1
|
Stroek W, Rowlinson NAV, Hudson LA, Albrecht M. Heteroleptic Triazole-Bisoxazoline Iron Complexes Reveal Lability of the Iron-Carbene Bond Even Within a Chelating Scaffold. Inorg Chem 2024; 63:17134-17140. [PMID: 39227361 DOI: 10.1021/acs.inorgchem.4c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
N-Heterocyclic carbenes have proven to be excellent ligands for transition metals, with numerous applications in catalysis and beyond. However, they have also displayed lability with first row transition metals, largely due to the hard-soft mismatch of the metal-carbon bond. Chelation is often considered a suitable methodology for supporting the labile M-C bond through the introduction of a strongly coordinating donor site such as hard phenolates. Herein, we demonstrate that chelating phenolate-carbene ligands are kinetically labile in iron(II) complexes. Specifically, heteroleptic iron complexes [Fe(C^O)(N^N)] were synthesized composed of a phenolate-functionalized triazolylidene (CO) ligand and N,N-bidentate coordinating bisoxazoline ligand (N^N). Stability studies by 1H NMR spectroscopy showed that the heteroleptic complexes preferentially convert to their corresponding homoleptic complexes [Fe(C^O)2] and [Fe(N^N)2], indicating reversible decoordination of the carbene phenolate chelate from the iron center. The rate of this rearrangement is dependent on the substituents on the ligands and increases for triazolylidene wingtip groups mesityl (Mes) < di(isopropyl)aryl (DIPP) < adamantyl (Ad), with significant ligand redistribution for DIPP and Ad systems observed even at room temperature. The most stable heteroleptic complex featured mesityl wingtips on the triazole and phenyl groups as oxazoline substituents and displayed signs of ligand exchange only after 16 h at room temperature. This substitutional lability of carbene ligands even when supported by a phenolate chelating group has direct consequences when designing iron complexes for catalytic applications.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| | - Nathalie A V Rowlinson
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| | - Luke A Hudson
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and pharmaceutical sciences, University of Bern, Bern CH-3012, Switzerland
| |
Collapse
|
2
|
Stroek W, Albrecht M. Application of first-row transition metal complexes bearing 1,2,3-triazolylidene ligands in catalysis and beyond. Chem Soc Rev 2024; 53:6322-6344. [PMID: 38726664 PMCID: PMC11181992 DOI: 10.1039/d4cs00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 06/18/2024]
Abstract
Triazole-derived N-heterocyclic carbenes, triazolylidenes (trz) have become an interesting alternative to the ubiquitous Arduengo-type imidazole-derived carbenes, in part because they are stronger donors, and in other parts due to their versatile synthesis through different types of click reactions. While the use of trz ligands has initially focused on their coordination to precious metals for catalytic applications, the recent past has seen a growing interest in their impact on first-row transition metals. Coordination of trz ligands to such 3d metals is more challenging due to the orbital mismatch between the carbene and the 3d metal center, which also affects the stability of such complexes. Here we summarize the strategies that have been employed so far to overcome these challenges and to prepare first-row transition metal complexes containing at least one trz ligand. Both properties and reactivities of these trz complexes are comprehensively compiled, with a focus on photophysical properties and, in particular, on the application of these complexes in homogeneous catalysis. The diversity of catalytic transformations entailed with these trz 3d metal complexes as well as the record-high performance in some of the reactions underpins the benefits imparted by trz ligands.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| |
Collapse
|
3
|
