1
|
Kim D, You J, Lee DH, Hong H, Kim D, Park Y. Photocatalytic furan-to-pyrrole conversion. Science 2024; 386:99-105. [PMID: 39361748 DOI: 10.1126/science.adq6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 10/05/2024]
Abstract
The identity of a heteroatom within an aromatic ring influences the chemical properties of that heterocyclic compound. Systematically evaluating the effect of a single atom, however, poses synthetic challenges, primarily as a result of thermodynamic mismatches in atomic exchange processes. We present a photocatalytic strategy that swaps an oxygen atom of furan with a nitrogen group, directly converting the furan into a pyrrole analog in a single intermolecular reaction. High compatibility was observed with various furan derivatives and nitrogen nucleophiles commonly used in drug discovery, and the late-stage functionalization furnished otherwise difficult-to-access pyrroles from naturally occurring furans of high molecular complexity. Mechanistic analysis suggested that polarity inversion through single electron transfer initiates the redox-neutral atom exchange processes at room temperature.
Collapse
Affiliation(s)
- Donghyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Da Hye Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hojin Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Republic of Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Wang X, Peng Y, Zheng J, Li WDZ. Diversified Reactivity of Triphenylphosphine: Reinvestigation of the Phosphine-Mediated Reductive Condensation Approach for the Synthesis of Substituted Furans. J Org Chem 2024; 89:12795-12799. [PMID: 39151054 DOI: 10.1021/acs.joc.4c01336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A reinvestigation of "Phosphine-Mediated Reductive Condensation of γ-Acyloxy Butynoates: A Diversity Oriented Strategy for the Construction of Substituted Furans" (J. Am. Chem. Soc. 2004, 126, 4118-4119) revealed different chemoselectivity of triphenylphosphine in the reactions with the γ-acyloxy butynoate substrates of varying substitution patterns/electronics. Furthermore, the electronics of the triaryl phosphine reagent could be tuned to trap a putative intermediate such as A, leading to the semihydrogenation of propiolamide substrates.
Collapse
Affiliation(s)
- Xi Wang
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, School of Life Science and Engineering, Southwest Jiaotong University,, Chengdu 610031, P. R. China
| | - Yu Peng
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Jianfeng Zheng
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| | - Wei-Dong Z Li
- School of Chemistry, Key Laboratory of Advanced Technologies of Material, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, P. R. China
| |
Collapse
|
3
|
Li MR, Zheng MY, Wang DC, Guo HM. Pd-catalyzed 5- exo-dig cyclization/etherification cascade of N-propargyl arylamines for the synthesis of polysubstituted furans. Chem Commun (Camb) 2024; 60:7721-7724. [PMID: 38967357 DOI: 10.1039/d4cc02255f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A method for the synthesis of furans bearing indoline skeletons was developed via an intramolecular palladium-catalyzed 5-exo-dig cyclization/etherification cascade of N-propargyl arylamines containing a 1,3-dicarbonyl side chain. This method realized the first capture of vinyl carbopalladiums by ketones as O-nucleophiles and showed a wide range of substrate tolerability affording trisubstituted furans in various yields. The enantioselective version for this domino process and diverse derivatizations of the reaction products were also studied.
Collapse
Affiliation(s)
- Meng-Ru Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Meng-Yao Zheng
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Dong-Chao Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
4
|
Chen J, Gan Z, Zhang Y, Chen Z, Liu S, Cui R, Xue Z, Sun H, Shi L, Jiang WF, Jin Y. Iron-Catalyzed Photoredox Alcohol α-C-H Alkylation and Tandem Intramolecular Cyclization: Facile Access to Multisubstituted 2,3-Dihydrofurans and γ-Butyrolactones. Org Lett 2024; 26:5329-5334. [PMID: 38869223 DOI: 10.1021/acs.orglett.4c01719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Multisubstituted furans occupy a pivotal position within the realms of synthetic chemistry and pharmacological science due to their distinctive chemical configurations and inherent properties. We herein introduce a tandem difunctionalization protocol of alcohols for the efficient synthesis of multisubstituted 2,3-dihydrofurans and γ-butyrolactones through the combination of photocatalysis and iron catalysis under mild conditions. Photoredox alcohol α-C(sp3)-H activation and Pinner-type intramolecular cyclization are two key processes. This method features significant convenience, economic benefits, and environmental friendliness.
