1
|
Liu S, Wang Z, Wu S, Cao T, Zhao G. Class-specific recognition and monitoring of environmental steroid estrogens in real water systems utilizing aptamer base substitution mutagenesis approach. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132704. [PMID: 37839381 DOI: 10.1016/j.jhazmat.2023.132704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
The same class of environmental steroid estrogens (SEs) with the highest estrogenic activity share the same chemical core structure and are often found together in the environment, posing significant risks to organismal health and environmental safety due to toxicity accumulation. In this study, a novel method for constructing the group-targeting aptasensor was developed to comprehensively analyze SEs. Through artificial intervention base substitution mutagenesis of adjacent bases T13 and C20 of the aptamer-binding domain recognizing 17β-estradiol, combined with docking calculations, the group-targeting SEs-aptamer for class-specific recognition SEs, such as estrone, estradiol, estriol, and ethinylestradiol were obtained. The binding constant of the SEs-aptamer to the SEs was 108 M-1. The established group-targeting SEs aptasensor exhibited high sensitivity within a concentration range from 0.1 to 10 nM and demonstrated strong interference resistance, as well as high stability and wide pH water applicability. It was further applied to analyze real water samples and monitor changes in SEs concentrations during the removal process by Chlorella pyrenoidosa. These successful applications have demonstrated the excellent ability of this aptasensor to monitor SE in the environment. The method offered a new approach and idea for recognizing and detecting the same class of environmental pollutants in complex systems.
Collapse
Affiliation(s)
- Siyao Liu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital,Tongji University, Shanghai 200092, People's Republic of China
| | - Zhiming Wang
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital,Tongji University, Shanghai 200092, People's Republic of China
| | - Siqi Wu
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital,Tongji University, Shanghai 200092, People's Republic of China
| | - Tongcheng Cao
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital,Tongji University, Shanghai 200092, People's Republic of China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital,Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
2
|
Dohno C, Kimura M, Fujiwara Y, Nakatani K. Photoswitchable molecular glue for RNA: reversible photocontrol of structure and function of the ribozyme. Nucleic Acids Res 2023; 51:9533-9541. [PMID: 37615580 PMCID: PMC10570050 DOI: 10.1093/nar/gkad690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023] Open
Abstract
Single-stranded RNA folds into a variety of secondary and higher-order structures. Distributions and dynamics of multiple RNA conformations are responsible for the biological function of RNA. We here developed a photoswitchable molecular glue for RNA, which could reversibly control the association of two unpaired RNA regions in response to light stimuli. The photoswitchable molecular glue, NCTA, is an RNA-binding ligand possessing a photoisomerizable azobenzene moiety. Z-NCTA is an active ligand for the target RNA containing 5'-WGG-3'/5'-WGG-3' (W = U or A) site and stabilizes its hybridized state, while its isomer E-NCTA is not. Photoreversible isomerization of NCTA enabled control of the secondary and tertiary structure of the target RNA. The RNA-cleaving activity of hammerhead ribozyme, where appropriate RNA folding is necessary, could be reversibly regulated by photoirradiation in cells treated with NCTA, demonstrating precise photocontrol of RNA structure and function by the photoswitchable molecular glue.
Collapse
Affiliation(s)
- Chikara Dohno
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Maki Kimura
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yusuke Fujiwara
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
3
|
Tang L, Huang M, Zhang M, Pei Y, Liu Y, Wei Y, Yang C, Xie T, Zhang D, Zhou R, Song Y, Song J. De Novo Evolution of an Antibody-Mimicking Multivalent Aptamer via a DNA Framework. SMALL METHODS 2023:e2300327. [PMID: 37086150 DOI: 10.1002/smtd.202300327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Multivalent interactions can often endow ligands with more efficient binding performance toward target molecules. Generally speaking, a multivalent aptamer can be constructed via post-assembly based on chemical structural information of target molecules and pre-identified monovalent aptamers derived from traditional systematic evolution of ligands by exponential enrichment (SELEX) technology. However, many target molecules may not have known matched aptamer partners, thus a de novo evolution will be highly desired as an alternative strategy for directed selection of a high-avidity, multivalent aptamer. Here, inspired by the superiority of multivalent interactions between antibodies and antigens, a direct SELEX strategy with a preorganized DNA framework library for an "Antibody-mimicking multivalent aptamer" (Amap) selection to epithelial cell adhesion molecule (EpCAM), a model target protein is reported. The Amap presents a relatively good binding affinity through both aptamer moieties concurrently binding to EpCAM, which has been confirmed by affinity analysis and molecular modeling. Furthermore, dynamic interactions between Amap and EpCAM are directly visualized by magnetic tweezers at the single-molecule level. A nice binding affinity of Amap to EpCAM-positive cancer cells has also been verified, which hints that their Amap-SELEX strategy has the potential to be a new route for de novo evolution of multivalent aptamers.
Collapse
Affiliation(s)
- Linlin Tang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mengjiao Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi, 541004, P. R. China
| | - Mingjiao Zhang
- School of Physics, College of Life Sciences and, Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yong Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Teng Xie
- School of Physics, College of Life Sciences and, Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Dong Zhang
- School of Physics, College of Life Sciences and, Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ruhong Zhou
- School of Physics, College of Life Sciences and, Institute of Quantitative Biology, Zhejiang University, Hangzhou, 310058, P. R. China
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, the Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, P. R. China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, P. R. China
| |
Collapse
|
4
|
A review: Construction of aptamer screening methods based on improving the screening rate of key steps. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Zhou F, Wang P, Chen J, Zhu Z, Li Y, Wang S, Wu S, Sima Y, Fu T, Tan W, Zhao Z. A photochemically covalent lock stabilizes aptamer conformation and strengthens its performance for biomedicine. Nucleic Acids Res 2022; 50:9039-9050. [PMID: 35993818 PMCID: PMC9458419 DOI: 10.1093/nar/gkac703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 08/04/2022] [Indexed: 12/24/2022] Open
Abstract
Aptamers' vast conformation ensemble consisting of interconverting substates severely impairs their performance and applications in biomedicine. Therefore, developing new chemistries stabilizing aptamer conformation and exploring the conformation-performance relationship are highly desired. Herein, we developed an 8-methoxypsoralen-based photochemically covalent lock to stabilize aptamer conformation via crosslinking the inter-stranded thymine nucleotides at TpA sites. Systematical studies and molecular dynamics simulations were performed to explore the conformation-performance relationship of aptamers, revealing that conformation-stabilized aptamers displayed better ability to bind targets, adapt to physiological environment, resist macrophage uptake, prolong circulation half-life, accumulate in and penetrate into tumor than their counterparts. As expected, conformation-stabilized aptamers efficiently improved the therapeutic efficacy of aptamer-drug conjugation on tumor-bearing mice. Collectively, our study has developed a general, simple and economic strategy to stabilize aptamer conformation and shed light on the conformation-performance relationship of aptamers, laying a basis for promoting their basic researches and applications in biomedicine.
Collapse
Affiliation(s)
| | | | | | - Zhijia Zhu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Youshan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Sujuan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Shanchao Wu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yingyu Sima
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ting Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences Hangzhou, Zhejiang 310022, China,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240, China
| | - Zilong Zhao
- To whom correspondence should be addressed. Tel: +86 731 88821894; Fax: +86 731 88821894;
| |
Collapse
|
6
|
Ling P, Cheng S, Wang L, Sun X, Gao X, Gao F. Electrochemically classifying DNA structure based on the small molecule-DNA recognition. Bioelectrochemistry 2022; 147:108193. [PMID: 35753199 DOI: 10.1016/j.bioelechem.2022.108193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/02/2022]
Abstract
Herein, we reported the differential binding ability of aminoglycosides to DNA structures using electrochemical method through principal component analysis (PCA) to classify different DNA secondary structures and understand the link between secondary structure and DNA conformation. In these analyses, the DNA with different secondary structure motifs: bulge, internal loop, hairpin loop and stem loop were designed. The aminoglycosides as receptors were modified on the surface of electrode. In the presence of DNA, the DNA will be absorbed on the surface of electrode via the recognition of DNA and aminoglycosides, resulting in the electrochemical signal observed in [Fe(CN)6]3-/4-. Furthermore, the DNA structures labeled with 2-aminopurine (2-AP) at the structural motif of interest were also employed to study the binding affinity between aminoglycosides and different DNA motifs. The PCA suggested that this method may achieve nucleotide-specific classification of two independent secondary structure motifs, and the structure and sequence of DNA and the size and structure of small molecule could affect the binding ability of the aminoglycosides and DNA. This approach presents a new approach to classify DNA structure and offers ideas for designing targeted drugs small molecule compounds for wound dressing and drug delivery.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| | - Shan Cheng
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Linyu Wang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xianping Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China.
| |
Collapse
|
7
|
Zhang J, Huang Y, Sun M, Wan S, Yang C, Song Y. Recent Advances in Aptamer-Based Liquid Biopsy. ACS APPLIED BIO MATERIALS 2022; 5:1954-1979. [PMID: 35014838 DOI: 10.1021/acsabm.1c01202] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Liquid biopsy capable of noninvasive and real-time molecular profiling is considered as a breakthrough technology, endowing an opportunity for precise diagnosis of individual patients. Extracellular vesicles (EVs) and circulating tumor cells (CTCs) consisting of substantial disease-related molecular information play an important role in liquid biopsy. Therefore, it is critically significant to exploit high-performance recognition ligands for efficient isolation and analysis of EVs and CTCs from complex body fluids. Aptamers exhibit extraordinary merits of high specificity and affinity, which are considered as superior recognition ligands for liquid biopsy. In this review, we first summarize recent advanced strategies for the evolution of high-performance aptamers and the construction of various aptamer-based recognition elements. Subsequently, we mainly discuss the isolation and analysis of EVs and CTCs based on the aptamer functioned biomaterials/biointerface. Ultimately, we envision major challenges and future direction of aptamer-based liquid biopsy for clinical utilities.
Collapse
Affiliation(s)
- Jialu Zhang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihao Huang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Miao Sun
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuang Wan
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yanling Song
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
8
|
Yuan R, Li HK, He H. Recent advances in metal/covalent organic framework-based electrochemical aptasensors for biosensing applications. Dalton Trans 2021; 50:14091-14104. [PMID: 34609402 DOI: 10.1039/d1dt02360h] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The booming development of novel porous materials, metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs) has been attracting a lot of attention due to their designabilities, diversities, and extensive applications. MOFs and COFs provide a new potential opportunity and platform to fabricate electrochemical aptasensors for biosensing applications. Compared to other traditional materials, MOF/COF-based electrochemical biosensors can appreciably amplify the electrochemical response signals to improve the sensing performance. Herein, we provide a comprehensive overview of MOF/COF-based electrochemical aptasensors for monitoring different ultra-trace analytes (e.g. antibiotics, pesticides, and cancer markers). This review systematically discusses the classification of electrochemical aptasensors based on various functional materials, including pure MOFs, MOF/conductive composites, metal nanoparticle/MOF composites, pure COFs, COFs/conductive composites, and other hybrid materials. Furthermore, some typical MOF/COF-based electrochemical aptasensors in the recognition of specific targets are described in detail to improve and guide further research for biosensing applications.
Collapse
Affiliation(s)
- Rongrong Yuan
- Department of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Hong-Kai Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|