1
|
Ye Z, Xie W, Liu W, Zhou C, Yang X. Catalytic Enantioselective Synthesis of Axially Chiral Diaryl Ethers Via Asymmetric Povarov Reaction Enabled Desymmetrization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403125. [PMID: 39014550 PMCID: PMC11425261 DOI: 10.1002/advs.202403125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Indexed: 07/18/2024]
Abstract
Axially chiral diaryl ethers represent a distinct class of atropisomers, characterized by a unique dual C─O axes system, which have been found in a variety of natural products, pharmaceuticals, and ligands. However, the catalytic enantioselective synthesis of these atropoisomers poses significant challenges, due to the difficulty in controlling both chiral C─O axes, and their more flexible conformations. Herein, an efficient protocol for catalytic enantioselective synthesis of axially chiral diaryl ethers is presented using organocatalyzed asymmetric Povarov reaction-enabled desymmetrization, followed by aromatizations. This method yields a wide range of novel quinoline-based diaryl ether atropoisomers in good yields and high enantioselectivities. Notably, various aromatization protocols are developed, resulting in a diverse set of polysubstituted quinoline-containing diaryl ether atropisomers. Thermal racemization studies suggested excellent configurational stabilities for these novel diaryl ether atropisomers (with racemization barriers up to 38.1 kcal mol-1). Moreover, this research demonstrates for the first time that diaryl ether atropisomers lacking the bulky t-Bu group can still maintain a stable configuration, challenging the prior knowledge in the field. The fruitful derivatizations of the functional group-rich chiral products further underscore the value of this method.
Collapse
Affiliation(s)
- Zidan Ye
- School of Physical Science and Technology, Shanghai, 201210, China
| | - Wansen Xie
- School of Physical Science and Technology, Shanghai, 201210, China
| | - Wei Liu
- School of Physical Science and Technology, Shanghai, 201210, China
| | - Changyu Zhou
- School of Physical Science and Technology, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, Shanghai, 201210, China
| |
Collapse
|
2
|
Lu QT, Du YB, Xu MM, Xie PP, Cai Q. Catalytic Asymmetric Aza-Electrophilic Additions of 1,1-Disubstituted Styrenes. J Am Chem Soc 2024; 146:21535-21545. [PMID: 39056748 DOI: 10.1021/jacs.4c04852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Electrophilic addition of alkenes is a textbook reaction that plays a pivotal role in organic chemistry. In the past decades, catalytic asymmetric variants of this important type of reaction have witnessed great achievements by the development of novel catalytic systems. However, enantioselective aza-electrophilic additions of unactivated alkenes, which could provide a transformative strategy for the preparation of synthetically significant nitrogen-containing compounds, still remain a formidable challenge. Herein, we have developed unprecedented Au(I)/NHC-catalyzed asymmetric aza-electrophilic additions of unactivated 1,1-disubstituted styrenes by the utilization of readily available dialkyl azodicarboxylates as electrophilic nitrogen sources. Based on this approach, a series of transformations, including [2 + 2] cycloaddition, intermolecular 1,2-oxyamination, and several types of intramolecular hydrazination-induced cyclizations, have been realized. These transformations provide a previously unattainable platform for the divergent synthesis of hydrazine derivatives, which could also be converted to other nitrogen-containing chiral synthons. Experimental and computational studies support the idea that carbocation intermediates are involved in reaction pathways.
Collapse
Affiliation(s)
- Qi-Tao Lu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Yuan-Bo Du
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Meng-Meng Xu
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| | - Pei-Pei Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Quan Cai
- Department of Chemistry, Research Center for Molecular Recognition and Synthesis, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Astle S, Guggiari S, Frost JR, Hepburn HB, Klauber DJ, Christensen KE, Burton JW. Enantioselective Synthesis of Sealutomicin C. J Am Chem Soc 2024; 146:17757-17764. [PMID: 38885121 PMCID: PMC11228992 DOI: 10.1021/jacs.4c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
The sealutomicins are a family of anthraquinone antibiotics featuring an enediyne (sealutomicin A) or Bergman-cyclized aromatic ring (sealutomicins B-D). Herein we report the development of an enantioselective organocatalytic method for the synthesis of dihydroquinolines and the use of the developed method in the total synthesis of sealutomicin C which features a transannular cyclization of an aryllithium onto a γ-lactone as a second key step.