Collapse
Affiliation(s)
- Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Rongqi Cui
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Haoxiang Sun
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen-Feng Jiang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Hong K, Liu M, Qian L, Bao M, Chen G, Jiang X, Huang J, Xu X. Catalytic [4+2]- and [4+4]-cycloaddition using furan-fused cyclobutanone as a privileged C4 synthon. Nat Commun 2024; 15:5407. [PMID: 38926359 PMCID: PMC11208666 DOI: 10.1038/s41467-024-49664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cycloaddition reactions play a pivotal role in synthetic chemistry for the direct assembly of cyclic architectures. However, hurdles remain for extending the C4 synthon to construct diverse heterocycles via programmable [4+n]-cycloaddition. Here we report an atom-economic and modular intermolecular cycloaddition using furan-fused cyclobutanones (FCBs) as a versatile C4 synthon. In contrast to the well-documented cycloaddition of benzocyclobutenones, this is a complementary version using FCB as a C4 reagent. It involves a C-C bond activation and cycloaddition sequence, including a Rh-catalyzed enantioselective [4 + 2]-cycloaddition with imines and an Au-catalyzed diastereoselective [4 + 4]-cycloaddition with anthranils. The obtained furan-fused lactams, which are pivotal motifs that present in many natural products, bioactive molecules, and materials, are inaccessible or difficult to prepare by other methods. Preliminary antitumor activity study indicates that 6e and 6 f exhibit high anticancer potency against colon cancer cells (HCT-116, IC50 = 0.50 ± 0.05 μM) and esophageal squamous cell carcinoma cells (KYSE-520, IC50 = 0.89 ± 0.13 μM), respectively.
Collapse
Affiliation(s)
- Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Mengting Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Lixin Qian
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Gang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xinyu Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jingjing Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Wang J, Zheng M, Jia Q, Ren Q, Wu J. Synthesis of Highly Substituted Furans via Intermolecular Enynone-Aldehyde Cross-Coupling/Cyclization Catalyzed by N-Heterocyclic Carbenes. Org Lett 2024; 26:4868-4872. [PMID: 38832854 DOI: 10.1021/acs.orglett.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A new strategy for facile access to multifunctionalized furans via N-heterocyclic carbene-catalyzed cross-coupling/cyclization of ynenones with aldehydes has been explored. This protocol features readily obtainable starting materials, mild and metal-free conditions, broad substrate scope, good functional group tolerance, excellent yields, and easy scale-up. Synthetic utility of the protocol has been further corroborated through functionalization of complex substrates and postmodifications of the product.
Collapse
Affiliation(s)
- Jie Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Mingyue Zheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Qianfa Jia
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Qiao Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, P. R. China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
7
|
Eggly AS, Otgontseren N, Roberts CB, Alwali AY, Hennigan HE, Parkinson EI. A Diels-Alder probe for discovery of natural products containing furan moieties. Beilstein J Org Chem 2024; 20:1001-1010. [PMID: 38711585 PMCID: PMC11070956 DOI: 10.3762/bjoc.20.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Natural products (NPs) are fantastic sources of inspiration for novel pharmaceuticals, oftentimes showing unique bioactivity against interesting targets. Specifically, NPs containing furan moieties show activity against a variety of diseases including fungal infections, and cancers. However, it is challenging to discover and isolate these small molecules from cell supernatant. The work described herein showcases the development of a molecular probe that can covalently modify furan moieties via a [4 + 2] Diels-Alder cycloaddition, making them easily identifiable on liquid chromatography-mass spectrometry (LC-MS). The molecular probe, which undergoes this reaction with a variety of furans, was designed with both a UV-tag and a mass tag to enable easy identification. The probe has been tested with a variety of purified furans, including natural products, methylenomycin furan (MMF) hormones, and MMF derivatives. Moreover, the molecular probe has been tested in crude supernatants of various Streptomyces strains and enables identification of MMFs.
Collapse
Affiliation(s)
- Alyssa S Eggly
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Namuunzul Otgontseren
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Carson B Roberts
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Amir Y Alwali
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Haylie E Hennigan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Elizabeth I Parkinson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
8
|
Li T, Li H, Zhou TT, Zheng Y, Li SH. Syntheses of Linear Biosynthetic C 25-Precursors of Leucosceptroids. J Org Chem 2024; 89:3652-3656. [PMID: 38353480 DOI: 10.1021/acs.joc.3c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
An efficient synthetic approach was developed and applied to the syntheses of four linear biosynthetic C25-precursors of leucosceptroids. The synthesis features a Julia-Kocienski olefination and a late-stage bioinspired photo-oxidation as key steps. The immunosuppressive effects of all synthetic compounds on mouse T cells and macrophage RAW264.7 were determined.
Collapse
Affiliation(s)
- Tao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Hao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Ting-Ting Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P. R. China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P. R. China
| |
Collapse
|
9
|
Sahoo SS, Kataria P, Kontham R. Concise and collective total syntheses of 2,4-disubstituted furan-derived natural products from hydroxyoxetanyl ketones. Org Biomol Chem 2024; 22:1475-1483. [PMID: 38284832 DOI: 10.1039/d3ob01924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The furan moiety, prevalent in bioactive natural products and essential drugs, presents intriguing structural features that have spurred our exploration into streamlined chemical synthesis routes for related natural products. In this study, we demonstrate the concise total synthesis of eight 2,4-disubstituted furan-derived natural products (including methylfuroic acid, rabdoketones A and B, paleofurans A and B, tournefolin C, and shikonofurans A and B). Our methodology revolves around the utilization of hydroxyoxetanyl ketones as pivotal intermediates. The approach encompasses transformations such as selective organo-catalyzed cross-ketol addition, synthesis of hydroxymethyl-tethered furans through Bi(OTf)3 catalyzed dehydrative cycloisomerization of α-hydroxyoxetanyl ketones, and a hydrogen atom transfer (HAT)-mediated oxidation of primary alcohols into the corresponding acids. This comprehensive synthetic strategy highlights the versatility of hydroxyoxetanyl ketones as invaluable building blocks in the synthesis of furan-containing natural products.
Collapse
Affiliation(s)
- Shubhranshu Shekhar Sahoo
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Priyanka Kataria
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Roy TK, Liu T, Qian Y, Sojdak CA, Kozlowski MC, Lester MI. A five-carbon unsaturated Criegee intermediate: synthesis, spectroscopic identification, and theoretical study of 3-penten-2-one oxide. Chem Sci 2023; 14:10471-10477. [PMID: 37800006 PMCID: PMC10548502 DOI: 10.1039/d3sc03993e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/03/2023] [Indexed: 10/07/2023] Open
Abstract
Biogenic alkenes, such as isoprene and α-pinene, are the predominant source of volatile organic compounds (VOCs) emitted into the atmosphere. Atmospheric processing of alkenes via reaction with ozone leads to formation of zwitterionic reactive intermediates with a carbonyl oxide functional group, known as Criegee intermediates (CIs). CIs are known to exhibit a strong absorption (π* ← π) in the near ultraviolet and visible (UV-vis) region due to the carbonyl oxide moiety. This study focuses on the laboratory identification of a five-carbon CI with an unsaturated substituent, 3-penten-2-one oxide, which can be produced upon atmospheric ozonolysis of substituted isoprenes. 3-Penten-2-one oxide is generated in the laboratory by photolysis of a newly synthesized precursor, (Z)-2,4-diiodopent-2-ene, in the presence of oxygen. The electronic spectrum of 3-penten-2-one oxide was recorded by UV-vis induced depletion of the VUV photoionization signal on the parent m/z 100 mass channel using a time-of-flight mass spectrometer. The resultant electronic spectrum is broad and unstructured with peak absorption at ca. 375 nm. To complement the experimental findings, electronic structure calculations are performed at the CASPT2(12,10)/aug-cc-pVDZ level of theory. The experimental spectrum shows good agreement with the calculated electronic spectrum and vertical excitation energy obtained for the lowest energy conformer of 3-penten-2-one oxide. In addition, OH radical products resulting from unimolecular decay of energized 3-penten-2-oxide CIs are detected by UV laser-induced fluorescence. Finally, the experimental electronic spectrum is compared with that of a four-carbon, isoprene-derived CI, methyl vinyl ketone oxide, to understand the effects of an additional methyl group on the associated electronic properties.
Collapse
Affiliation(s)
- Tarun Kumar Roy
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Tianlin Liu
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania Philadelphia PA 19104-6323 USA
| |
Collapse
|
11
|
Meng Z, Yan J, Ning C, Shi M, Wei Y. Construction of pyrroles, furans and thiophenes via intramolecular cascade desulfonylative/dehydrogenative cyclization of vinylidenecyclopropanes induced by NXS (X = I or Br). Chem Sci 2023; 14:7648-7655. [PMID: 37476717 PMCID: PMC10355115 DOI: 10.1039/d3sc01542d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Pyrroles, furans, and thiophenes are important structural motifs in biologically active substances, pharmaceuticals and functional materials. In this paper, we disclose an efficient synthetic strategy for the rapid construction of multisubstituted pyrroles, furans, and thiophenes via NXS mediated desulfonylative/dehydrogenative cyclization of vinylidenecyclopropanes (VDCPs). The advantages of this method include wide substrate range, high efficiency and synthetic usefulness of the heterocyclic products under metal-free and mild conditions. The derivatization of pyrrole products and the preparation of functional molecules successfully demonstrated the synthetic potential of the products as platform molecules. The reaction mechanism has been investigated on the basis of control experiments and DFT calculations.
Collapse
Affiliation(s)
- Zhe Meng
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jun Yan
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Chao Ning
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
12
|
Peng H, Zhang Y, Deng G. Silver(I)-Catalyzed Tandem Reaction of Enynones and 4-Alkenyl Isoxazoles: Synthesis of 2-(Furan-2-yl)-1,2-dihydropyridines. J Org Chem 2023. [PMID: 37183921 DOI: 10.1021/acs.joc.3c00312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Silver(I)-catalyzed tandem reaction of enynones with 4-alkenyl isoxazoles provides access to 2-(furan-2-yl)-1,2-dihydropyridines. No competitive cyclopropanation of alkenes and O-H insertion via (2-furyl)carbene complexes were observed. The cascade reaction proceeds via the formation of (2-furyl)metal carbene intermediate, the N-O bond cleavage of 4-alkenyl isoxazoles/rearrangement, subsequent 6π electrocyclic reaction, and [1,5] H-shift. The successive construction of both 1,2-dihydropyridine skeleton and furan frame has been achieved in the one-pot reaction. A broad range of readily available enynones and 4-alkenyl isoxazoles are suitable to this protocol; however, when R3 is the alkyl group such as n-Bu and Me, a complicated mixture was generated without the desired products. In addition, in the case of R4 = bulky group such as R3'SiOCH2, the reaction gave an in situ oxo-product of (2-furyl)silver carbene. An atom-economic strategy for the synthesis of 2-(furan-2-yl)-1,2-dihydropyridines has been established.
Collapse
Affiliation(s)
- Haiyun Peng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yangyi Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Guisheng Deng
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Hunan Normal University, Changsha 410081, China
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
13
|
Wang K, Xu Y, Wang J. Palladium-Catalyzed Cyclizative Borylation of Allenyl Ketones through Carbene Boryl Migratory Insertion: Access to Densely Substituted Furyl Boronates. Chemistry 2023; 29:e202203697. [PMID: 36448967 DOI: 10.1002/chem.202203697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
Herein the palladium-catalyzed cyclizative borylation of allenyl ketones with diboron compounds is reported which involves the carbene boryl migratory insertion as the key step. This reaction features mild conditions, good functional group tolerance and broad substrate scope. Thus, it represents an efficient methodology for the assembly of diverse tri-substituted furyl boronates. In addition, a series of transformations of the resultant multi-substituted furyl boronates were conducted to provide various densely substituted furan derivatives in good yields, further illustrating the potential synthetic utility of this methodology.
Collapse
Affiliation(s)
- Kang Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China
| | - Yan Xu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China.,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| |
Collapse
|
14
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
15
|
Bio-Derived Furanic Compounds with Natural Metabolism: New Sustainable Possibilities for Selective Organic Synthesis. Int J Mol Sci 2023; 24:ijms24043997. [PMID: 36835429 PMCID: PMC9966152 DOI: 10.3390/ijms24043997] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Biomass-derived C6-furanic compounds have become the cornerstone of sustainable technologies. The key feature of this field of chemistry is the involvement of the natural process only in the first step, i.e., the production of biomass by photosynthesis. Biomass-to-HMF (5-hydroxymethylfurfural) conversion and further transformations are carried out externally with the involvement of processes with poor environmental factors (E-factors) and the generation of chemical wastes. Due to widespread interest, the chemical conversion of biomass to furanic platform chemicals and related transformations are thoroughly studied and well-reviewed in the current literature. In contrast, a novel opportunity is based on an alternative approach to consider the synthesis of C6-furanics inside living cells using natural metabolism, as well as further transformations to a variety of functionalized products. In the present article, we review naturally occurring substances containing C6-furanic cores and focus on the diversity of C6-furanic derivatives, occurrence, properties and synthesis. From the practical point of view, organic synthesis involving natural metabolism is advantageous in terms of sustainability (sunlight-driven as the only energy source) and green nature (no eco-persisted chemical wastes).
Collapse
|
16
|
Zhang TS, Song SQ, Qi MJ, Hao WJ, Jiang B. Photocatalytic annulative trifluoromethyletherification of 1,6-enynes for accessing 1-indanones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Hong K, Shu J, Dong S, Zhang Z, He Y, Liu M, Huang J, Hu W, Xu X. Asymmetric Three-Component Reaction of Enynal with Alcohol and Imine as An Expeditious Track to Afford Chiral α-Furyl-β-amino Carboxylate Derivatives. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kemiao Hong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jirong Shu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shanliang Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yicheng He
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengting Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
18
|
Synthesis of 2-Alkylaryl and Furanyl Acetates by Palladium Catalysed Carbonylation of Alcohols. Catalysts 2022. [DOI: 10.3390/catal12080883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The one-pot alkoxycarbonylation of halo-free alkylaryl and furanyl alcohols represents a sustainable alternative for the synthesis of alkylaryl and furanyl acetates. In this paper, the reaction between benzyl alcohol, chosen as a model substrate, CH3OH and CO was tested in the presence of a homogeneous palladium catalyst, an activator (isopropenyl acetate (IPAc) or dimethyl carbonate (DMC)) and a base (Cs2CO3). The influence of various reaction parameters such as the CO pressure, ligand and palladium precursor employed, mmol% catalyst load, temperature and time were investigated. The results demonstrate that decreasing the CO pressure from 50 bar to 5 bar at 130 °C for 18 h increases yields in benzyl acetate from 36% to over 98%. Further experiments were performed in the presence of piperonyl and furfuryl alcohol, interesting substrates employed for the synthesis of various fine chemicals. Moreover, furfuryl alcohol is a lignocellulosic-derived building block employed for the synthesis of functionalized furans such as 2-alkylfurfuryl acetates. Both the alcohols were successfully transformed in the corresponding acetate (yields above 96%) in rather mild reaction conditions (5–0.01 mol% catalyst, 5–2 bar CO pressure, 130 °C, 4–18h), demonstrating that the alkoxycarbonylation of alcohols represents a promising sustainable alternative to more impactful industrial practices adopted to date for the synthesis of alkylaryl and furfuryl acetates.
Collapse
|
19
|
Hansen AS, Qian Y, Sojdak CA, Kozlowski MC, Esposito VJ, Francisco JS, Klippenstein SJ, Lester MI. Rapid Allylic 1,6 H-Atom Transfer in an Unsaturated Criegee Intermediate. J Am Chem Soc 2022; 144:5945-5955. [PMID: 35344666 DOI: 10.1021/jacs.2c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A novel allylic 1,6 hydrogen-atom-transfer mechanism is established through infrared activation of the 2-butenal oxide Criegee intermediate, resulting in very rapid unimolecular decay to hydroxyl (OH) radical products. A new precursor, Z/E-1,3-diiodobut-1-ene, is synthesized and photolyzed in the presence of oxygen to generate a new four-carbon Criegee intermediate with extended conjugation across the vinyl and carbonyl oxide groups that facilitates rapid allylic 1,6 H-atom transfer. A low-energy reaction pathway involving isomerization of 2-butenal oxide from a lower-energy (tZZ) conformer to a higher-energy (cZZ) conformer followed by 1,6 hydrogen transfer via a seven-membered ring transition state is predicted theoretically and shown experimentally to yield OH products. The low-lying (tZZ) conformer of 2-butenal oxide is identified based on computed anharmonic frequencies and intensities of its conformers. Experimental IR action spectra recorded in the fundamental CH stretch region with OH product detection by UV laser-induced fluorescence reveal a distinctive IR transition of the low-lying (tZZ) conformer at 2996 cm-1 that results in rapid unimolecular decay to OH products. Statistical RRKM calculations involving a combination of conformational isomerization and unimolecular decay via 1,6 H-transfer yield an effective decay rate keff(E) on the order of 108 s-1 at ca. 3000 cm-1 in good accord with the experiment. Unimolecular decay proceeds with significant enhancement due to quantum mechanical tunneling. A rapid thermal decay rate of ca. 106 s-1 is predicted by master-equation modeling of 2-butenal oxide at 298 K, 1 bar. This novel unimolecular decay pathway is expected to increase the nonphotolytic production of OH radicals upon alkene ozonolysis in the troposphere.
Collapse
Affiliation(s)
- Anne S Hansen
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Yujie Qian
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Christopher A Sojdak
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Vincent J Esposito
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Joseph S Francisco
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| | - Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 United States
| | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States
| |
Collapse
|
20
|
Hatch CE, Martin MI, Gilmartin PH, Xiong L, Beam DJ, Yap GPA, Von Bargen MJ, Rosenthal J, Chain WJ. Electrochemically Mediated Oxidation of Sensitive Propargylic Benzylic Alcohols. Org Lett 2022; 24:1423-1428. [PMID: 35148118 PMCID: PMC9097598 DOI: 10.1021/acs.orglett.1c03860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical oxidation of sensitive propargylic benzylic alcohols having varying substituents is reported. We describe the preparation and characterization of N-hydroxytetrafluorophthalimide (TFNHPI) and pseudo-high-throughput development of a green electrochemical oxidation protocol for sensitive propargylic benzylic alcohols that employs TFNHPI as a stable electrochemical mediator. The electrochemical oxidation of propargylic benzylic alcohols was leveraged to develop short synthetic pathways for preparing gram quantities of resveratrol natural products such as pauciflorols.
Collapse
Affiliation(s)
- Chad E Hatch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Maxwell I Martin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Philip H Gilmartin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lu Xiong
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Danielle J Beam
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Matthew J Von Bargen
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joel Rosenthal
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
21
|
Cho YS, Kim ST, Ryu DH. Enantioselective Friedel-Crafts Alkylation of Furans with o-Quinone Methide Using a Chiral Oxazaborolidinium Ion Catalyst. Org Lett 2022; 24:1732-1736. [PMID: 35195002 DOI: 10.1021/acs.orglett.2c00404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A chiral Lewis acid-catalyzed enantioselective Friedel-Crafts furan alkylation with in situ-generated o-quinone methides has been developed. In the presence of a chiral oxazaborolidinium ion catalyst, the reaction proceeded in high yield (up to 99%) with excellent enantioselectivity (up to >99% ee).
Collapse
Affiliation(s)
- Yoon Sung Cho
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Seung Tae Kim
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| | - Do Hyun Ryu
- Department of Chemistry, Sungkyunkwan University, 300 Cheoncheon, Jangan, Suwon 16419, Korea
| |
Collapse
|
22
|
Wang X, Lv R, Li X. Gold( i)-catalyzed diastereo- and enantioselective [4 + 3] cycloadditions: construction of functionalized furano-benzoxepins. Org Chem Front 2022. [DOI: 10.1039/d2qo01070d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly diastereo- and enantioselective [4 + 3] cycloadditions of 2-(1-alkynyl)-2-alken-1-ones with o-QMs have been realized via a simple chiral gold catalysis, providing facile access to various functionalized furano-benzoxepins.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ruifeng Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
23
|
Feng M, Jiang H, Huang L. Silver-mediated annulation between 5- H-1,2,3-thiadiazoles and 1,3-dicarbonyl compounds to construct polysubstituted furans. Org Chem Front 2022. [DOI: 10.1039/d2qo01224c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of polysubstituted furans by Ag(i)-mediated annulation between 5-H-1,2,3-thiadiazoles and 1,3-dicarbonyl compounds is reported.
Collapse
Affiliation(s)
- Mengxia Feng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
24
|
He MX, Yao Y, Ai CZ, Mo ZY, Wu YZ, Zhou Q, Pan YM, Tang HT. Electrochemically-mediated C–H functionalization of allenes and 1,3-dicarbonyl compounds to construct tetrasubstituted furans. Org Chem Front 2022. [DOI: 10.1039/d1qo01458g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We reported an electrocatalytic C–H activation method to construct novel highly functionalized tetrasubstituted furan derivatives, which uses allenes and 1,3-dicarbonyl compounds as substrates.
Collapse
Affiliation(s)
- Mu-Xue He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
- School of Public Health, Guilin Medical University, Guilin 541004, China
| | - Yan Yao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chun-Zhi Ai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zu-Yu Mo
- Pharmacy School, Guilin Medical University, Guilin 541004, China
| | - Yu-Zheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qi Zhou
- Adesis Inc. A Universal Display company, New Castle, Delaware 19720, USA
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hao-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
25
|
Masal DP, Choudhury R, Singh A, Reddy DS. Ready Access to Densely Substituted Furans Using Tsuji-Wacker-Type Cyclization. J Org Chem 2021; 87:556-568. [PMID: 34962781 DOI: 10.1021/acs.joc.1c02567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A competent method for the construction of highly substituted furans catalyzed by Pd(II) and Cu(II) chloride has been developed. The method provides easy access to di-, tri-, and tetrasubstituted furans from corresponding diols with relatively mild conditions in a unified strategy. The developed method has been successfully tested with more than 25 substrates, which resulted in furans of multiple substitution patterns with up to 84% isolated yields.
Collapse
Affiliation(s)
- