interaction, which exerts a remarkably positive influence on the Si-H bond activation and enhancement of enantioselectivity, in which the palladium/P-ligand complex was proved to be air-stable and moisture-insensitive in this reaction.
Collapse
Affiliation(s)
- Fang-Ying Ling
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Xiao-Hua Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University No. 2318, Yuhangtang Road Hangzhou 311121 P. R. China .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences P. R. China
| |
Collapse
|
22
|
Zeng Y, Fang XJ, Tang RH, Xie JY, Zhang FJ, Xu Z, Nie YX, Xu LW. Rhodium-Catalyzed Dynamic Kinetic Asymmetric Hydrosilylation to Access Silicon-Stereogenic Center. Angew Chem Int Ed Engl 2022; 61:e202214147. [PMID: 36328976 DOI: 10.1002/anie.202214147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Indexed: 11/06/2022]
Abstract
Strategies on the construction of enantiomerically pure silicon-stereogenic silanes generally relies on desymmetrization of prochiral and symmetric substrates. However, dynamic kinetic asymmetric transformations of organosilicon compounds have remained underdeveloped and unforeseen owing to a lack of an effective method for deracemization of the static silicon stereocenters. Here we report the first Rh-catalyzed dynamic kinetic asymmetric intramolecular hydrosilylation (DyKAH) with "silicon-centered" racemic hydrosilanes that enables the facile preparation of silicon-stereogenic benzosiloles in good yields and excellent enantioselectivities. The special rhodium catalyst controlled by non-diastereopure-type mixed phosphine-phosphoramidite ligand with axial chirality and multiple stereocenters can induce enantioselectivity efficiently in this novel DyKAH reaction. Density functional theory (DFT) calculations suggest that the amide moiety in chiral ligand plays important role in facilitating the SN 2 substitution of chloride ion to realize the chiral inversion of silicon center.
Collapse
Affiliation(s)
- Yan Zeng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Ren-He Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jing-Yu Xie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Feng-Jiao Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Yi-Xue Nie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou, 311121, P. R. China
| |
Collapse
|
23
|
Sun J, Zhou Y, Gu R, Li X, Liu A, Zhang X. Regioselective Ni-Catalyzed reductive alkylsilylation of acrylonitrile with unactivated alkyl bromides and chlorosilanes. Nat Commun 2022; 13:7093. [PMID: 36402772 PMCID: PMC9675790 DOI: 10.1038/s41467-022-34901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Transition-metal catalyzed carbosilylation of alkenes using carbon electrophiles and silylmetal (-B, -Zn) reagents as the nucleophiles offers a powerful strategy for synthesizing organosilicones, by incorporating carbon and silyl groups across on C-C double bonds in one step. However, to the best of our knowledge, the study of silylative alkenes difunctionalization based on carbon and silyl electrophiles remains underdeveloped. Herein, we present an example of silylative alkylation of activated olefins with unactivated alkyl bromides and chlorosilanes as electrophiles under nickel catalysis. The main feature of this protocol is employing more easily accessible substrates including primary, secondary and tertiary alkyl bromides, as well as various chlorosilanes without using pre-generated organometallics. A wide range of alkylsilanes with diverse structures can be efficiently assembled in a single step, highlighting the good functionality tolerance of this approach. Furthermore, successful functionalization of bioactive molecules and synthetic applications using this method demonstrate its practicability.
Collapse
Affiliation(s)
- Jinwei Sun
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Yongze Zhou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Rui Gu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xin Li
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Ao Liu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xuan Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China.
