1
|
Zhang N, Zhao P, Zhang W, Wang H, Wang K, Wang X, Zhang Z, Tan N, Chen L. A chromosome-level genome of Lobelia seguinii provides insights into the evolution of Campanulaceae and the lobeline biosynthesis. Genomics 2024; 117:110979. [PMID: 39675685 DOI: 10.1016/j.ygeno.2024.110979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Lobelia seguinii is a plant with great ecological and medicinal value and belongs to Campanulaceae. Lobelia contains lobeline, a well-known compound used to treat respiratory diseases. Nevertheless, lobeline biosynthesis needs further exploration. Moreover, whole-genome duplication (WGD) and karyotype evolution within Campanulaceae still need to be better understood. In this study, we obtained a chromosome-level genome of L. seguinii with a size of 1.4 Gb and 38253 protein-coding genes. Analyses revealed two WGDs within Campanulaceae, one at the most recent common ancestor (MRCA) of Campanula and Adenophora, and another at the MRCA of Lobelioideae. Analyses further revealed that the karyotype of Platycodon grandiflorus represents the ancient type within Asterales. We proposed eight enzymes involved in the lobeline biosynthesis pathway of L. seguinii. Molecular cloning and heterologous expression of phenylalanine ammonia-lyase (PAL), a candidate enzyme involved in the first step of lobeline biosynthesis, verified its function to catalyze the deamination of phenylalanine to cinnamic acid. This study sheds light on the evolution of Campanulaceae and lobeline biosynthesis.
Collapse
Affiliation(s)
- Na Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Puguang Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenda Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Huiying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiangyu Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhanjing Zhang
- National Center for Traditional Chinese Medicine (TCM) Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, 530023 Nanning, China.
| | - Ninghua Tan
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lingyun Chen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Medical Botanical Garden, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
2
|
González-Rodríguez J, González-Granda S, Lavandera I, Gotor-Fernández V, Mangas-Sánchez J. L-Cysteine-Catalysed Hydration of Activated Alkynes. Angew Chem Int Ed Engl 2024:e202414046. [PMID: 39344480 DOI: 10.1002/anie.202414046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/01/2024]
Abstract
Hydration reactions consist of the introduction of a molecule of water into a chemical compound and are particularly useful to transform alkynes into carbonyls, which are strategic intermediates in the synthesis of a plethora of compounds. Herein we demonstrate that L-cysteine can catalyse the hydration of activated alkynes in a very effective and fully regioselective manner to access important building blocks in synthetic chemistry such as β-ketosulfones, amides and esters, in aqueous media. The mild reaction conditions facilitated the integration with enzyme catalysis to access chiral β-hydroxy sulfones from the corresponding alkynes in a one-pot cascade process in good yields and excellent enantiomeric ratios. These findings pave the way towards establishing a general method for metal-free, cost-effective, and more sustainable alkyne hydration processes.
Collapse
Affiliation(s)
- Jorge González-Rodríguez
- IUQOEM - Department of Organic and Inorganic Chemistry, School of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
- Current address: Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-OC, 1060, Wien, Austria
| | - Sergio González-Granda
- IUQOEM - Department of Organic and Inorganic Chemistry, School of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
- Current address: Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI-48109, USA
| | - Iván Lavandera
- IUQOEM - Department of Organic and Inorganic Chemistry, School of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Vicente Gotor-Fernández
- IUQOEM - Department of Organic and Inorganic Chemistry, School of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| | - Juan Mangas-Sánchez
- IUQOEM - Department of Organic and Inorganic Chemistry, School of Chemistry, University of Oviedo, Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
3
|
Pegu C, Paroi B, Patil NT. Enantioselective merged gold/organocatalysis. Chem Commun (Camb) 2024. [PMID: 38451222 DOI: 10.1039/d4cc00114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Gold complexes, because of their unique carbophilic nature, have evolved as efficient catalysts for catalyzing various functionalization reactions of C-C multiple bonds. However, the realization of enantioselective transformations via gold catalysis remains challenging due to the geometrical constraints and coordination behaviors of gold complexes. In this context, merged gold/organocatalysis has emerged as one of the intriguing strategies to achieve enantioselective transformations which could not be possible by using a single catalytic system. Historically, in 2009, this field started with the merging of gold with axially chiral Brønsted acids and chiral amines to achieve enantioselective transformations. Since then, based on the unique reactivity profiles offered by each catalyst, several reports utilizing gold in conjunction with various chiral organocatalysts such as amines, Brønsted acids, N-heterocyclic carbenes, hydrogen-bonding and phosphine catalysts have been documented in the literature. This article demonstrates an up-to-date development in this field, especially focusing on the mechanistic interplay of gold catalysts with chiral organocatalysts.