Collapse
Affiliation(s)
- Stuart
M. Astle
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Sean Guggiari
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - James R. Frost
- UCB
Pharma, 216 Bath Road, Slough, Berkshire SL1 3WE, U.K.
| | - Hamish B. Hepburn
- Vertex
Pharmaceuticals, 86-88
Jubilee Avenue Milton Park, Abingdon OX14 4RW, U.K.
| | - David J. Klauber
- Chemical
Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K.
| | - Kirsten E. Christensen
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jonathan W. Burton
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
4
|
Yang JF, Liu YF, Wei LL, Qiao KK, Zhao YQ, Shi L. Minisci-Type Dehydrogenative Coupling of N-Heteroaromatic Rings with Inert C(sp 3)-H Enabled by a Visible-Light-Catalyzed Intermolecular Hydrogen Atom Transfer Process. J Org Chem 2024; 89:4249-4260. [PMID: 38443760 DOI: 10.1021/acs.joc.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The Minisci-type dehydrogenative coupling of N-heteroaromatic rings with inert C-H or Si-H partners via visible-light-catalyzed hydrogen atom transfer has been reported. This methodology allows the coupling reactions to be carried out in water as a solvent under air atmospheric conditions with visible-light illumination. A wide range of inert C-H and Si-H partners could be directly coupled with various N-aromatic heterocycles to deliver products in good to excellent yields.
Collapse
Affiliation(s)
- Jun-Feng Yang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yun-Fei Liu
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lin-Lin Wei
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Kai-Kai Qiao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yan-Qiu Zhao
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Lei Shi
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
5
|
Yu S, Bao H, Zhang D, Yang X. Kinetic resolution of substituted amido[2.2]paracyclophanes via asymmetric electrophilic amination. Nat Commun 2023; 14:5239. [PMID: 37640717 PMCID: PMC10462673 DOI: 10.1038/s41467-023-40718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Planar chiral [2.2]paracyclophane derivatives are a type of structurally intriguing and practically useful chiral molecules, which have found a range of important applications in the field of asymmetric catalysis and material science. However, access to enantioenriched [2.2]paracyclophanes represents a longstanding challenge in organic synthesis due to their unique structures, which are still highly dependent on the chiral chromatography separation technique and classical chemical resolution strategy to date. In this work, we report on an efficient and versatile kinetic resolution protocol for various substituted amido[2.2]paracyclophanes, including those with pseudo-geminal, pseudo-ortho, pseudo-meta and pseudo-para disubstitutions, using chiral phosphoric acid (CPA)-catalyzed asymmetric amination reaction, which was also applicable to the enantioselective desymmetrization of an achiral diamido[2.2]paracyclophane. Detailed experimental studies shed light on a new reaction mechanism for the electrophilic aromatic C-H amination, which proceeded through sequential triazane formation and N[1,5]-rearrangement. The facile large-scale kinetic resolution reaction and diverse derivatizations of both the recovered chiral starting materials and the C-H amination products showcased the potential of this method.
Collapse
Affiliation(s)
- Shaoze Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hanyang Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Ye Z, Liu W, Gu H, Yang X. Enantioselective Dearomatization of Substituted Phenols via Organocatalyzed Electrophilic Amination. Org Lett 2023; 25:5838-5843. [PMID: 37523610 DOI: 10.1021/acs.orglett.3c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Highly efficient and stereoselective dearomatization of substituted phenols was achieved via chiral phosphoric acid-catalyzed electrophilic para-amination with commercially available azodicarboxylates. This protocol readily afforded a series of chiral 2,5-cyclohexadienones bearing 4-aza-quaternary stereocenters with excellent yields and enantioselectivities (≤99% yield and >99% ee). Easy scale-up of this reaction to a gram scale and diverse derivatizations of the chiral products into α-tertiary amines and α-tertiary heterocycles derivatives well demonstrated the potential of this method.