Faden LP, Reiß A, Popescu R, Donsbach C, Göttlicher J, Vitova T, Gerthsen D, Feldmann C. Sc, Zr, Hf, and Mn Metal Nanoparticles: Reactive Starting Materials for Synthesis Near Room Temperature. Inorg Chem 2024; 63:1020-1034. [PMID: 38176690 DOI: 10.1021/acs.inorgchem.3c03074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Zerovalent scandium, zirconium, hafnium, and manganese nanoparticles are prepared by reduction of ScCl3, ZrCl4, HfCl4, and MnCl2 with lithium or sodium naphthalenide in a one-pot, liquid-phase synthesis. Small-sized monocrystalline nanoparticles are obtained with diameters of 2.4 ± 0.2 nm (Sc), 4.0 ± 0.9 nm (Zr), 8.0 ± 3.9 nm (Hf) and 2.4 ± 0.3 nm (Mn). Thereof, Zr(0) and Hf(0) nanoparticles with such size are shown for the first time. To probe the reactivity and reactions of the as-prepared Sc(0), Zr(0), Hf(0), and Mn(0) nanoparticles, they are exemplarily reacted in the liquid phase (e.g., THF, toluene, ionic liquids) with different sterically demanding, monodentate to multidentate ligands, mainly comprising O-H and N-H acidic alcohols and amines. These include isopropanol (HOiPr), 1,1'-bi-2-naphthol (H2binol), N,N'-bis(salicylidene)ethylenediamine (H2salen), 2-mercaptopyridine (2-Hmpy), 2,6-diisopropylaniline (H2dipa), carbazole (Hcz), triphenylphosphane (PPh3), N,N,N',N'-tetramethylethylenediamine (tmeda), 2,2'-bipyridine (bipy), N,N'-diphenylformamidine (Hdpfa), N,N'-(2,6-diisopropylphenyl)-2,4-pentanediimine ((dipp)2nacnacH), 2,2'-dipydridylamine (Hdpa), and 2,6-bis(2-benzimidazolyl)pyridine (H2bbp). As a result, 22 new compounds are obtained, which frequently exhibit a metal center coordinated only by the sterically demanding ligand. Options and restrictions for the liquid-phase syntheses of novel coordination compounds using the oxidation of base-metal nanoparticles near room temperature are evaluated.
Collapse
Affiliation(s)
- Lara-Pauline Faden
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, D-76131 Karlsruhe, Germany
| | - Andreas Reiß
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, D-76131 Karlsruhe, Germany
| | - Radian Popescu
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstraße 7, D-76131 Karlsruhe, Germany
| | - Carsten Donsbach
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, D-76131 Karlsruhe, Germany
| | - Jörg Göttlicher
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), P.O. 3640, D-76021 Karlsruhe, Germany
| | - Tonya Vitova
- Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology (KIT), P.O. 3640, D-76021 Karlsruhe, Germany
| | - Dagmar Gerthsen
- Laboratory for Electron Microscopy, Karlsruhe Institute of Technology (KIT), Engesserstraße 7, D-76131 Karlsruhe, Germany
| | - Claus Feldmann
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstrasse 15, D-76131 Karlsruhe, Germany
| |
Collapse
|
4
|
Maulbetsch T, Frech P, Scheele M, Törnroos KW, Kunz D. A Saddle-Shaped Expanded Porphyrinoid Fitting C 60. Chemistry 2023; 29:e202302104. [PMID: 37421647 DOI: 10.1002/chem.202302104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
We present the synthesis of a new type of an expanded porphyrinoid macrocycle with a saddle-shaped morphology and its complexation of C60 guest molecules. The new macrocycle contains four carbazole and four triazole moieties and can be readily synthesized via a copper-catalyzed click reaction. It shows specific photo-physical properties including fluorescence with a high quantum yield of 60 %. The combination of the saddle-shaped geometry with the expanded π-system allows for host-guest interactions with C60 in a stacked polymer fashion. Evidence for the presence of a host-guest complex is provided both in solution by NMR spectroscopy and in the solid state by X-ray structure analysis.
Collapse
Affiliation(s)
- Theo Maulbetsch
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Philipp Frech
- Institut für Physikalische Chemie und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Marcus Scheele
- Institut für Physikalische Chemie und Theoretische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Karl W Törnroos
- Department of Chemistry, University of Bergen, 5007, Bergen, Norway
| | - Doris Kunz
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| |
Collapse
|
5
|
Białek MJ, Hurej K, Furuta H, Latos-Grażyński L. Organometallic chemistry confined within a porphyrin-like framework. Chem Soc Rev 2023; 52:2082-2144. [PMID: 36852929 DOI: 10.1039/d2cs00784c] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The world of modified porphyrins changed forever when an N-confused porphyrin (NCP), a porphyrin isomer, was first published in 1994. The replacement of one inner nitrogen with a carbon atom revolutionised the chemistry that one is able to perform within the coordination cavity. One could explore new pathways in the organometallic chemistry of porphyrins by forcing a carbon fragment from the ring or an inner substituent to sit close to an inserted metal ion. Since the NCP discovery, a series of modifications became available to tune the coordination properties of the cavity, introducing a fascinating realm of carbaporphyrins. The review surveys all possible carbatetraphyrins(1.1.1.1) and their spectacular coordination and organometallic chemistry.