Collapse
Affiliation(s)
- Chayanika Pegu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
4
|
Ren XY, Feng XX, Zhang HY, Zhang Y, Zhao J, Han YP, Liang YM. Lewis Acid Catalyzed [4 + 2] Annulation of Propargylic Alcohols with 2-Vinylanilines. J Org Chem 2023; 88:16007-16017. [PMID: 37906678 DOI: 10.1021/acs.joc.3c01813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An elegant Lewis acid catalyzed, protection-free, and straightforward synthetic strategy for the assembly of a series of sophisticated polycyclic quinoline skeletons employing propargylic alcohols and 2-vinylanilines as the substrates in the presence of Yb(OTf)3 (10 mol %) and AgOTf (10 mol %) in tetrahydrofuran has been described. This annulation protocol, which proceeds through a sequential Meyer-Schuster rearrangement/nucleophilic substitution/deprotonation sequence, provides a versatile, practical, and atom-economical approach for accessing quinoline derivatives in moderate-to-good yields.
Collapse
Affiliation(s)
- Xi-Yan Ren
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Xiang-Xuan Feng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Hong-Yu Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Ya-Ping Han
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
5
|
Ghosh T, Bhakta S. Advancements in Gold-Catalyzed Cascade Reactions to Access Carbocycles and Heterocycles: An Overview. CHEM REC 2023; 23:e202200225. [PMID: 36543388 DOI: 10.1002/tcr.202200225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/03/2022] [Indexed: 12/24/2022]
Abstract
This review summarizes recent developments (from 2006 to 2022) in numerous important and efficient carbo- and heterocycle generations using gold-catalyzed cascade protocols. Herein, methodologies involve selectivity, cost-effectiveness, and ease of product formation being controlled by the ligand as well as the counter anion, catalyst, substrate, and reaction conditions. Gold-catalyzed cascade reactions covered different strategies through the compilation of various approaches such as cyclization, hydroarylation, intermolecular and intramolecular cascade reactions, etc. This entitled reaction is also useful for the synthesis of spiro, fused, bridged carbo- and heterocycles.