Collapse
Affiliation(s)
- Zidan Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huanchao Gu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Yeo S, Choi A, Greaves S, Meijer AJHM, Silvestri IP, Coldham I. Kinetic Resolution of 2-Aryldihydroquinolines Using Lithiation - Synthesis of Chiral 1,2- and 1,4-Dihydroquinolines. Chemistry 2023; 29:e202300815. [PMID: 37067465 PMCID: PMC10946909 DOI: 10.1002/chem.202300815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/18/2023]
Abstract
Highly enantiomerically enriched dihydrohydroquinolines were prepared in two steps from quinoline. Addition of aryllithiums to quinoline with tert-butoxycarbonyl (Boc) protection gave N-Boc-2-aryl-1,2-dihydroquinolines. These were treated with n-butyllithium and electrophilic trapping occurred exclusively at C-4 of the dihydroquinoline, a result supported by DFT studies. Variable temperature NMR spectroscopy gave kinetic data for the barrier to rotation of the carbonyl group (ΔG≠ ≈49 kJ mol-1 , 195 K). Lithiation using the diamine sparteine allowed kinetic resolutions with high enantioselectivities (enantiomer ratio up to 99 : 1). The enantioenriched 1,2-dihydroquinolines could be converted to 1,4-dihydroquinolines with retention of stereochemistry. Further functionalisation led to trisubstituted products. Reduction provided enantioenriched tetrahydroquinolines, whereas acid-promoted removal of Boc led to quinolines, and this was applied to a synthesis of the antimalarial compound M5717.
Collapse
Affiliation(s)
- Song‐Hee Yeo
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Anthony Choi
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Sophie Greaves
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | | | | | - Iain Coldham
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| |
Collapse
|
8
|
Bao H, Chen Y, Yang X. Catalytic Asymmetric Synthesis of Axially Chiral Diaryl Ethers through Enantioselective Desymmetrization. Angew Chem Int Ed Engl 2023; 62:e202300481. [PMID: 36760025 DOI: 10.1002/anie.202300481] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Axially chiral diaryl ethers are a type of unique atropisomers bearing two potential axes, which have potential applications in a variety of research fields. However, the catalytic enantioselective synthesis of these diaryl ether atropisomers is largely underexplored when compared to the catalytic asymmetric synthesis of biaryl or other types of atropisomers. Herein, we report a highly efficient catalytic asymmetric synthesis of diaryl ether atropisomers through an organocatalyzed enantioselective desymmetrization protocol. The chiral phosphoric acid-catalyzed asymmetric electrophilic aromatic aminations of the symmetrical 1,3-benzenediamine type substrates afforded a series of diaryl ether atropisomers in excellent yields and enantioselectivities. The facile construction of heterocycles by the utilizations of the 1,2-benzenediamine moiety in the products provided access to a variety of structurally diverse and novel azaarene-containing diaryl ether atropisomers.
Collapse
Affiliation(s)
- Hanyang Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
9
|
Zhang D, Shao YB, Xie W, Chen Y, Liu W, Bao H, He F, Xue XS, Yang X. Remote Enantioselective Desymmetrization of 9,9-Disubstituted 9,10-Dihydroacridines through Asymmetric Aromatic Aminations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying-Bo Shao
- College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wansen Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hanyang Bao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Faqian He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao-Song Xue
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024 China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
10
|
Zheng QC, Peng SY, Cong SQ, Ning XY, Guo Y, Li MJ, Wang WS, Cui XJ, Luo FX. Unexpected Cascade Dehydrogenation Triggered by Pd/Cu-Catalyzed C(sp 3)–H Arylation/Intramolecular C–N Coupling of Amides: Facile Access to 1,2-Dihydroquinolines. Org Lett 2022; 24:8283-8288. [DOI: 10.1021/acs.orglett.2c03203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qiu-Cui Zheng
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| | - Si-Yuan Peng
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Si-Qi Cong
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Xin-Yu Ning
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yan Guo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Meng-Jiao Li
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Wen-Shu Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| | - Xiao-Jie Cui
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
| | - Fei-Xian Luo
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China
- Center for Bioimaging & System Biology, Minzu University of China, Beijing 100081, China
| |
Collapse
|
11
|
Wang D, Shao Y, Chen Y, Xue X, Yang X. Enantioselective Synthesis of Planar‐Chiral Macrocycles through Asymmetric Electrophilic Aromatic Amination. Angew Chem Int Ed Engl 2022; 61:e202201064. [DOI: 10.1002/anie.202201064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Donglei Wang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Ying‐Bo Shao
- College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yunrong Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Xiaoyu Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
12
|
Xie J, Guo Z, Liu W, Zhang D, He Y, Yang X. Kinetic Resolution of 1,
2‐Diamines
via Organocatalyzed Asymmetric Electrophilic Aminations of Anilines. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinglei Xie
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University Fushun 113001 China
| | - Zheng Guo
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - Yu‐Peng He
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University Fushun 113001 China
- State Key Laboratory of Fine Chemicals, Ningbo Institute of Dalian University of Technology, Ningbo 315016 China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
13
|
Wang D, Shao Y, Chen Y, Xue X, Yang X. Enantioselective Synthesis of Planar‐Chiral Macrocycles through Asymmetric Electrophilic Aromatic Amination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Donglei Wang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Ying‐Bo Shao
- College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yunrong Chen
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Xiao‐Song Xue
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Xiaoyu Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
14
|
Liu W, Wang D, Zhang D, Yang X. Catalytic Kinetic Resolution and Desymmetrization of Amines. Synlett 2022. [DOI: 10.1055/a-1790-3230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Optically active amines represent critically important subunits in bioactive natural products and pharmaceuticals, as well as key scaffolds in chiral catalysts and ligands. Kinetic resolution of racemic amines and enantioselective desymmetrization of prochiral amines have proved to be efficient methods to access enantioenriched amines, especially when the racemic or prochiral amines were easy to prepare while the chiral ones are difficult to be accessed directly. In this review, we systematically summarized the development of kinetic resolution and desymmetrization of amines through nonenzymatic asymmetric catalytic approaches in the last two decades.