Collapse
Affiliation(s)
- Michał J Białek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50383 Wrocław, Poland.
| | - Karolina Hurej
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50383 Wrocław, Poland.
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | | |
Collapse
|
6
|
Organometallic Chemistry within the Structured Environment Provided by the Macrocyclic Cores of Carbaporphyrins and Related Systems. Molecules 2023; 28:molecules28031496. [PMID: 36771158 PMCID: PMC9920839 DOI: 10.3390/molecules28031496] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
The unique environment within the core of carbaporphyrinoid systems provides a platform to explore unusual organometallic chemistry. The ability of these structures to form stable organometallic derivatives was first demonstrated for N-confused porphyrins but many other carbaporphyrin-type systems were subsequently shown to exhibit similar or complementary properties. Metalation commonly occurs with catalytically active transition metal cations and the resulting derivatives exhibit widely different physical, chemical and spectroscopic properties and range from strongly aromatic to nonaromatic and antiaromatic species. Metalation may trigger unusual, highly selective, oxidation reactions. Alkyl group migration has been observed within the cavity of metalated carbaporphyrins, and in some cases ring contraction of the carbocyclic subunit takes place. Over the past thirty years, studies in this area have led to multiple synthetic routes to carbaporphyrinoid ligands and remarkable organometallic chemistry has been reported. An overview of this important area is presented.
Collapse
|
7
|
Rudolf R, Neuman NI, Walter RRM, Ringenberg MR, Sarkar B. Mesoionic Imines (MIIs): Strong Donors and Versatile Ligands for Transition Metals and Main Group Substrates. Angew Chem Int Ed Engl 2022; 61:e202200653. [PMID: 35286004 PMCID: PMC9322014 DOI: 10.1002/anie.202200653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Indexed: 11/08/2022]
Abstract
We report the synthesis and the reactivity of 1,2,3-triazolin-5-imine type mesoionic imines (MIIs). The MIIs are accessible by a base-mediated cycloaddition between a substituted acetonitrile and an aromatic azide, methylation by established routes and subsequent deprotonation. C=O-stretching frequencies in MII-CO2 and -Rh(CO)2 Cl complexes were used to determine the overall donor strength. The MIIs are stronger donors than the N-heterocyclic imines (NHIs). MIIs are excellent ligands for main group elements and transition metals in which they display substituent-induced fluorine-specific interactions and undergo C-H activation. DFT calculations gave insights into the frontier orbitals of the MIIs. The calculations predict a relatively small HOMO-LUMO gap compared to other related ligands. MIIs are potentially able to act as both π-donor and π-acceptor ligands. This report highlights the potential of MIIs to display exciting properties with a huge potential for future development.