| |
Collapse
|
24
|
Liu H, Zhou H, Chen X, Xu J. N-Heterocyclic Carbene-Catalyzed Desymmetrization of Siladials To Access Silicon-Stereogenic Organosilanes. J Org Chem 2022; 87:16127-16137. [DOI: 10.1021/acs.joc.2c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Hongwei Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
25
|
Yuan W, Zhu X, Xu Y, He C. Synthesis of Si‐Stereogenic Silanols by Catalytic Asymmetric Hydrolytic Oxidation. Angew Chem Int Ed Engl 2022; 61:e202204912. [DOI: 10.1002/anie.202204912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 12/21/2022]
Affiliation(s)
- Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Xujiang Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yankun Xu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
26
|
Liu H, He P, Liao X, Zhou Y, Chen X, Ou W, Wu Z, Luo C, Yang L, Xu J. Stereoselective Access to Silicon-Stereogenic Silacycles via the Carbene-Catalyzed Desymmetric Benzoin Reaction of Siladials. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hao Liu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Pengyu He
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Xuanlong Liao
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Yipeng Zhou
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| | - Xingkuan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wenpiao Ou
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Zhenhong Wu
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Cong Luo
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Department of Chemistry, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, P. R. China
| | - Jianfeng Xu
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P. R. China
| |
Collapse
|
27
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022; 61:e202205624. [DOI: 10.1002/anie.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|
28
|
Gao J, Mai PL, Ge Y, Yuan W, Li Y, He C. Copper-Catalyzed Desymmetrization of Prochiral Silanediols to Silicon-Stereogenic Silanols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jihui Gao
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pei-Lin Mai
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yicong Ge
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Sichuan Province Key Laboratory of Natural Products and Small Molecule Synthesis, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614000, China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingzi Li
- Shenzhen Institute of Advanced Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
29
|
Zhou M, Liu J, Deng R, Wang Q, Wu S, Zheng P, Chi YR. Construction of Tetrasubstituted Silicon-Stereogenic Silanes via Conformational Isomerization and N-Heterocyclic Carbene-Catalyzed Desymmetrization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mali Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jianjian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Rui Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Qingyun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shuquan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
30
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|
31
|
Mu D, Pan S, Wang X, Liao X, Huang Y, Chen J. Enantioselective synthesis of acyclic monohydrosilanes by steric hindrance assisted C-H silylation. Chem Commun (Camb) 2022; 58:7388-7391. [PMID: 35674211 DOI: 10.1039/d2cc02307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a rhodium-catalyzed desymmetrization of dihydrosilanes with heterocyclic compounds via intermolecular dehydrogenative C-H silylation is developed. The strategy tolerates a variety of thianaphthene and thiophene derivatives, giving rise to a wide range of silicon-stereogenic acyclic monohydrosilanes. Several rare skeletons featuring bis-silicon-stereogenic centers were also designed to enhance the library's diversity further. Preliminary mechanistic studies reveal that the surrounding spatial environment of the Si-center plays a crucial role in enabling intermolecular C-H silylation preferentially.
Collapse
Affiliation(s)
- Delong Mu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Shuqiong Pan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Xiaoyu Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Xiaoyun Liao
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| | - Yong Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China.
| |
Collapse
|
32
|
Yuan W, Zhu X, Xu Y, He C. Synthesis of Si‐Stereogenic Silanols by Catalytic Asymmetric Hydrolytic Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Yuan
- Southern University of Science and Technology Chemistry CHINA
| | - Xujiang Zhu
- Southern University of Science and Technology Chemistry CHINA
| | - Yankun Xu
- Southern University of Science and Technology Chemistry CHINA
| | - Chuan He
- Southern University of Science and Technology Chemistry No 1088,xueyuan Rd.Xili, Nanshan District 518055 Shenzhen CHINA
| |
Collapse
|
33
|
Wu Y, Wang P. Silicon-Stereogenic Monohydrosilane: Synthesis and Applications. Angew Chem Int Ed Engl 2022; 61:e202205382. [PMID: 35594056 DOI: 10.1002/anie.202205382] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Optically active organosilanes have been demonstrated to be versatile chiral reagents in synthetic chemistry since the early seminal contributions by Sommer and Corriu. Among these silicon-containing chiral architectures, monohydrosilanes, which bear a Si-H bond, hold a unique position because of their facile transformations through stereospecific Si-carbon or Si-heteroatom bond-formation reactions. In addition, those compounds have also been leveraged as chiral reagents for alcohol resolution, chiral auxiliaries, mechanistic probes, as well as potential optoelectronic materials. This Minireview comprehensively summarizes the synthesis and synthetic applications of silicon-stereogenic monohydrosilanes, particularly the advances in the transition-metal-catalyzed asymmetric synthesis of this class of functional molecules.