Collapse
Affiliation(s)
- T Ghosh
- Department of Chemistry, Jadavpur University, Kolkata, 700 032, West Bengal, India.,Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata-741249, Nadia, West Bengal, India
| | - S Bhakta
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata-741249, Nadia, West Bengal, India
| |
Collapse
|
6
|
González-Granda S, Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Expanding the Synthetic Toolbox through Metal-Enzyme Cascade Reactions. Chem Rev 2023; 123:5297-5346. [PMID: 36626572 DOI: 10.1021/acs.chemrev.2c00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates. However, more recently, linear cascades have appeared as elegant solutions for the preparation of valuable organic molecules combining multiple bioprocesses and metal-catalyzed transformations. Many advantages are derived from this symbiosis, although there are still bottlenecks to be addressed including the successful coexistence of both catalyst types, the need for compatible reaction media and mild conditions, or the minimization of cross-reactivities. Therefore, solutions are here also provided by means of catalyst coimmobilization, compartmentalization strategies, flow chemistry, etc. A comprehensive review is presented focusing on the period 2015 to early 2022, which has been divided into two main sections that comprise first the use of metals and enzymes as independent catalysts but working in an orchestral or sequential manner, and later their application as bionanohybrid materials through their coimmobilization in adequate supports. Each part has been classified into different subheadings, the first part based on the reaction catalyzed by the metal catalyst, while the development of nonasymmetric or stereoselective processes was considered for the bionanohybrid section.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
7
|
Escot L, González-Granda S, Gotor-Fernández V, Lavandera I. Combination of gold and redox enzyme catalysis to access valuable enantioenriched aliphatic β-chlorohydrins. Org Biomol Chem 2022; 20:9650-9658. [PMID: 36413183 DOI: 10.1039/d2ob01953a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis of enantioenriched β-chlorohydrins is highly appealing due to their relevance as building-blocks in organic synthesis. However, the approximation to aliphatic derivatives is particularly challenging due to the difficulties to get access to the α-chloroketone precursors. Herein, we propose a straightforward and scalable approach combining in a concurrent manner gold(I) and redox enzyme catalysis through a hydration-bioreduction cascade. A total of nine aliphatic β-chlorohydrins bearing different functional groups were obtained with very high yields (63-88%) and stereoselectivities (>99% ee).
Collapse
Affiliation(s)
- Lorena Escot
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
| | - Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain.
| |
Collapse
|
8
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
9
|
Abstract
Chemoenzymatic catalysis, by definition, involves the merging of sequential reactions using both chemocatalysis and biocatalysis, typically in a single reaction vessel. A major challenge, the solution to which, however, is associated with numerous advantages, is to run such one-pot processes in water: the majority of enzyme-catalyzed processes take place in water as Nature's reaction medium, thus enabling a broad synthetic diversity when using water due to the option to use virtually all types of enzymes. Furthermore, water is cheap, abundantly available, and environmentally friendly, thus making it, in principle, an ideal reaction medium. On the other hand, most chemocatalysis is routinely performed today in organic solvents (which might deactivate enzymes), thus appearing to make it difficult to combine such reactions with biocatalysis toward one-pot cascades in water. Several creative approaches and solutions that enable such combinations of chemo- and biocatalysis in water to be realized and applied to synthetic problems are presented herein, reflecting the state-of-the-art in this blossoming field. Coverage has been sectioned into three parts, after introductory remarks: (1) Chapter 2 focuses on historical developments that initiated this area of research; (2) Chapter 3 describes key developments post-initial discoveries that have advanced this field; and (3) Chapter 4 highlights the latest achievements that provide attractive solutions to the main question of compatibility between biocatalysis (used predominantly in aqueous media) and chemocatalysis (that remains predominantly performed in organic solvents), both Chapters covering mainly literature from ca. 2018 to the present. Chapters 5 and 6 provide a brief overview as to where the field stands, the challenges that lie ahead, and ultimately, the prognosis looking toward the future of chemoenzymatic catalysis in organic synthesis.
Collapse
Affiliation(s)
- Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056Basel, Switzerland
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California93106, United States
| |
Collapse
|
10
|
Ascaso-Alegre C, MANGAS JUAN. Construction of chemoenzymatic linear cascades for the synthesis of chiral compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Ascaso-Alegre
- CSIC: Consejo Superior de Investigaciones Cientificas Institute of Chemical Synthesis and Homogeneous Catalysis SPAIN
| | - JUAN MANGAS
- ARAID: Agencia Aragonesa para la Investigacion y Desarrollo ISQCH PEDRO CERBUNA, 12FACULTAD DE CIENCIAS D 50009 ZARAGOZA SPAIN
| |
Collapse
|
11
|
González-Granda S, Escot L, Lavandera I, Gotor-Fernández V. Unmasking the Hidden Carbonyl Group Using Gold(I) Catalysts and Alcohol Dehydrogenases: Design of a Thermodynamically-Driven Cascade toward Optically Active Halohydrins. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain
| | - Lorena Escot
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, Oviedo, 33006 Asturias, Spain
| |
Collapse
|
12
|
Chang F, Wang C, Chen Q, Zhang Y, Liu G. A Chemoenzymatic Cascade Combining a Hydration Catalyst with an Amine Dehydrogenase: Synthesis of Chiral Amines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengwei Chang
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| | - Chengyi Wang
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| | - Qipeng Chen
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| | - Yongjin Zhang
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry and Engineering Research Center of Green Energy Chemical Engineering Shanghai Normal University Shanghai 200234 P.R. China
| |
Collapse
|
13
|
Liu G, Chang F, Wang C, Chen Q, Zhang Y. A Chemoenzymatic Cascade Combining a Hydration Catalyst with an Amine Dehydrogenase: Synthesis of Chiral Amines. Angew Chem Int Ed Engl 2021; 61:e202114809. [PMID: 34935242 DOI: 10.1002/anie.202114809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/07/2022]
Abstract
An encapsulated gold carbene complex was combined with a free amine dehydrogenase (GkAmDH) as a co-catalyst, enabling a cascade synthetic route to directly access chiral amines from propargylethers. This process, combining an initial gold carbene catalyzed hydration of propargylethers to ketones followed by a subsequent reductive amination, produces a wide range of chiral amines in high yields and excellent enantioselectivities.An encapsulated gold carbene complex was combined with a free amine dehydrogenase (GkAmDH) as a co-catalyst, enabling a cascade synthetic route to directly access chiral amines from propargylethers. This process, combining an initial gold carbene catalyzed hydration of propargylethers to ketones followed by a subsequent reductive amination, produces a wide range of chiral amines in high yields and excellent enantioselectivities.
Collapse
Affiliation(s)
- Guohua Liu
- Shanghai Normal University, Department of Chemistry, No.100 Guilin Rd, 200234, Shanghai, CHINA
| | - Fengwei Chang
- Shanghai Normal University - Xuhui Campus: Shanghai Normal University, Chemistry, CHINA
| | - Chengyi Wang
- Shanghai Normal University - Xuhui Campus: Shanghai Normal University, Chemistry, CHINA
| | - Qipeng Chen
- Shanghai Normal University - Xuhui Campus: Shanghai Normal University, Chemistry, CHINA
| | - Yongjin Zhang
- Shanghai Normal University - Xuhui Campus: Shanghai Normal University, Chemistry, CHINA
| |
Collapse
|
14
|
Hall M. Enzymatic strategies for asymmetric synthesis. RSC Chem Biol 2021; 2:958-989. [PMID: 34458820 PMCID: PMC8341948 DOI: 10.1039/d1cb00080b] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Enzymes, at the turn of the 21st century, are gaining a momentum. Especially in the field of synthetic organic chemistry, a broad variety of biocatalysts are being applied in an increasing number of processes running at up to industrial scale. In addition to the advantages of employing enzymes under environmentally friendly reaction conditions, synthetic chemists are recognizing the value of enzymes connected to the exquisite selectivity of these natural (or engineered) catalysts. The use of hydrolases in enantioselective protocols paved the way to the application of enzymes in asymmetric synthesis, in particular in the context of biocatalytic (dynamic) kinetic resolutions. After two decades of impressive development, the field is now mature to propose a panel of catalytically diverse enzymes for (i) stereoselective reactions with prochiral compounds, such as double bond reduction and bond forming reactions, (ii) formal enantioselective replacement of one of two enantiotopic groups of prochiral substrates, as well as (iii) atroposelective reactions with noncentrally chiral compounds. In this review, the major enzymatic strategies broadly applicable in the asymmetric synthesis of optically pure chiral compounds are presented, with a focus on the reactions developed within the past decade.
Collapse
Affiliation(s)
- Mélanie Hall
- Institute of Chemistry, University of Graz Heinrichstrasse 28 8010 Graz Austria
- Field of Excellence BioHealth - University of Graz Austria
| |
Collapse
|