Collapse
Affiliation(s)
- Richard Rudolf
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Nicolás I. Neuman
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
- Instituto de Desarrollo Tecnológico para la Industria QuímicaINTEC, UNL-CONICET Predio CONICET Santa Fe “Dr. Alberto Cassano”Colectora Ruta Nacional 168, Km 0Paraje El PozoS3000ZAA) Santa FeArgentina
| | - Robert R. M. Walter
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Mark. R. Ringenberg
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische KoordinationschemieInstitut für Anorganische ChemieUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| |
Collapse
|
8
|
Rudolf R, Neuman NI, Walter RRM, Ringenberg MR, Sarkar B. Mesoionische Imine (MIIs): Starke Donoren und vielseitige Liganden für Übergangsmetalle und Hauptgruppensubstrate. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Richard Rudolf
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Nicolás I. Neuman
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
- Instituto de Desarrollo Tecnológico para la Industria Química CINTEC, VUNL-CONICET VPredio CONICET Santa Fe “Dr. Alberto Cassano“ Colectora Ruta Nacional 168, Km 0 Paraje El Pozo S3000ZAA) Santa Fe Argentinien
| | - Robert R. M. Walter
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Mark. R. Ringenberg
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Biprajit Sarkar
- Lehrstuhl für Anorganische Koordinationschemie Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| |
Collapse
|
9
|
Maity R, Sarkar B. Chemistry of Compounds Based on 1,2,3-Triazolylidene-Type Mesoionic Carbenes. JACS AU 2022; 2:22-57. [PMID: 35098220 PMCID: PMC8790748 DOI: 10.1021/jacsau.1c00338] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 05/04/2023]
Abstract
Mesoionic carbenes (MICs) of the 1,2,3-triazolylidene type have established themselves as a popular class of compounds over the past decade. Primary reasons for this popularity are their modular synthesis and their strong donor properties. While such MICs have mostly been used in combination with transition metals, the past few years have also seen their utility together with main group elements. In this paper, we present an overview of the recent developments on this class of compounds that include, among others, (i) cationic and anionic MIC ligands, (ii) the donor/acceptor properties of these ligands with a focus on the several methods that are known for estimating such donor/acceptor properties, (iii) a detailed overview of 3d metal complexes and main group compounds with these MIC ligands, (iv) results on the redox and photophysical properties of compounds based on MIC ligands, and (v) an overview on electrocatalysis, redox-switchable catalysis, and small-molecule activation to highlight the applications of compounds based on MIC ligands in contemporary chemistry. By discussing several aspects from the synthetic, spectroscopic, and application point of view of these classes of compounds, we highlight the state of the art of compounds containing MICs and present a perspective for future research in this field.
Collapse
Affiliation(s)
- Ramananda Maity
- Dr.
R. Maity Department of Chemistry, University
of Calcutta, 92, A. P.
C. Road, Kolkata 700009, India
| | - Biprajit Sarkar
- Prof.
Dr. B. Sarkar Lehrstuhl für Anorganische Koordinationschemie,
Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
10
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 231] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
11
|
Das M, Adinarayana B, Srinivasan A. Recent Advances in the Design and Syntheses of Porphyrinoids by Embedding Higher Analogues of Arene and Pyridine Units. ACS OMEGA 2021; 6:35204-35212. [PMID: 34984253 PMCID: PMC8717398 DOI: 10.1021/acsomega.1c05444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/26/2021] [Indexed: 06/07/2023]
Abstract
Due to enthralling applications in various fields and augmenting fundamental wisdom, π-conjugated macrocycles in general and porphyrin systems in particular are constantly explored. Subtle modifications of porphyrin structure can amend the rudimentary properties. Pursuing innovative properties provides impetus to underpin arene or pyridine moiety embedded porphyrin derivatives. There have been several reviews related to arene incorporated carbaporphyrinoids; however, recent developments of porphyrin analogues by introducing higher analogues of arenes and pyridine units are not adequately inspected. This mini-review mainly focuses on biphenyl, bipyridine, terphenyl, and mixed arene pyridine embedded porphyrin analogues and their coordination chemistry.
Collapse
Affiliation(s)
- Mainak Das
- Department
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - B. Adinarayana
- Department
of Chemistry, Imperial College London, 80 Wood Lane, London W12 7TA, United
Kingdom
| | - A. Srinivasan
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), HBNI, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
12
|
Watt FA, Sieland B, Dickmann N, Schoch R, Herbst-Irmer R, Ott H, Paradies J, Kuckling D, Hohloch S. Coupling of CO 2 and epoxides catalysed by novel N-fused mesoionic carbene complexes of nickel(II). Dalton Trans 2021; 50:17361-17371. [PMID: 34788774 DOI: 10.1039/d1dt03311e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the syntheses of two rigid mesoionic carbene (MIC) ligands with a carbazole backbone via an intramolecular Finkelstein-cyclisation cascade and investigate their coordination behavior towards nickel(II) acetate. Despite the nickel(II) carbene complexes 4a,b showing only minor differences in their chemical composition, they display curious differences in their chemical properties, e.g. solubility. Furthermore, the potential of these novel MIC complexes in the coupling of carbon dioxide and epoxides as well as the differences in reactivity compared to classical NHC-derived complexes are evaluated.
Collapse
Affiliation(s)
- Fabian A Watt
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Benedikt Sieland
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Nicole Dickmann
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Roland Schoch
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Regine Herbst-Irmer
- University of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, 37077 Göttingen, Germany
| | - Holger Ott
- Bruker AXS GmbH, Östliche Rheinbrückenstraße 49, 76187 Karlsruhe, Germany
| | - Jan Paradies
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Dirk Kuckling
- Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- University of Innsbruck, Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
13
|
Neururer F, Liu S, Leitner D, Baltrun M, Fisher KR, Kopacka H, Wurst K, Daumann LJ, Munz D, Hohloch S. Mesoionic Carbenes in Low- to High-Valent Vanadium Chemistry. Inorg Chem 2021; 60:15421-15434. [PMID: 34590834 PMCID: PMC8527456 DOI: 10.1021/acs.inorgchem.1c02087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/12/2022]
Abstract
We report the synthesis of vanadium(V) oxo complex 1 with a pincer-type dianionic mesoionic carbene (MIC) ligand L1 and the general formula [VOCl(L1)]. A comparison of the structural (SC-XRD), electronic (UV-vis), and electrochemical (cyclic voltammetry) properties of 1 with the benzimidazolinylidene congener 2 (general formula [VOCl(L2)]) shows that the MIC is a stronger donor also for early transition metals with low d-electron population. Since electrochemical studies revealed both complexes to be reversibly reduced, the stronger donor character of MICs was not only demonstrated for the vanadium(V) but also for the vanadium(IV) oxidation state by isolating the reduced vanadium(IV) complexes [Co(Cp*)2][1] and [Co(Cp*)2][2] ([Co(Cp*)2] = decamethylcobaltocenium). The electronic structures of the compounds were investigated by computational methods. Complex 1 was found to be a moderate precursor for salt metathesis reactions, showing selective reactivity toward phenolates or secondary amides, but not toward primary amides and phosphides, thiophenols, or aryls/alkyls donors. Deoxygenation with electron-rich phosphines failed to give the desired vanadium(III) complex. However, treatment of the deprotonated ligand precursor with vanadium(III) trichloride resulted in the clean formation of the corresponding MIC vanadium(III) complex 6, which undergoes a clean two-electron oxidation with organic azides yielding the corresponding imido complexes. The reaction with TMS-N3 did not afford a nitrido complex, but instead the imido complex 10. This study reveals that, contrary to popular belief, MICs are capable of supporting early transition-metal complexes in a variety of oxidation states, thus making them promising candidates for the activation of small molecules and redox catalysis.
Collapse
Affiliation(s)
- Florian
R. Neururer
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Shenyu Liu
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Daniel Leitner
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Marc Baltrun
- Faculty
of Science, Department of Chemistry, University
of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Katherine R. Fisher
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Holger Kopacka
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Klaus Wurst
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Lena J. Daumann
- Department
Chemie, Ludwigs-Maximilians-University Munich, Butenandtstraße 5-13 Haus D, 81377 Munich, Germany
| | - Dominik Munz
- Fakultät
NT, Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4.1, 66123 Saarbrücken, Germany
| | - Stephan Hohloch
- Institute
of Inorganic, General and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
14
|
Kuriyama S, Zhao W, Nishibayashi Y. Synthesis and Characterization of Rhodium Complex Bearing Anionic CNC‐Type Pincer Ligand with Pyrrolide and Imidazo[1,5‐
a
]pyridin‐3‐ylidene Moieties. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shogo Kuriyama
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Wenhao Zhao
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry School of Engineering The University of Tokyo, Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
15
|
Mono‐ and Di‐Mesoionic Carbene‐Boranes: Synthesis, Structures and Utility as Reducing Agents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Pinter P, Schüßlbauer CM, Watt FA, Dickmann N, Herbst-Irmer R, Morgenstern B, Grünwald A, Ullrich T, Zimmer M, Hohloch S, Guldi DM, Munz D. Bright luminescent lithium and magnesium carbene complexes. Chem Sci 2021; 12:7401-7410. [PMID: 34163830 PMCID: PMC8171342 DOI: 10.1039/d1sc00846c] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
We report on the convenient synthesis of a CNC pincer ligand composed of carbazole and two mesoionic carbenes, as well as the corresponding lithium- and magnesium complexes. Mono-deprotonation affords a rare "naked" amide anion. In contrast to the proligand and its mono-deprotonated form, tri-deprotonated s-block complexes show bright luminescence, and their photophysical properties were therefore investigated by absorption- and luminescence spectroscopy. They reveal a quantum yield of 16% in solution at ambient temperature. Detailed quantum-chemical calculations assist in rationalizing the emissive properties based on an Intra-Ligand-Charge-Transfer (ILCT) between the carbazolido- and mesoionic carbene ligands. (Earth-)alkali metals prevent the distortion of the ligand following excitation and, thus, by avoiding non-radiative deactivation support bright luminescence.
Collapse
Affiliation(s)
- Piermaria Pinter
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
| | - Christoph M Schüßlbauer
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 3 D-91058 Erlangen Germany
| | - Fabian A Watt
- Department of Chemistry, Inorganic Chemistry, Paderborn University Warburger Straße 100 D-33098 Paderborn Germany
| | - Nicole Dickmann
- Department of Chemistry, Inorganic Chemistry, Paderborn University Warburger Straße 100 D-33098 Paderborn Germany
| | - Regine Herbst-Irmer
- University of Göttingen, Institute of Inorganic Chemistry Tammannstraße 4 D-37077 Göttingen Germany
| | - Bernd Morgenstern
- Inorganic Solid State Chemistry, Saarland University Campus C4.1 D-66123 Saarbrücken Germany
| | - Annette Grünwald
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Inorganic Chemistry: Coordination Chemistry, Saarland University Campus C4.1 D-66123 Saarbrücken Germany
| | - Tobias Ullrich
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 3 D-91058 Erlangen Germany
| | - Michael Zimmer
- Inorganic and General Chemistry, Saarland University Campus C4.1 D-66123 Saarbrücken Germany
| | - Stephan Hohloch
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck Innrain 80-82 A-6020 Innsbruck Austria
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 3 D-91058 Erlangen Germany
| | - Dominik Munz
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg Egerlandstr. 1-3 D-91058 Erlangen Germany
- Inorganic Chemistry: Coordination Chemistry, Saarland University Campus C4.1 D-66123 Saarbrücken Germany
| |
Collapse
|
17
|
Maulbetsch T, Kunz D. Carbenaporphyrins: No Longer Missing Ligands in N-Heterocyclic Carbene Chemistry. Angew Chem Int Ed Engl 2021; 60:2007-2012. [PMID: 33078891 PMCID: PMC7898644 DOI: 10.1002/anie.202013434] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 11/09/2022]
Abstract
The synthesis of an NHC-containing porphyrinoid ligand is presented. The formally antiaromatic 20 πe- macrocyclic framework can be obtained via a 1,3-dipolar cycloaddition ("click-reaction") to form two triazole moieties which were alkylated to the respective triazolium macrocycle. Deprotonation of the ligand precursor with lithium bases to the respective dilithio carbenaporphyrin complex and transmetallation to scandium lead to complexes that exhibit orange fluorescence. Optical property combined with TD-DFT studies verify an aromatic character for each heterocyclic moiety rather than an antiaromatic macrocycle in the ligand precursor as well as in the complexes. While the geometric features of the carbenaporphyrin ligand strongly resemble those of porphyrin, DFT calculations reveal a stronger electron-donating ability of the new ligand.
Collapse
Affiliation(s)
- Theo Maulbetsch
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Doris Kunz
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|