1
|
Tao Y, Ma W, Sun R, Huang C, Lu Q. Asymmetric Paired Electrolysis: Enantioselective Alkylation of Sulfonylimines via C(sp 3)-H Functionalization. Angew Chem Int Ed Engl 2024; 63:e202409222. [PMID: 38958225 DOI: 10.1002/anie.202409222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Enantioselective transformation of ubiquitous C(sp3)-H bonds into three-dimensional chiral scaffolds is of longstanding interest to synthetic chemists. Herein, an asymmetric paired electrolysis enables a highly efficient and sustainable approach to the enantioselective alkylation of sulfonylimines via C(sp3)-H functionalization. In this protocol, anodic oxidation for benzylic radical formation and Lewis acid-catalyzed sulfonylimine reduction on the cathode were seamlessly cross-coupled (up to 88 % yield). Enantioenriched chiral amines containing a tetrasubstituted carbon stereocenter are accessed with high enantioselectivity (up to 96 % ee). Mechanistic studies suggest that the amine generated in situ could serve as a base to deprotonate phenols and decrease the oxidation potential of the reaction, allowing phenols with lower potentials to be preferentially oxidized.
Collapse
Affiliation(s)
- Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wan Ma
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
2
|
Luo J, Davenport MT, Ess DH, Liu TL. Nickel-Catalyzed Electrochemical Cross-Electrophile C(sp 2)-C(sp 3) Coupling via a Ni II Aryl Amido Intermediate. Angew Chem Int Ed Engl 2024; 63:e202407118. [PMID: 38849318 DOI: 10.1002/anie.202407118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/09/2024]
Abstract
Cross-electrophile coupling (XEC) between aryl halides and alkyl halides is a streamlined approach for C(sp2)-C(sp3) bond construction, which is highly valuable in medicinal chemistry. Based on a key NiII aryl amido intermediate, we developed a highly selective and scalable Ni-catalyzed electrochemical XEC reaction between (hetero)aryl halides and primary and secondary alkyl halides. Experimental and computational mechanistic studies indicate that an amine secondary ligand slows down the oxidative addition process of the Ni-polypyridine catalyst to the aryl bromide and a NiII aryl amido intermediate is formed in situ during the reaction process. The relatively slow oxidative addition is beneficial for enhancing the selectivity of the XEC reaction. The NiII aryl amido intermediate stabilizes the NiII-aryl species to prevent the aryl-aryl homo-coupling side reactions and acts as a catalyst to activate the alkyl bromide substrates. This electrosynthesis system provides a facile, practical, and scalable platform for the formation of (hetero)aryl-alkyl bonds using standard Ni catalysts under mild conditions. The mechanistic insights from this work could serve as a great foundation for future studies on Ni-catalyzed cross-couplings.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| |
Collapse
|
3
|
Liu ZR, Zhu XY, Guo JF, Ma C, Zuo Z, Mei TS. Synergistic use of photocatalysis and convergent paired electrolysis for nickel-catalyzed arylation of cyclic alcohols. Sci Bull (Beijing) 2024; 69:1866-1874. [PMID: 38670850 DOI: 10.1016/j.scib.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
The merging of transition metal catalysis with electrochemistry has become a powerful tool for organic synthesis because catalysts can govern the reactivity and selectivity. However, coupling catalysts with alkyl radical species generated by anodic oxidation remains challenging because of electrode passivation, dimerization, and overoxidation. In this study, we developed convergent paired electrolysis for the coupling of nickel catalysts with alkyl radicals derived from photoinduced ligand-to-metal charge-transfer of cyclic alcohols and iron catalysts, providing a practical method for site-specific and remote arylation of ketones. The synergistic use of photocatalysis with convergent paired electrolysis can provide alternative avenues for metal-catalyzed radical coupling reactions.
Collapse
Affiliation(s)
- Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Yu Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian-Feng Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
4
|
Gan Y, Zhou JF, Li X, Liu JR, Liu FJ, Hong X, Ye B. Zirconaaziridine-Mediated Ni-Catalyzed Diastereoselective C(sp 2)-Glycosylation. J Am Chem Soc 2024. [PMID: 38859580 DOI: 10.1021/jacs.4c04587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In the realm of organic synthesis, the catalytic and stereoselective formation of C-glycosidic bonds is a pivotal process, bridging carbohydrates with aglycones. However, the inherent chirality of the saccharide scaffold often has a substantial impact on the stereoinduction imposed by a chiral ligand. In this study, we have established an unprecedented zirconaaziridine-mediated asymmetric nickel catalysis, enabling the diastereoselective coupling of bench-stable glycosyl phosphates with a range of (hetero)aromatic and glycal iodides as feasible coupling electrophiles. Our developed method showcases a broad scope and a high tolerance for various functional groups. More importantly, precise stereocontrol toward both anomeric configurations of forming C(sp2)-glycosides can be realized by simply utilizing the popular chiral bioxazoline (biOx) ligands in this reductive Ni catalysis. Regarding the operating mechanism, both experimental and computational studies support the occurrence of a redox transmetalation process, leading to the formation of a transient, bimetallic Ni-Zr species that acts as a potent and efficient single-electron reductant in the catalytic process.