Collapse
Affiliation(s)
- Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Donglei Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Dekun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
15
|
Gruzdev DA, Vakarov SA, Korolyova MA, Bartashevich EV, Tumashov AA, Chulakov EN, Ezhikova MA, Kodess MI, Levit GL, Krasnov VP. Acylative kinetic resolution of racemic methyl-substituted cyclic alkylamines with 2,5-dioxopyrrolidin-1-yl ( R)-2-phenoxypropanoate. Org Biomol Chem 2022; 20:862-869. [PMID: 35006228 DOI: 10.1039/d1ob02099d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The diastereoselective acylation of a number of racemic methyl-substituted cyclic alkylamines with active esters of 2-phenoxypropanoic acid was studied in detail. The ester of (R)-2-phenoxypropanoic acid and N-hydroxysuccinimide was found to be the most selective agent. The highest stereoselectivity was observed in the kinetic resolution of racemic 2-methylpiperidine in toluene at -40 °C (selectivity factor s = 73) with the predominant formation of (R,R)-amide (93.7% de). To explain the observed stereoselectivity, DFT modelling of the transition states in the reactions of the title acylating agent with 2-methylpiperidine and 2-methylpyrrolidine was performed. The calculated values were in good agreement with experimental data. It has been demonstrated that the acylation proceeds via a concerted mechanism, in which the addition of an amine occurs simultaneously with the elimination of the hydroxysuccinimide fragment. The high stereoselectivity of the (R,R)-amide formation is largely ensured by the lower steric hindrances in the transition states as compared to the formation of (R,S)-amide.
Collapse
Affiliation(s)
- Dmitry A Gruzdev
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Sergey A Vakarov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Marina A Korolyova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Ekaterina V Bartashevich
- South Ural State University (National Research University), 76 Lenina Ave., Chelyabinsk 454080, Russia
| | - Andrey A Tumashov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Evgeny N Chulakov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Marina A Ezhikova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Mikhail I Kodess
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Galina L Levit
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| | - Victor P Krasnov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch), 22/20 S. Kovalevskoy St, Ekaterinburg 620108, Russia.
| |
Collapse
|
16
|
Jiang Q, Qin T, Yang X. Asymmetric Synthesis of Hydroquinazolines Bearing C4-Tetrasubstituted Stereocenters via Kinetic Resolution of α-Tertiary Amines. Org Lett 2022; 24:625-630. [PMID: 34978827 DOI: 10.1021/acs.orglett.1c04039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel protocol for asymmetric synthesis of hydroquinazolines bearing C4-tetrasubstituted stereocenters has been achieved through kinetic resolution of 2-amido α-tertiary benzylamines via chiral phosphoric acid catalyzed intramolecular dehydrative cyclizations. This method gave access to both α-tertiary benzylamines and hydroquinazolines with broad scope and high enantioselectivities. An intriguing restricted rotation of the C-N bond was observed for hydroquinazoline products bearing C4-tetrasubstituted stereocenters.
Collapse
Affiliation(s)
- Qianwen Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tianren Qin
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
17
|
Cen S, Zhang Z. Synthesis of Biphenanthrol-Based Confined Chiral Phosphoric Acid. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Chen P, Zhou B, Wu P, Wang B, Ye L. Brønsted Acid Catalyzed Dearomatization by Intramolecular Hydroalkoxylation/Claisen Rearrangement: Diastereo‐ and Enantioselective Synthesis of Spirolactams. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Peng‐Fei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory of Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
19
|
Xiong W, Jiang X, Zhang MM, Xiao WJ, Lu LQ. A cooperative Pd/Co catalysis system for the asymmetric (4+2) cycloaddition of vinyl benzoxazinones with N-acylpyrazoles. Chem Commun (Camb) 2021; 57:13566-13569. [PMID: 34843613 DOI: 10.1039/d1cc05952a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Transition metal-catalyzed cycloaddition has been established as a powerful tool for heterocycle synthesis. Despite impressive advances, the exploitation of new catalysis strategies and systems is still highly significant to enrich the heterocycle family. Herein, we disclosed a cooperative catalysis system merging an achiral Pd catalyst and a chiral Co catalyst for the asymmetric [4+2] cycloaddition between vinyl benzoxazinones and N-acylpyrazoles. Chiral tetrahydroquinolines bearing two contiguous, unusual cis-configured stereocenters were produced in high yields and enantio- and diastereoselectivities. The pyrazole directing group can be easily converted into many other functional groups, thus demonstrating the flexibility of the present methodology.
Collapse
Affiliation(s)
- Wei Xiong
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Mao-Mao Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China. .,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
20
|
He F, Shen G, Yang X. Asymmetric Aminations and Kinetic Resolution of Acyclic
α‐Branched
Ynones. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Faqian He
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 China
| | - Guosong Shen
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Xiaoyu Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
21
|
Chen PF, Zhou B, Wu P, Wang B, Ye LW. Brønsted Acid Catalyzed Dearomatization by Intramolecular Hydroalkoxylation/Claisen Rearrangement: Diastereo- and Enantioselective Synthesis of Spirolactams. Angew Chem Int Ed Engl 2021; 60:27164-27170. [PMID: 34672067 DOI: 10.1002/anie.202113464] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/17/2022]
Abstract
Described herein is a novel Brønsted acid catalyzed intramolecular hydroalkoxylation/Claisen rearrangement, allowing the practical and atom-economic synthesis of a range of valuable spirolactams from readily available ynamides in generally good to excellent yields with excellent diastereoselectivities and broad substrate scope. Importantly, an unexpected dearomatization of nonactivated arenes and heteroaromatic compounds is involved in this tandem sequence. Moreover, an asymmetric version of this tandem cyclization was also achieved by efficient kinetic resolution by chiral phosphoric acid catalysis. In addition, the [3,3]-rearrangement is shown to be kinetically preferred over the related [1,3]-rearrangement by theoretical calculations.
Collapse
Affiliation(s)
- Peng-Fei Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Peng Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
22
|
Guo Z, Xie J, Hu T, Chen Y, Tao H, Yang X. Kinetic resolution of N-aryl β-amino alcohols via asymmetric aminations of anilines. Chem Commun (Camb) 2021; 57:9394-9397. [PMID: 34528982 DOI: 10.1039/d1cc03117a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient kinetic resolution of N-aryl β-amino alcohols has been developed via asymmetric para-aminations of anilines with azodicarboxylates enabled by chiral phosphoric acid catalysis. Broad substrate scope and high kinetic resolution performances were afforded with this method. Control experiments supported the critical roles of the NH and OH group in these reactions.