Collapse
Affiliation(s)
- Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAShcshr1, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
34
|
Wu Y, Wang P. Silicon‐Stereogenic Monohydrosilane: Synthesis and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yichen Wu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry 345 Lingling Road 200032 Shanghai CHINA
| | - Peng Wang
- Shanghai Institute of Organic Chemistry State key laboratory of organometallic chemistry 345 Lingling Rd 200032 Shanghai CHINA
| |
Collapse
|
35
|
Chen S, Zhu J, Ke J, Li Y, He C. Enantioselective Intermolecular C-H Silylation of Heteroarenes for the Synthesis of Acyclic Si-Stereogenic Silanes. Angew Chem Int Ed Engl 2022; 61:e202117820. [PMID: 35263001 DOI: 10.1002/anie.202117820] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 12/21/2022]
Abstract
Intermolecular C-H silylation for the synthesis of acyclic silanes bearing a silicon-stereogenic center in one enantiomeric form remains unknown to date. Herein, we report the first enantioselective intermolecular C-H silylation of heteroarenes for the synthesis of acyclic silicon-stereogenic heteroarylsilanes. This process undergoes a rhodium-catalyzed direct intermolecular dehydrogenative Si-H/C-H cross-coupling, giving access to a variety of acyclic heteroarylated silicon-stereogenic monohydrosilanes, including bis-Si-stereogenic silanes, in decent yields with excellent chemo-, regio-, and stereo-control, which significantly enlarge the chemical space of the optically active silicon-stereogenic monohydrosilanes.
Collapse
Affiliation(s)
- Shuyou Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiefeng Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
36
|
Wang Q, Zhong KB, Xu H, Li SN, Zhu WK, Ye F, Xu Z, Lan Y, Xu LW. Enantioselective Nickel-Catalyzed Si–C(sp 2) Bond Activation and Migratory Insertion to Aldehydes: Reaction Scope and Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qing Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Kang-Bao Zhong
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Hao Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shi-Nan Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Wei-Ke Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
37
|
Kong Y, Mu D. Recent Progress in Transition Metal-Catalyzed Hydrosilanes-Mediated C-H Silylation. Chem Asian J 2022; 17:e202200104. [PMID: 35315977 DOI: 10.1002/asia.202200104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Organosilicon compounds are widely used in materials science, medicinal chemistry and synthetic chemistry. Recently, significant progress has been achieved in transition metal-catalyzed dehydrogenative C-H silylation. Particularly, recently developed monohydrosilane and dihydrosilane mediated C-H silylation have emerged as powerful tools in constructing C-Si bonds. Besides, dihydrosilane-mediated enantioselective asymmetric C-H silylation has successfully achieved the construction of central and helical silicon chirality. In addition, chiral organosilicon compounds have exhibited excellent photoelectric material properties and broad application prospects. Furthermore, organosilicon compounds could under a series of functional group transformations to enrich the diversity of silicon chemistry. This review will present a comprehensive picture of the development of transition metal-catalyzed hydrosilanes-mediated intramolecular C(sp 2 )-H and C(sp 3 )-H silylation organized by their reaction types and mechanisms. In addition, dihydrosilane-mediated enantioselective asymmetric C-H silylation to construct central and helical silicon chirality will also be highlighted in the review.
Collapse
Affiliation(s)
- Yuanfang Kong
- Henan University of Chinese Medicine, School of Pharmacy, CHINA
| | - Delong Mu
- Shenzhen Bay Laboratory, Chemistry, Shenzhen 518000, 518000, Shenzhen, CHINA
| |
Collapse
|
38
|
Lu W, Zhao Y, Meng F. Cobalt-Catalyzed Sequential Site- and Stereoselective Hydrosilylation of 1,3- and 1,4-Enynes. J Am Chem Soc 2022; 144:5233-5240. [PMID: 35298144 DOI: 10.1021/jacs.2c00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Catalytic sequential hydrosilylation of 1,3-enynes and 1,4-enynes promoted by cobalt complexes derived from bisphosphines are presented. Site- and stereoselective Si-H addition of primary silanes to 1,3-enynes followed by sequential intramolecular diastereo- and enantioselective Si-H addition afforded enantioenriched cyclic alkenylsilanes with simultaneous construction of a carbon-stereogenic center and a silicon-stereogenic center. Reactions of 1,4-enynes proceeded through sequential isomerization of the alkene moiety followed by site- and stereoselective hydrosilylation. A wide range of alkenylsilanes were afforded in high efficiency and selectivity. Functionalization of the enantioenriched silanes containing a stereogenic center at silicon delivered a variety of chiral building blocks that are otherwise difficult to access.
Collapse
Affiliation(s)
- Wenxin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Yongmei Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China, 102249
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| |
Collapse
|
39
|
Chen S, Zhu J, Ke J, Li Y, He C. Enantioselective Intermolecular C−H Silylation of Heteroarenes for the Synthesis of Acyclic Si‐Stereogenic Silanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shuyou Chen
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jiefeng Zhu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
40
|
Rhodium hydride enabled enantioselective intermolecular C–H silylation to access acyclic stereogenic Si–H. Nat Commun 2022; 13:847. [PMID: 35165278 PMCID: PMC8844420 DOI: 10.1038/s41467-022-28439-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The tremendous success of stereogenic carbon compounds has never ceased to inspire researchers to explore the potentials of stereogenic silicon compounds. Intermolecular C–H silylation thus represents the most versatile and straightforward strategy to construct C–Si bonds, however, its enantioselective variant has been scarcely reported to date. Herein we report a protocol that allows for the enantioselective intermolecular C–H bond silylation, leading to the construction of a wide array of acyclic stereogenic Si–H compounds under simple and mild reaction conditions. Key to the success is (1) a substrate design that prevents the self-reaction of prochiral silane and (2) the employment of a more reactive rhodium hydride ([Rh]-H) catalyst as opposed to the commonly used rhodium chloride ([Rh]-Cl) catalyst. This work unveils opportunities in converting simple arenes into value-added stereogenic silicon compounds. Construction of chiral organosilicon compounds could have implications in photophysical, biological, and chemical fields, as silicon is isoelectronic with carbon, and can mimic carbon atoms while providing slightly different properties. Here the authors present an intermolecular, enantioselective C–H silylation of heterocycles via rhodium catalysis.
Collapse
|
41
|
He C, Yuan W. Enantioselective C–H Functionalization toward Silicon-Stereogenic Silanes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1729-9664] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AbstractIn recent years, transition-metal-catalyzed enantioselective C–H bond functionalization has emerged as a powerful and attractive synthetic approach to access silicon-stereogenic centers, which provides impetus for the innovation of chiral organosilicon chemistry. This short review summarizes recent advances in the construction of silicon-stereogenic silanes via transition-metal-catalyzed enantioselective C–H functionalization. We endeavor to highlight the great potential of this methodology and hope that this review will shed light on new perspectives and inspire further research in this emerging area.1 Introduction2 Enantioselective C–H Functionalization Induced by Oxidative Addition of an Aryl-OTf Bond3 Enantioselective C–H Functionalization Induced by Oxidative Addition of a Silacyclobutane4 Directing-Group-Assisted Enantioselective C–H Functionalization5 Enantioselective Dehydrogenative C–H/Si–H Coupling5.1 Enantioselective C(sp2)–H Silylation5.2 Enantioselective C(sp3)–H Silylation6 Summary and Outlook
Collapse
|
42
|
Huang Y, Wu Y, Zhu Z, Zheng S, Ye Z, Peng Q, Wang P. Enantioselective Synthesis of Silicon‐Stereogenic Monohydrosilanes by Rhodium‐Catalyzed Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu‐Hao Huang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Sujuan Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Zihang Ye
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, CAS 345 Lingling Road Shanghai 200032 P. R. China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road Shanghai 200032 P. R. China
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
43
|
Zhou XH, Fang XJ, Ling FY, Xu Z, Hong LQ, Ye F, Xu LW. Catalytic C(sp)–Si cross-coupling silylation of alkynyl bromides with hydrosilanes by palladium catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo01253g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented and convenient Si–C(sp) bond-forming cross-coupling of alkynyl bromides with hydrosilanes has been established for the facile synthesis of alkynylsilanes in good yields and with excellent chemoselectivity.
Collapse
Affiliation(s)
- Xiao-Hua Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fang-Ying Ling
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Quan Hong
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Deqing Third People's Hospital and The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou 730000, P. R. China
| |
Collapse
|
44
|
An K, He W. Rhodium-Catalyzed Enantioselective Intramolecular Hydrosilylation to Access Silicon-Stereogenic Tertiary Hydrosilanes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Zhang Q, Wu LS, Shi BF. Forging C−heteroatom bonds by transition metal-catalyzed enantioselective C–H functionalization. Chem 2021. [DOI: 10.1016/j.chempr.2021.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
46
|
Huang YH, Wu Y, Zhu Z, Zheng S, Ye Z, Peng Q, Wang P. Enantioselective Synthesis of Silicon-Stereogenic Monohydrosilanes by Rhodium-Catalyzed Intramolecular Hydrosilylation. Angew Chem Int Ed Engl 2021; 61:e202113052. [PMID: 34731522 DOI: 10.1002/anie.202113052] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 02/05/2023]
Abstract
Enantiopure monohydrosilanes are versatile chiral reagents for alcohol resolution and mechanistic investigation. Herein, we have demonstrated the asymmetric synthesis of monohydrosilanes via an intramolecular hydrosilylation strategy. This protocol is suitable for the synthesis of five- and six-membered cyclic monohydrosilanes, including a class of chiral oxasilacycles, with excellent diastereo-, regio-, and enantioselectivities. Notably, the catalyst loading could be reduced to 0.1 mol % which makes this one of the most efficient methods to access chiral monohydrosilanes. Mechanistic studies and DFT calculations indicate this Rh-catalyzed intramolecular asymmetric hydrosilylation reaction might proceed via a Chalk-Harrod mechanism, and the enantio-determining step was predicted to be oxidative addition of Si-H bond.
Collapse
Affiliation(s)
- Yu-Hao Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Sujuan Zheng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zihang Ye
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Qian Peng
- State Key Laboratory and Institute of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai, 200032, P. R. China.,School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
47
|
Zheng L, Nie X, Wu Y, Wang P. Construction of Si‐Stereogenic Silanes through C−H Activation Approach. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Long Zheng
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiao‐Xue Nie
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Yichen Wu
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| | - Peng Wang
- School of Chemistry and Material Sciences Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 China
- State key laboratory of organometallic chemistry Center for excellence in molecular synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences CAS 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
48
|
Xing M, Cui H, Zhang C. Nickel-Catalyzed Reductive Cross-Coupling of Alkyl Bromides and Chlorosilanes. Org Lett 2021; 23:7645-7649. [PMID: 34551258 DOI: 10.1021/acs.orglett.1c02887] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel nickel-catalyzed highly selective reductive cross-coupling of alkyl bromides and chlorosilanes to construct the C-Si bond has been developed. Under benign reaction conditions, a series of structurally interesting organosilanes can be accessed without Ni-catalyzed isomerization. The utility of this chemistry is illustrated by further transformations of the product. Moreover, the radical mechanism of the reaction is illustrated by control experiments.
Collapse
Affiliation(s)
- Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
49
|
Zhang M, Gao S, Tang J, Chen L, Liu A, Sheng S, Zhang AQ. Asymmetric synthesis of chiral organosilicon compounds via transition metal-catalyzed stereoselective C-H activation and silylation. Chem Commun (Camb) 2021; 57:8250-8263. [PMID: 34323898 DOI: 10.1039/d1cc02839a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This feature article details the progress of transition metal-catalyzed stereoselective sp2 and sp3 C-H activation and silylation in the synthesis of chiral organosilicon compounds, and the asymmetric C-H silylation includes intramolecular cyclizing silylation and intermolecular silylation. The silylating reagents include monohydrosilanes, dihydrosilanes, silacylcobutanes and disilanes. In general, catalytic systems include a transition metal salt as the catalyst and a chiral ligand. No external chiral ligand is required in some cases where the chiral substrates act as the source of chirality. Many kinds of silylated compounds with central, axial, planar, or helical chirality have been constructed via C-H activation by asymmetric rhodium, iridium or palladium catalysis. Some pharmacophores and material building blocks were successfully introduced into the target molecules. Some silylated products proved to be useful in medicinal chemistry, synthetic organic chemistry, and materials science. Besides reaction development, mechanisms for stereoselective C-H activation and silylation are also discussed.
Collapse
Affiliation(s)
- Ming Zhang
- College of Chemistry and Chemical Engineering and Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University (Yaohu Campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Zhang H, Zhao D. Synthesis of Silicon-Stereogenic Silanols Involving Iridium-Catalyzed Enantioselective C–H Silylation Leading to a New Ligand Scaffold. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongpeng Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|