Collapse
Affiliation(s)
- Yu Gan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Feng Zhou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuejiao Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ji-Ren Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fang-Jie Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street, No. 2, Beijing 100190, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, China
| | - Baihua Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Luo J, Davenport MT, Ess DH, Liu TL. Electro/Ni Dual-Catalyzed Decarboxylative C(sp 3)-C(sp 2) Cross-Coupling Reactions of Carboxylates and Aryl Bromide. Angew Chem Int Ed Engl 2024; 63:e202403844. [PMID: 38518115 DOI: 10.1002/anie.202403844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Paired redox-neutral electrolysis offers an attractive green platform for organic synthesis by avoiding sacrificial oxidants and reductants. Carboxylates are non-toxic, stable, inexpensive, and widely available, making them ideal nucleophiles for C-C cross-coupling reactions. Here, we report the electro/Ni dual-catalyzed redox-neutral decarboxylative C(sp3)-C(sp2) cross-coupling reactions of pristine carboxylates with aryl bromides. At a cathode, a NiII(Ar)(Br) intermediate is formed through the activation of Ar-Br bond by a NiI-bipyridine catalyst and subsequent reduction. At an anode, the carboxylates, including amino acid, benzyl carboxylic acid, and 2-phenoxy propionic acid, undergo oxidative decarboxylation to form carbon-based free radicals. The combination of NiII(Ar)(Br) intermediate and carbon radical results in the formation of C(sp3)-C(sp2) cross-coupling products. The adaptation of this electrosynthesis method to flow synthesis and valuable molecule synthesis was demonstrated. The reaction mechanism was systematically studied through electrochemical voltammetry and density functional theory (DFT) computational studies. The relationships between the electrochemical properties of carboxylates and the reaction selectivity were revealed. The electro/Ni dual-catalyzed cross-coupling reactions described herein expand the chemical space of paired electrochemical C(sp3)-C(sp2) cross-coupling and represent a promising method for the construction of the C(sp3)-C(sp2) bonds because of the ubiquitous carboxylate nucleophiles and the innate scalability and flexibility of electrochemical flow-synthesis technology.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah, 84604, United States
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, 0300 Old Main Hill, Logan, Utah, 84322, United States
| |
Collapse
|
6
|
Grotjahn S, Graf C, Zelenka J, Pattanaik A, Müller L, Kutta RJ, Rehbein J, Roithová J, Gschwind RM, Nuernberger P, König B. Reactivity of Superbasic Carbanions Generated via Reductive Radical-Polar Crossover in the Context of Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400815. [PMID: 38408163 DOI: 10.1002/anie.202400815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Photocatalytic reactions involving a reductive radical-polar crossover (RRPCO) generate intermediates with carbanionic reactivity. Many of these proposed intermediates resemble highly reactive organometallic compounds. However, conditions of their formation are generally not tolerated by their isolated organometallic versions and often a different reactivity is observed. Our investigations on their nature and reactivity under commonly used photocatalytic conditions demonstrate that these intermediates are indeed best described as free, superbasic carbanions capable of deprotonating common polar solvents usually assumed to be inert such as acetonitrile, dimethylformamide, and dimethylsulfoxide. Their basicity not only towards solvents but also towards electrophiles, such as aldehydes, ketones, and esters, is comparable to the reactivity of isolated carbanions in the gas-phase. Previously unsuccessful transformations thought to result from a lack of reactivity are explained by their high reactivity towards the solvent and weakly acidic protons of reaction partners. An intuitive explanation for the mode of action of photocatalytically generated carbanions is provided, which enables methods to verify reaction mechanisms proposed to involve an RRPCO step and to identify the reasons for the limitations of current methods.
Collapse
Affiliation(s)
- Sascha Grotjahn
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christina Graf
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jan Zelenka
- Department of Spectroscopy and Catalysis, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Aryaman Pattanaik
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lea Müller
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Roger Jan Kutta
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Julia Rehbein
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jana Roithová
- Department of Spectroscopy and Catalysis, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Ruth M Gschwind
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Patrick Nuernberger
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
7
|
Wang J, Yu R, Nian C, Liao M, Han Z, Sun J, Huang H. Metal-Free C(sp 3)-H Bond Arylation of 3-Methylindole Derivatives via 3-Indole Imine Methides. Org Lett 2023; 25:8478-8483. [PMID: 37966338 DOI: 10.1021/acs.orglett.3c03406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Direct arylation of the benzylic C(sp3)-H bond is one of the most straightforward strategies for the construction of multi-aryl methanes, owing to the extraordinary step and atom economy. In this paper, we developed the first metal-free arylation of the C(sp3)-H bond in 3-methylindoles, thereby providing rapid access to a range of diaryl- and triarylmethanes with two indole rings. Mechanistically, 3-indole imine methide serves as the key intermediate. Water plays a crucial role in this process, likely serving as a proton shuttle to facilitate the key 1,3-proton transfer step in this reaction and, thus, enhance the reaction efficiency.
Collapse
Affiliation(s)
- Jie Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Run Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Cuicui Nian
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Maoyan Liao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jianwei Sun
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay Kowloon, Hong Kong Special Administrative Region of the People's Republic of China
| | - Hai Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
8
|
Wang YZ, Sun B, Zhu XY, Gu YC, Ma C, Mei TS. Enantioselective Reductive Cross-Couplings of Olefins by Merging Electrochemistry with Nickel Catalysis. J Am Chem Soc 2023; 145:23910-23917. [PMID: 37883710 DOI: 10.1021/jacs.3c10109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The merger of electrochemistry and transition metal catalysis has emerged as a powerful tool to join two electrophiles in an enantioselective manner. However, the development of enantioselective electroreductive cross-couplings of olefins remains a challenge. Inspired by the advantages of the synergistic use of electrochemistry with nickel catalysis, we present here a Ni-catalyzed enantioselective electroreductive cross-coupling of acrylates with aryl halides and alkyl bromides, which affords chiral α-aryl carbonyls in good to excellent enantioselectivity. Additionally, this catalytic reaction can be applied to (hetero)aryl chlorides, which is difficult to achieve by other methods. The combination of cyclic voltammetry analysis with electrode potential studies suggests that the NiI species activates aryl halides by oxidative addition and alkyl bromides by single-electron transfer.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bing Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Yu Zhu
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire RE42 6EY, United Kingdom
| | - Cong Ma
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Tian-Sheng Mei
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
9
|
Luo J, Davenport MT, Carter A, Ess DH, Liu TL. Mechanistic studies of Ni-catalyzed electrochemical homo-coupling reactions of aryl halides. Faraday Discuss 2023; 247:136-146. [PMID: 37492890 PMCID: PMC10630096 DOI: 10.1039/d3fd00069a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Ni-catalyzed electrochemical arylation is an attractive, emerging approach for molecular construction as it uses air-stable Ni catalysts and efficiently proceeds at room temperature. However, the homo-coupling of aryl halide substrates is one of the major side reactions. Herein, extensive experimental and computational studies were conducted to examine the mechanism of Ni-catalyzed electrochemical homo-coupling of aryl halides. The results indicate that an unstable NiII(Ar)Br intermediate formed through oxidative addition of the cathodically generated NiI species with aryl bromide and a consecutive chemical reduction step. For electron-rich aryl halides, homo-coupling reaction efficiency is limited by the oxidative addition step, which can be improved by negatively shifting the redox potential of the Ni-catalyst. DFT computational studies suggest a NiIII(Ar)Br2/NiII(Ar)Br ligand exchange pathway for the formation of a high-valent NiIII(Ar)2Br intermediate for reductive elimination and production of the biaryl product. This work reveals the reaction mechanism of Ni-catalyzed electrochemical homo-coupling of aryl halides, which may provide valuable information for developing cross-coupling reactions with high selectivity.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA.
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, USA.
| | - Arianna Carter
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, USA.
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, USA.
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA.
| |
Collapse
|
10
|
Luo J, Davenport MT, Callister C, Minteer SD, Ess DH, Liu TL. Understanding Formation and Roles of Ni II Aryl Amido and Ni III Aryl Amido Intermediates in Ni-Catalyzed Electrochemical Aryl Amination Reactions. J Am Chem Soc 2023; 145:16130-16141. [PMID: 37433081 PMCID: PMC10635587 DOI: 10.1021/jacs.3c04610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Ni-catalyzed electrochemical aryl amination (e-amination) is an attractive, emerging approach to building C-N bonds. Here, we report in-depth experimental and computational studies that examined the mechanism of Ni-catalyzed e-amination reactions. Key NiII-amine dibromide and NiII aryl amido intermediates were chemically synthesized and characterized. The combination of experiments and DFT calculations suggest (1) there is coordination of an amine to the NiII catalyst before the cathodic reduction and oxidative addition steps, (2) a stable NiII aryl amido intermediate is produced from the cathodic half-reaction, a critical step in controlling the selectivity between cross-coupling and undesired homo-coupling reaction pathways, (3) the diazabicycloundecene additive shifts the aryl halide oxidative addition mechanism from a NiI-based pathway to a Ni0-based pathway, and (4) redox-active bromide in the supporting electrolyte functions as a redox mediator to promote the oxidation of the stable NiII aryl amido intermediate to a NiIII aryl amido intermediate. Subsequently, the NiIII aryl amido intermediate undergoes facile reductive elimination to provide a C-N cross-coupling product at room temperature. Overall, our results provide new fundamental understandings about this e-amination reaction and guidance for further development of other Ni-catalyzed electrosynthetic reactions such as C-C and C-O cross-couplings.
Collapse
Affiliation(s)
- Jian Luo
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Michael T Davenport
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - Chad Callister
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Daniel H Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84604, United States
| | - T Leo Liu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| |
Collapse
|
11
|
Liu SP, He YH, Guan Z. Photoredox-Catalyzed Radical-Radical Cross-Coupling of Sulfonyl Chlorides with Trifluoroborate Salts. J Org Chem 2023. [PMID: 37490603 DOI: 10.1021/acs.joc.3c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Sulfones are widely found in natural products and drug molecules. Here, we disclose a strategy for direct synthesis of sulfone compounds with diverse structures by visible-light-catalyzed radical-radical cross-coupling of sulfonyl chlorides and trifluoroborate salts. Allyl, benzyl, vinyl, and aryl trifluoroborates can be successfully cross-coupled with (hetero)aryl and alkyl sulfonyl chlorides, respectively. This strategy features redox neutrality, good substrate generality, simple operation, and benign reaction conditions.
Collapse
Affiliation(s)
- Sheng-Ping Liu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Douthwaite J, Zhao R, Shim E, Mahjour B, Zimmerman PM, Cernak T. Formal Cross-Coupling of Amines and Carboxylic Acids to Form sp 3-sp 2 Carbon-Carbon Bonds. J Am Chem Soc 2023; 145:10930-10937. [PMID: 37184831 PMCID: PMC10214451 DOI: 10.1021/jacs.2c11563] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 05/16/2023]
Abstract
Amines and carboxylic acids are abundant synthetic building blocks that are classically united to form an amide bond. To access new pockets of chemical space, we are interested in the development of amine-acid coupling reactions that complement the amide coupling. In particular, the formation of carbon-carbon bonds by formal deamination and decarboxylation would be an impactful addition to the synthesis toolbox. Here, we report a formal cross-coupling of alkyl amines and aryl carboxylic acids to form C(sp3)-C(sp2) bonds following preactivation of the amine-acid building blocks as a pyridinium salt and N-acyl-glutarimide, respectively. Under nickel-catalyzed reductive cross-coupling conditions, a diversity of simple and complex substrates are united in good to excellent yield, and numerous pharmaceuticals are successfully diversified. High-throughput experimentation was leveraged in the development of the reaction and the discovery of performance-enhancing additives such as phthalimide, RuCl3, and GaCl3. Mechanistic investigations suggest phthalimide may play a role in stabilizing productive Ni complexes rather than being involved in oxidative addition of the N-acyl-imide and that RuCl3 supports the decarbonylation event, thereby improving reaction selectivity.
Collapse
Affiliation(s)
- James
L. Douthwaite
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ruheng Zhao
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Eunjae Shim
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Babak Mahjour
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Paul M. Zimmerman
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tim Cernak
- Department
of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
13
|
Wang YZ, Wang ZH, Eshel IL, Sun B, Liu D, Gu YC, Milo A, Mei TS. Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides. Nat Commun 2023; 14:2322. [PMID: 37087477 PMCID: PMC10122672 DOI: 10.1038/s41467-023-37965-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/29/2023] [Indexed: 04/24/2023] Open
Abstract
Here, we report an asymmetric electrochemical organonickel-catalyzed reductive cross-coupling of aryl aziridines with aryl iodides in an undivided cell, affording β-phenethylamines in good to excellent enantioselectivity with broad functional group tolerance. The combination of cyclic voltammetry analysis of the catalyst reduction potential as well as an electrode potential study provides a convenient route for reaction optimization. Overall, the high efficiency of this method is credited to the electroreduction-mediated turnover of the nickel catalyst instead of a metal reductant-mediated turnover. Mechanistic studies suggest a radical pathway is involved in the ring opening of aziridines. The statistical analysis serves to compare the different design requirements for photochemically and electrochemically mediated reactions under this type of mechanistic manifold.
Collapse
Affiliation(s)
- Yun-Zhao Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Inbal L Eshel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 841051, Israel
| | - Bing Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Berkshire, RE42 6EY, UK
| | - Anat Milo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 841051, Israel.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|
14
|
Corbin N, Junor GP, Ton TN, Baker RJ, Manthiram K. Toward Improving the Selectivity of Organic Halide Electrocarboxylation with Mechanistically Informed Solvent Selection. J Am Chem Soc 2023; 145:1740-1748. [PMID: 36626202 PMCID: PMC9880992 DOI: 10.1021/jacs.2c10561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The use of a liquid electrolyte is nearly ubiquitous in electrosynthetic systems and can have a significant impact on the selectivity and efficiency of electrochemical reactions. Solvent selection is thus a key step during optimization, yet this selection process usually involves trial-and-error. As a step toward more rational solvent selection, this work examines how the electrolyte solvent impacts the selectivity of electrocarboxylation of organic halides. For the carboxylation of a model alkyl bromide, hydrogenolysis is the primary side reaction. Isotope-labeling studies indicate the hydrogen atom in the hydrogenolysis product comes solely from the aprotic electrolyte solvent. Further mechanistic studies reveal that under synthetically relevant electrocarboxylation conditions, the hydrogenolysis product is formed via deprotonation of the solvent. Guided by these mechanistic findings, a simple computational descriptor based on the free energy to deprotonate a solvent molecule was shown to correlate strongly with carboxylation selectivity, overcoming limitations of traditional solvent descriptors such as pKa. Through careful mechanistic analysis surrounding the role of the solvent, this work furthers the development of selective electrocarboxylation systems and more broadly highlights the benefits of such analysis to electrosynthetic reactions.
Collapse
Affiliation(s)
- Nathan Corbin
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Glen P. Junor
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts02139, United States
| | - Thu N. Ton
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California91125, United States
| | - Rachel J. Baker
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California91125, United States
| | - Karthish Manthiram
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California91125, United States,Email
| |
Collapse
|
15
|
Wang XW, Li RX, Deng Y, Fu MQH, Zhao YN, Guan Z, He YH. Direct Hydroxylarylation of Benzylic Carbons (sp 3/sp 2/sp) via Radical-Radical Cross-Coupling Powered by Paired Electrolysis. J Org Chem 2023; 88:329-340. [PMID: 36563045 DOI: 10.1021/acs.joc.2c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diaryl alcohol moieties are widespread in pharmaceuticals. Existing methods for the synthesis of diaryl alcohols require the use of pre-functionalized benzylic alcohols, aromatic aldehydes, or ketones as starting materials. Herein, the first convergent paired electrochemical approach to the direct hydroxylarylation of unactivated benzylic carbons (sp3/sp2/sp) is proposed. This protocol features direct functionalization of unactivated benzylic C(sp3)-H bonds and benzylic sp2/sp-carbons, mild conditions (open air, room temperature), an environmentally friendly procedure (without any external catalyst/mediator/additive), and direct access to sterically hindered alcohols from inexpensive and readily available alkyl/alkenyl/alkynylbenzenes. Mechanistic studies, including divided-cell experiments, isotope labeling, radical trapping, electron paramagnetic resonance, reaction kinetics, and cyclic voltammetry, strongly support the proposed radical-radical cross-coupling between transient ketyl radicals and persistent radical anions. Gram-scale synthesis and diversification of drug derivatives have visualized the tremendous potential of this protocol for practical applications.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rui-Xue Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yang Deng
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming-Qiu-Hao Fu
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Nan Zhao
- Analytical and Testing Center, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Duan A, Xiao F, Lan Y, Niu L. Mechanistic views and computational studies on transition-metal-catalyzed reductive coupling reactions. Chem Soc Rev 2022; 51:9986-10015. [PMID: 36374254 DOI: 10.1039/d2cs00371f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transition-metal-catalyzed reductive coupling reactions have been considered as a powerful tool to convert two electrophiles into value-added products. Numerous related reports have shown the fascinating potential. Mechanistic studies, especially theoretical studies, can provide important implications for the design of novel reductive coupling reactions. In this review, we summarize the representative advancements in theoretical studies on transition-metal-catalyzed reductive coupling reactions and systematically elaborate the mechanisms for the key steps of reductive coupling reactions. The activation modes of electrophiles and the deep insights of selectivity generation are mechanistically discussed. In addition, the mechanism of the reduction of high-oxidation-state catalysts and further construction of new chemical bonds are also described in detail.
Collapse
Affiliation(s)
- Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Fengjiao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China. .,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Linbin Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
17
|
Liu D, Liu ZR, Wang ZH, Ma C, Herbert S, Schirok H, Mei TS. Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides. Nat Commun 2022; 13:7318. [PMID: 36443306 PMCID: PMC9705544 DOI: 10.1038/s41467-022-35073-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Electrochemical asymmetric catalysis has emerged as a sustainable and promising approach to the production of chiral compounds and the utilization of both the anode and cathode as working electrodes would provide a unique approach for organic synthesis. However, precise matching of the rate and electric potential of anodic oxidation and cathodic reduction make such idealized electrolysis difficult to achieve. Herein, asymmetric cross-coupling between α-chloroesters and aryl bromides is probed as a model reaction, wherein alkyl radicals are generated from the α-chloroesters through a sequential oxidative electron transfer process at the anode, while the nickel catalyst is reduced to a lower oxidation state at the cathode. Radical clock studies, cyclic voltammetry analysis, and electron paramagnetic resonance experiments support the synergistic involvement of anodic and cathodic redox events. This electrolytic method provides an alternative avenue for asymmetric catalysis that could find significant utility in organic synthesis.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China
| | - Simon Herbert
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Hartmut Schirok
- Pharmaceuticals, Research and Development, Bayer AG, 13353, Berlin, Germany
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS, Shanghai, China.
| |
Collapse
|
18
|
Kerackian T, Bouyssi D, Pilet G, Médebielle M, Monteiro N, Vantourout JC, Amgoune A. Nickel-Catalyzed Electro-Reductive Cross-Coupling of Aliphatic N-Acyl Imides with Alkyl Halides as a Strategy for Dialkyl Ketone Synthesis: Scope and Mechanistic Investigations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taline Kerackian
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Didier Bouyssi
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Guillaume Pilet
- Université Lyon, Université Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI, UMR 5615 du CNRS), 6 rue Victor Grignard, 69100 Villeurbanne, France
| | - Maurice Médebielle
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Nuno Monteiro
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Julien C. Vantourout
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Abderrahmane Amgoune
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
19
|
Zhang S, Findlater M. Progress in Convergent Paired Electrolysis. Chemistry 2022; 28:e202201152. [DOI: 10.1002/chem.202201152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Sheng Zhang
- Institute of Physical Science and Information Technology Anhui University Hefei Anhui 230601 P. R. China
| | - Michael Findlater
- Department of Chemistry and Biochemistry University of California Merced CA 95343 USA
| |
Collapse
|
20
|
Dey P, Jana SK, Rai P, Maji B. Dicarbofunctionalizations of an Unactivated Alkene via Photoredox/Nickel Dual Catalysis. Org Lett 2022; 24:6261-6265. [PMID: 35984910 DOI: 10.1021/acs.orglett.2c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1,2-Dicarbofunctionalization of unactivated olefin has been reported under photoredox/nickel dual catalysis. The mildness of the visible-light-mediated reaction allows the use of various alkyl and aryl electrophiles with several sensitive functional groups. The protocol was equally applied for late-stage diversification of drugs and biologically active molecules. Investigations elucidated the importance of photoredox/nickel dual catalysis and α-amino-radical-mediated halogen atom transfer and provided us with the nickel complexes involved in the reaction.
Collapse
Affiliation(s)
- Purusattam Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Sayan K Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Pramod Rai
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
21
|
Wang Y, Li L, Fu N. Electrophotochemical Decarboxylative Azidation of Aliphatic Carboxylic Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yukang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liubo Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Niankai Fu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zhong C, Tang H, Cui B, Shi Y, Cao C. Pd-NHC catalyzed Suzuki cross-coupling of benzyl ammonium salts. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04795-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Ganguly S, Bhakta S, Ghosh T. Gold‐Catalyzed Synthesis of Spirocycles: Recent Advances. ChemistrySelect 2022. [DOI: 10.1002/slct.202201407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Somnath Ganguly
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Sayantika Bhakta
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| | - Tapas Ghosh
- Department of Applied Chemistry Maulana Abul Kalam Azad University of Technology Simhat, Haringhata 741249, Nadia West Bengal India
| |
Collapse
|
24
|
Roy Chowdhury S, Nandi SK, Haldar D. Proof of Concept: Interface of Recyclable Organogels with Embedded Palladium Nanoparticles Catalyzing Suzuki-Miyaura Coupling in Water at Room Temperature. ACS OMEGA 2022; 7:21566-21573. [PMID: 35785310 PMCID: PMC9244900 DOI: 10.1021/acsomega.2c01360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/02/2022] [Indexed: 06/01/2023]
Abstract
A sustainable approach for C-C cross-coupling reaction at room temperature in water has been developed to avoid tedious Pd separation, reduce the carbon footprint, and save energy. Another important aspect is the catalyst recycling and easy product separation. α,γ-Hybrid peptides were designed to selectively use as a ligand for C-C cross-coupling catalysts as well as to form organogels. The peptides form antiparallel sheet-like structures in the solid state. The peptide containing m-aminobenzoic acid, glycine, and dimethylamine forms a whitish gel in toluene, and co-gelation with Pd(OAc)2 results in light brown gel, which acts as a biphasic catalyst for Suzuki-Miyaura cross-coupling at room temperature in water by mild shaking. The organic-inorganic hybrid gel was characterized by rheology, field-emission scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray analyses. On completion of the cross-coupling reaction, the basic aqueous layer (containing products) above the gel can be simply decanted and the intact organic-inorganic hybrid gel can be recycled by topping-up fresh reactants multiple times. The reaction permitted a range of different substitution patterns for aryl and heterocyclic halides with acid or phenol functional groups. Both electron-donating- and electron-withdrawing-substituted substrates exhibited good results for this transformation. The findings inspire toward a holistic green technology for Suzuki-Miyaura coupling reaction and an innovative avenue for catalyst recycling and product isolation.
Collapse
Affiliation(s)
- Srayoshi Roy Chowdhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Sujay Kumar Nandi
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Debasish Haldar
- Department of Chemical Sciences, Indian Institute of Science Education and Research
Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| |
Collapse
|
25
|
Abstract
Redox flow batteries are a critical technology for large-scale energy storage, offering the promising characteristics of high scalability, design flexibility and decoupled energy and power. In recent years, they have attracted extensive research interest, with significant advances in relevant materials chemistry, performance metrics and characterization. The emerging concepts of hybrid battery design, redox-targeting strategy, photoelectrode integration and organic redox-active materials present new chemistries for cost-effective and sustainable energy storage systems. This Review summarizes the recent development of next-generation redox flow batteries, providing a critical overview of the emerging redox chemistries of active materials from inorganics to organics. We discuss electrochemical characterizations and critical performance assessment considering the intrinsic properties of the active materials and the mechanisms that lead to degradation of energy storage capacity. In particular, we highlight the importance of advanced spectroscopic analysis and computational studies in enabling understanding of relevant mechanisms. We also outline the technical requirements for rational design of innovative materials and electrolytes to stimulate more exciting research and present the prospect of this field from aspects of both fundamental science and practical applications.
Collapse
|
26
|
Jiang HL, Yang YH, He YH, Guan Z. Visible-Light-Catalyzed Radical-Radical Cross-Coupling Reaction of Benzyl Trifluoroborates and Carbonyl Compounds to Sterically Hindered Alcohols. Org Lett 2022; 24:4258-4263. [PMID: 35666163 DOI: 10.1021/acs.orglett.2c01583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report here an organic dye catalyzed direct radical-radical cross-coupling reaction based on the persistent free-radical effect (PRE), which is powered by visible light and does not require any external oxidants or reductants. In this reaction, benzyl trifluoroborates are oxidized by excited-state 4Cz-IPN to generate benzyl radicals, and the resulting boron trifluoride acts as a Lewis acid to reduce the reduction potential of carbonyl compounds. The dual roles of benzyl trifluoroborates enable aldehydes, ketones, diketones, and ketone esters to react with benzyl trifluoroborates to generate various sterically hindered alcohols.
Collapse
Affiliation(s)
- Hao-Luo Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu-Hao Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
27
|
Arepally S, Nandhakumar P, González-Montiel GA, Dzhaparova A, Kim G, Ma A, Nam KM, Yang H, Ha-Yeon Cheong P, Park JK. Unified Electrochemical Synthetic Strategy for [2 + 2 + 2] Cyclotrimerizations: Construction of 1,3,5- and 1,2,4-Trisubstituted Benzenes from Ni(I)-Mediated Reduction of Alkynes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sagar Arepally
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ponnusamy Nandhakumar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | | | - Alina Dzhaparova
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Gyeongho Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ahyeon Ma
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ki Min Nam
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, Corvallis 97331, United States
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
28
|
McKnight J, Shavnya A, Sach NW, Blakemore DC, Moses IB, Willis MC. Reductant‐Free Cross‐Electrophile Synthesis of Di(hetero)arylmethanes by Palladium‐Catalyzed Desulfinative C−C Coupling. Angew Chem Int Ed Engl 2022; 61:e202116775. [PMID: 35229419 PMCID: PMC9314995 DOI: 10.1002/anie.202116775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 01/13/2023]
Abstract
An efficient Pd‐catalyzed one‐pot desulfinative cross‐coupling to access medicinally relevant di(hetero)arylmethanes is reported. The method is reductant‐free, and involves a sulfinate transfer reagent and a Pd‐catalyst mediating the union of two electrophilic coupling partners; a (hetero)aryl halide and a benzyl halide. We establish for the first time that benzyl sulfinates, generated in situ, undergo efficient Pd‐catalyzed desulfinative cross‐coupling with (hetero)aryl halides to generate di(hetero)arylmethanes. The reaction can be extended to benzylic pseudohalides derived from benzyl alcohols. The reactions are straightforward to perform and scalable, and all reaction components are commercially available.
Collapse
Affiliation(s)
- Janette McKnight
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Andre Shavnya
- Medicine Design, Pfizer Inc. Eastern Point Road Groton CT 06340 USA
| | - Neal W. Sach
- Medicine Design, La Jolla Laboratories, Pfizer Inc. 10770 Science Center Drive San Diego CA 92121 USA
| | | | - Ian B. Moses
- Chemical Research and Development, Pfizer Ltd. Discovery Park, Ramsgate Rd Sandwich CT13 9ND UK
| | - Michael C. Willis
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
29
|
Zhang D, Xu Z, Tang T, Le L, Wang C, Kambe N, Qiu R. Pd-Catalyzed Cross-Coupling of Sb-Aryl Stibines with Halogenomethyl Arenes to Give Unsymmetirc Diarylmethanes. Org Lett 2022; 24:3155-3160. [PMID: 35471895 DOI: 10.1021/acs.orglett.2c00879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we describe a general method for the synthesis of unsymmetric diarylmethanes from (hetero)aryl methyl halides and Sb-aryl stibines. This protocol shows a broad substrate scope and a good functional group tolerance. Drug molecules, including beclobrate 3al and bifemelane 3as, and drug derivatives, including celecoxib 3p, ibuprofen 3ao, and probenecid 3ap, were efficiently synthesized on a gram scale. The possible mechanism is proposed on the basis of the results of control experiments.
Collapse
Affiliation(s)
- Dejiang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhi Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Ting Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Cairong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
30
|
Pham PH, Petersen HA, Katsirubas JL, Luca OR. Recent synthetic methods involving carbon radicals generated by electrochemical catalysis. Org Biomol Chem 2022; 20:5907-5932. [PMID: 35437556 DOI: 10.1039/d2ob00424k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Driven by a resurgence of interest in electrode-driven synthetic methods, this paper covers recent activity in the field of mediated electrochemical and photoelectrochemical bond activation, inclusive of C-H, C-C, C-N, and other C-heteroatom bonds.
Collapse
Affiliation(s)
- Phuc H Pham
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| | - Haley A Petersen
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| | - Jaclyn L Katsirubas
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| | - Oana R Luca
- Department of Chemistry, University of Colorado Boulder and the Renewable and Sustainable Energy Institute, Boulder, CO, 80300, USA.
| |
Collapse
|
31
|
Xu G, Gao P, Colacot TJ. Tunable Unsymmetrical Ferrocene Ligands Bearing a Bulky Di-1-adamantylphosphino Motif for Many Kinds of C sp2–C sp3 Couplings. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Guolin Xu
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| | - Peng Gao
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| | - Thomas J. Colacot
- Research and Development, Life Science Chemistry, MilliporeSigma, 6000 N. Teutonia Avenue, Milwaukee, Wisconsin 53209, United States
| |
Collapse
|
32
|
Claraz A, Masson G. Recent Advances in C(sp 3)-C(sp 3) and C(sp 3)-C(sp 2) Bond Formation through Cathodic Reactions: Reductive and Convergent Paired Electrolyses. ACS ORGANIC & INORGANIC AU 2022; 2:126-147. [PMID: 36855458 PMCID: PMC9954344 DOI: 10.1021/acsorginorgau.1c00037] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The formation of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds is one of the major research goals of synthetic chemists. Electrochemistry is commonly considered to be an appealing means to drive redox reactions in a safe and sustainable fashion and has been utilized for C-C bond-forming reactions. Compared to anodic oxidative methods, which have been extensively explored, cathodic processes are much less investigated, whereas it can pave the way to alternative retrosynthetic disconnections of target molecules and to the discovery of new transformations. This review provides an overview on the recent achievements in the construction of C(sp3)-C(sp3) and C(sp3)-C(sp2) bonds via cathodic reactions since 2017. It includes electrochemical reductions and convergent paired electrolyses.
Collapse
Affiliation(s)
- Aurélie Claraz
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, Gif-sur-Yvette 91198 Cedex, France
| |
Collapse
|
33
|
Kong X, Chen Y, Chen X, Lu ZX, Wang W, Ni SF, Cao ZY. A Practically Unified Electrochemical Strategy for Ni-Catalyzed Decarboxylative Cross-Coupling of Aryl Trimethylammonium Salts. Org Lett 2022; 24:2137-2142. [PMID: 35297250 DOI: 10.1021/acs.orglett.2c00408] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By merging electrocatalysis and nickel catalysis, a unified strategy has been successfully applied to achieve the decarboxylative cross-coupling of four types of α-oxocarboxylic acids and their derivatives with aryl trimethylammonium salts under mild conditions. Our strategy provides a practical way for preparing aryl ketones, amides, esters, or aldehydes.
Collapse
Affiliation(s)
- Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Yiyi Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Xiaohui Chen
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Zheng-Xuan Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Wei Wang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Shao-Fei Ni
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
34
|
McKnight J, Shavnya A, Sach NW, Blakemore DC, Moses IB, Willis MC. Reductant‐Free Cross‐Electrophile Synthesis of Di(hetero)arylmethanes by Palladium‐Catalyzed Desulfinative C−C Coupling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Janette McKnight
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| | - Andre Shavnya
- Medicine Design, Pfizer Inc. Eastern Point Road Groton CT 06340 USA
| | - Neal W. Sach
- Medicine Design, La Jolla Laboratories, Pfizer Inc. 10770 Science Center Drive San Diego CA 92121 USA
| | | | - Ian B. Moses
- Chemical Research and Development, Pfizer Ltd. Discovery Park, Ramsgate Rd Sandwich CT13 9ND UK
| | - Michael C. Willis
- Department of Chemistry University of Oxford Chemistry Research Laboratory 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
35
|
Jana SK, Maiti M, Dey P, Maji B. Photoredox/Nickel Dual Catalysis Enables the Synthesis of Alkyl Cyclopropanes via C(sp 3)-C(sp 3) Cross Electrophile Coupling of Unactivated Alkyl Electrophiles. Org Lett 2022; 24:1298-1302. [PMID: 35133153 DOI: 10.1021/acs.orglett.1c04268] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile synthesis of mono-, 1,1- and 1,2-disubstituted cyclopropanes via visible light-mediated photoredox/nickel dual catalysis is demonstrated. The challenging intramolecular C(sp3)-C(sp3) cross-electrophile coupling of readily available unactivated 1,3-dialkyl electrophiles was performed under mild conditions that allowed traditionally reactive functional groups to be included. Mechanistic inspection and control experiments revealed the importance of dual catalysis and that the reaction proceeds via a stepwise oxidative addition followed by an intramolecular SN2 reaction.
Collapse
Affiliation(s)
- Sayan K Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Mamata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Purusattam Dey
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
36
|
Corcé V, Ollivier C, Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem Soc Rev 2022; 51:1470-1510. [PMID: 35113115 DOI: 10.1039/d1cs01084k] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
Collapse
Affiliation(s)
- Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| |
Collapse
|
37
|
Tay NES, Lehnherr D, Rovis T. Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis. Chem Rev 2022; 122:2487-2649. [PMID: 34751568 PMCID: PMC10021920 DOI: 10.1021/acs.chemrev.1c00384] [Citation(s) in RCA: 143] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Redox processes are at the heart of synthetic methods that rely on either electrochemistry or photoredox catalysis, but how do electrochemistry and photoredox catalysis compare? Both approaches provide access to high energy intermediates (e.g., radicals) that enable bond formations not constrained by the rules of ionic or 2 electron (e) mechanisms. Instead, they enable 1e mechanisms capable of bypassing electronic or steric limitations and protecting group requirements, thus enabling synthetic chemists to disconnect molecules in new and different ways. However, while providing access to similar intermediates, electrochemistry and photoredox catalysis differ in several physical chemistry principles. Understanding those differences can be key to designing new transformations and forging new bond disconnections. This review aims to highlight these differences and similarities between electrochemistry and photoredox catalysis by comparing their underlying physical chemistry principles and describing their impact on electrochemical and photochemical methods.
Collapse
Affiliation(s)
- Nicholas E. S. Tay
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| | - Dan Lehnherr
- Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York, 10027, United States
| |
Collapse
|
38
|
Li C, Zhang Y, Sun W. Nickel-Catalyzed Paired Electrochemical Cross-Coupling of Aryl Halides with Nucleophiles. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1581-0934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractElectrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. However, most electrochemical transformations only employ one electrode (anodic oxidation or cathodic reduction) to afford the desired products, while the chemistry that occurs at the counter electrode yields stoichiometric waste. In contrast, paired electrochemical reactions can synchronously utilize the anodic and cathodic reactions to deliver the desired product, thus improving the atom economy and energy efficiency of the electrolytic process. This review gives an overview of recent advances in nickel-catalyzed paired electrochemical cross-coupling reactions of aryl/alkenyl halides with different nucleophiles.1 Introduction2 Nickel-Catalyzed Cross-Coupling Reactions2.1 C–C Bond Formation2.2 C–N Bond Formation2.3 C–S/O Bond Formation2.4 C–P Bond Formation3 Conclusion
Collapse
Affiliation(s)
- Chao Li
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University
- National Institute of Biological Sciences
| | - Yong Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University
- National Institute of Biological Sciences
| | - Wenxuan Sun
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University
- National Institute of Biological Sciences
| |
Collapse
|
39
|
Wang ZH, Wei L, Jiao KJ, Ma C, Mei TS. Nickel-Catalyzed Decarboxylative Cross-Coupling of Indole-3-acetic Acids with Aryl Bromides by Convergent Paired Electrolysis. Chem Commun (Camb) 2022; 58:8202-8205. [DOI: 10.1039/d2cc02641d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, nickel-catalyzed decarboxylative cross-coupling of indole-3-acetic acids with aryl bromides by convergent paired electrolysis was developed in an undivided cell. This protocol features good functional group tolerance, chemical redox agent-...
Collapse
|
40
|
Revisiting Thin-Layer Electrochemistry in a Chip-Type Cell for the Study of Electro-organic Reactions. Anal Chem 2021; 94:1248-1255. [PMID: 34964606 DOI: 10.1021/acs.analchem.1c04467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is important but challenging to elucidate the electrochemical reaction mechanisms of organic compounds using electroanalytical methods. Particularly, a rapid and straightforward method that provides information on reaction intermediates or other key electrochemical parameters may be useful. In this work, we exploited the advantages of classic thin-layer electrochemistry to develop a thin-layer electroanalysis microchip (TEAM). The TEAM provided better-resolved voltammetric peaks than under semi-infinite diffusion conditions owing to its small height. Importantly, rapid and accurate determination of the number of electrons transferred, n, was enabled by mechanically confining the microliter-scale volume analyte at the electrode, while securing ionic conduction using polyelectrolyte gels. The performance of the TEAM was validated using voltammetry and coulometry of standard redox couples. Utilizing the TEAM, a (spectro)electrochemical analysis of FM 1-43, an organic dye widely used in neuroscience, was successfully performed. Moreover, the TEAM was applied to study the electrochemical oxidation mechanism of pivanilides and alkyltrifluoroborate salts with different substituents and solvents. This work suggests that TEAM is a promising tool to provide invaluable mechanistic information and promote the rational design of electrosynthetic strategies.
Collapse
|
41
|
Shekhar S, Ahmed TS, Ickes AR, Haibach MC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
42
|
Ma Y, Hong J, Yao X, Liu C, Zhang L, Fu Y, Sun M, Cheng R, Li Z, Ye J. Aminomethylation of Aryl Bromides by Nickel-Catalyzed Electrochemical Redox Neutral Cross Coupling. Org Lett 2021; 23:9387-9392. [PMID: 34881901 DOI: 10.1021/acs.orglett.1c03500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We develop an electrochemical nickel-catalyzed aminomethylation of aryl bromides under mild conditions. The convergent paired electrolysis makes full use of anode and cathode processes, free of a terminal oxidant, a sacrificial anode, a metal reductant, and a prefunctionalized radical precursor. In addition, this method exhibits wide functional group tolerance (63 examples), including some sensitive substituents and aromatic heterocycles. This redox neutral cross coupling provides a more environmentally friendly and synthetic practical protocol for forging C(sp2)-C(sp3) bonds.
Collapse
Affiliation(s)
- Yueyue Ma
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jufei Hong
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiantong Yao
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chengyu Liu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ling Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Youtian Fu
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Maolin Sun
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ruihua Cheng
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
43
|
Ma C, Fang P, Liu ZR, Xu SS, Xu K, Cheng X, Lei A, Xu HC, Zeng C, Mei TS. Recent advances in organic electrosynthesis employing transition metal complexes as electrocatalysts. Sci Bull (Beijing) 2021; 66:2412-2429. [PMID: 36654127 DOI: 10.1016/j.scib.2021.07.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023]
Abstract
Organic electrosynthesis has been widely used as an environmentally conscious alternative to conventional methods for redox reactions because it utilizes electric current as a traceless redox agent instead of chemical redox agents. Indirect electrolysis employing a redox catalyst has received tremendous attention, since it provides various advantages compared to direct electrolysis. With indirect electrolysis, overpotential of electron transfer can be avoided, which is inherently milder, thus wide functional group tolerance can be achieved. Additionally, chemoselectivity, regioselectivity, and stereoselectivity can be tuned by the redox catalysts used in indirect electrolysis. Furthermore, electrode passivation can be avoided by preventing the formation of polymer films on the electrode surface. Common redox catalysts include N-oxyl radicals, hypervalent iodine species, halides, amines, benzoquinones (such as DDQ and tetrachlorobenzoquinone), and transition metals. In recent years, great progress has been made in the field of indirect organic electrosynthesis using transition metals as redox catalysts for reaction classes including C-H functionalization, radical cyclization, and cross-coupling of aryl halides-each owing to the diverse reactivity and accessible oxidation states of transition metals. Although various reviews of organic electrosynthesis are available, there is a lack of articles that focus on recent research progress in the area of indirect electrolysis using transition metals, which is the impetus for this review.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhao-Ran Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shi-Shuo Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kun Xu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Xu Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| | - Hai-Chao Xu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chengchu Zeng
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China.
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
44
|
Struwe J, Korvorapun K, Zangarelli A, Ackermann L. Photo-Induced Ruthenium-Catalyzed C-H Benzylations and Allylations at Room Temperature. Chemistry 2021; 27:16237-16241. [PMID: 34435716 PMCID: PMC9293244 DOI: 10.1002/chem.202103077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/30/2022]
Abstract
The ruthenium-catalyzed synthesis of diarylmethane compounds was realized under exceedingly mild photoredox conditions without the use of exogenous photocatalysts. The versatility and robustness of the ruthenium-catalyzed C-H benzylation was reflected by an ample scope, including multifold C-H functionalizations, as well as transformable pyrazoles, imidates and sensitive nucleosides. Mechanistic studies were indicative of a photoactive cyclometalated ruthenium complex, which also enabled versatile C-H allylations.
Collapse
Affiliation(s)
- Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Korkit Korvorapun
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
45
|
Zou Z, Li H, Huang M, Zhang W, Zhi S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Oxidative Fluoroalkylation of Aryl Iodides. Org Lett 2021; 23:8252-8256. [PMID: 34645266 DOI: 10.1021/acs.orglett.1c02997] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This work describes a general strategy for metal-catalyzed cross-coupling of fluoroalkyl radicals with aryl halides under electrochemical conditions. The contradiction between anodic oxidation of fluoroalkyl sulfinates and cathodic reduction of low-valent nickel catalysts can be well addressed by paired electrolysis, allowing for direct introduction of fluorinated functionalities into aromatic systems.
Collapse
Affiliation(s)
- Zhenlei Zou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyin Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Mengjun Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Yuxiu Postdoctoral School, Nanjing University, Nanjing 210023, China
| | - Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
46
|
Ma C, Fang P, Liu D, Jiao KJ, Gao PS, Qiu H, Mei TS. Transition metal-catalyzed organic reactions in undivided electrochemical cells. Chem Sci 2021; 12:12866-12873. [PMID: 34745519 PMCID: PMC8514006 DOI: 10.1039/d1sc04011a] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022] Open
Abstract
Transition metal-catalyzed organic electrochemistry is a rapidly growing research area owing in part to the ability of metal catalysts to alter the selectivity of a given transformation. This conversion mainly focuses on transition metal-catalyzed anodic oxidation and cathodic reduction and great progress has been achieved in both areas. Typically, only one of the half-cell reactions is involved in the organic reaction while a sacrificial reaction occurs at the counter electrode, which is inherently wasteful since one electrode is not being used productively. Recently, transition metal-catalyzed paired electrolysis that makes use of both anodic oxidation and cathodic reduction has attracted much attention. This perspective highlights the recent progress of each type of electrochemical reaction and relatively focuses on the transition metal-catalyzed paired electrolysis, showcasing that electrochemical reactions involving transition metal catalysis have advantages over conventional reactions in terms of controlling the reaction activity and selectivity and figuring out that transition metal-catalyzed paired electrolysis is an important direction of organic electrochemistry in the future and offers numerous opportunities for new and improved organic reaction methods.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Dong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ke-Jin Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Pei-Sen Gao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hui Qiu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
47
|
Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David Bernhardson
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Aran K. Hubbell
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
48
|
Zhu C, Kale AP, Yue H, Rueping M. Redox-Neutral Cross-Coupling Amination with Weak N-Nucleophiles: Arylation of Anilines, Sulfonamides, Sulfoximines, Carbamates, and Imines via Nickelaelectrocatalysis. JACS AU 2021; 1:1057-1065. [PMID: 34467349 PMCID: PMC8395614 DOI: 10.1021/jacsau.1c00148] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 06/13/2023]
Abstract
A nickel-catalyzed cross-coupling amination with weak nitrogen nucleophiles is described. Aryl halides as well as aryl tosylates can be efficiently coupled with a series of weak N-nucleophiles, including anilines, sulfonamides, sulfoximines, carbamates, and imines via concerted paired electrolysis. Notably, electron-deficient anilines and sulfonamides are also suitable substrates. Interestingly, when benzophenone imine is applied in the arylation, the product selectivity toward the formation of amine and imine product can be addressed by a base switch. In addition, the alternating current mode can be successfully applied. DFT calculations support a facilitated reductive elimination pathway.
Collapse
|
49
|
Novaes LFT, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Electrocatalysis as an enabling technology for organic synthesis. Chem Soc Rev 2021; 50:7941-8002. [PMID: 34060564 PMCID: PMC8294342 DOI: 10.1039/d1cs00223f] [Citation(s) in RCA: 390] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Electrochemistry has recently gained increased attention as a versatile strategy for achieving challenging transformations at the forefront of synthetic organic chemistry. Electrochemistry's unique ability to generate highly reactive radical and radical ion intermediates in a controlled fashion under mild conditions has inspired the development of a number of new electrochemical methodologies for the preparation of valuable chemical motifs. Particularly, recent developments in electrosynthesis have featured an increased use of redox-active electrocatalysts to further enhance control over the selective formation and downstream reactivity of these reactive intermediates. Furthermore, electrocatalytic mediators enable synthetic transformations to proceed in a manner that is mechanistically distinct from purely chemical methods, allowing for the subversion of kinetic and thermodynamic obstacles encountered in conventional organic synthesis. This review highlights key innovations within the past decade in the area of synthetic electrocatalysis, with emphasis on the mechanisms and catalyst design principles underpinning these advancements. A host of oxidative and reductive electrocatalytic methodologies are discussed and are grouped according to the classification of the synthetic transformation and the nature of the electrocatalyst.
Collapse
Affiliation(s)
- Luiz F T Novaes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Chen H, Mao R, Brzozowski M, Nguyen NH, Sleebs BE. Late Stage Phosphotyrosine Mimetic Functionalization of Peptides Employing Metallaphotoredox Catalysis. Org Lett 2021; 23:4244-4249. [PMID: 34029466 DOI: 10.1021/acs.orglett.1c01200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Access to phosphotyrosine (pTyr) mimetics requires multistep syntheses, and therefore late stage incorporation of these mimetics into peptides is not feasible. Here, we develop and employ metallaphotoredox catalysis using 4-halogenated phenylalanine to afford a variety of protected pTyr mimetics in one step. This methodology was shown to be tolerant of common protecting groups and applicable to the late stage pTyr mimetic modification of protected and unprotected peptides, and peptides of biological relevance.
Collapse
Affiliation(s)
- Hao Chen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martin Brzozowski
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nghi H Nguyen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|