Collapse
Affiliation(s)
- Zheng Guo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jinglei Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Tao Hu
- University of Chinese Academy of Sciences, Beijing 100049, China.,iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
23
|
Lei J, Xie W, Li J, Wu Y, Xie X. Synthesis of N‐Aryl‐ and N‐Alkenylhydrazides through C(sp
2
)−N Bond Construction. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jian Lei
- College of Chemical Engineering and Materials Science Quanzhou Normal University 398 Donghai Avenue Quanzhou 362000 P. R. China
| | - Wenqian Xie
- College of Chemical Engineering and Materials Science Quanzhou Normal University 398 Donghai Avenue Quanzhou 362000 P. R. China
| | - Jing Li
- State Key Laboratory of Respiratory Disease Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou 510530 P. R. China
| | - Ya Wu
- College of Biological and Chemical Engineering Chongqing University of Education No.9 Xuefu Avenue Chongqing 400067 P. R. China
| | - Xiaolan Xie
- College of Chemical Engineering and Materials Science Quanzhou Normal University 398 Donghai Avenue Quanzhou 362000 P. R. China
| |
Collapse
|
24
|
Wang Z, Xie P, Xu Y, Hong X, Shi S. Low‐Temperature Nickel‐Catalyzed C−N Cross‐Coupling via Kinetic Resolution Enabled by a Bulky and Flexible Chiral
N
‐Heterocyclic Carbene Ligand. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zi‐Chao Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) Shenyang Pharmaceutical University Shenyang 110016 China
| | - Pei‐Pei Xie
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education) Shenyang Pharmaceutical University Shenyang 110016 China
| | - Xin Hong
- Department of Chemistry Zhejiang University 38 Zheda Road Hangzhou 310027 China
| | - Shi‐Liang Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Pharmacy Fudan University Shanghai 201203 China
| |
Collapse
|
25
|
Wang ZC, Xie PP, Xu Y, Hong X, Shi SL. Low-Temperature Nickel-Catalyzed C-N Cross-Coupling via Kinetic Resolution Enabled by a Bulky and Flexible Chiral N-Heterocyclic Carbene Ligand. Angew Chem Int Ed Engl 2021; 60:16077-16084. [PMID: 33901337 DOI: 10.1002/anie.202103803] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/14/2022]
Abstract
The transition-metal-catalyzed C-N cross-coupling has revolutionized the construction of amines. Despite the innovations of multiple generations of ligands to modulate the reactivity of the metal center, ligands for the low-temperature enantioselective amination of aryl halides remain a coveted target of catalyst engineering. Designs that promote one elementary reaction often create bottlenecks at other steps. We here report an unprecedented low-temperature (as low as -50 °C), enantioselective Ni-catalyzed C-N cross-coupling of aryl chlorides with sterically hindered secondary amines via a kinetic resolution process (s factor up to >300). A bulky yet flexible chiral N-heterocyclic carbene (NHC) ligand is leveraged to drive both oxidative addition and reductive elimination with low barriers and control the enantioselectivity. Computational studies indicate that the rotations of multiple σ-bonds on the C2 -symmetric chiral ligand adapt to the changing needs of catalytic processes. We expect this design would be widely applicable to diverse transition states to achieve other challenging metal-catalyzed asymmetric cross-coupling reactions.
Collapse
Affiliation(s)
- Zi-Chao Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Pei-Pei Xie
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Youjun Xu
- School of Pharmaceutical Engineering and Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China
| | - Shi-Liang Shi
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
26
|
Pan Y, Wang D, Chen Y, Zhang D, Liu W, Yang X. Kinetic Resolution of α-Tertiary Propargylic Amines through Asymmetric Remote Aminations of Anilines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02331] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yongkai Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Donglei Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - DeKun Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
27
|
Kinetic Resolution of
2‐Substituted
1,
2‐Dihydroquinolines
by
Rhodium‐Catalyzed
Asymmetric Hydroarylation
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Zhu C, Liu W, Zhao F, Chen Y, Tao H, He YP, Yang X. Kinetic Resolution of 2,2-Disubstituted Dihydroquinolines through Chiral Phosphoric Acid-Catalyzed C6-Selective Asymmetric Halogenations. Org Lett 2021; 23:4104-4108. [PMID: 33998803 DOI: 10.1021/acs.orglett.1c00978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel kinetic resolution of 2,2-disubstituted dihydroquinolines was achieved by regioselective asymmetric halogenations enabled by chiral phosphoric acid catalysis. A series of dihydroquinolines bearing 2,2-disubstitutions were well-tolerated in these reactions, generating both the recovered dihydroquinolines and C-6-brominated products with high enantioselectivities, with s-factors up to 149. In addition, this kinetic resolution protocol is also applicable for 2,2-disubstituted tetrahydroquinoline and asymmetric iodonation reaction.
Collapse
Affiliation(s)
- Chaofan Zhu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun 113001, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yunrong Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Peng He
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Fushun 113001, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
29
|
He F, Wang J, Zhou F, Tao H, Yang X. Regio- and enantioselective amination of acyclic branched α-alkynyl ketones: asymmetric construction of N-containing quaternary stereocenters. Org Chem Front 2021. [DOI: 10.1039/d1qo00720c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Direct regio- and enantioselective amination of acyclic α-branched ketones enabled by the α-alkynyl group.
Collapse
Affiliation(s)
- Faqian He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Institute of Organic Chemistry, Shanghai 200032, China
| | - Jiawen Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|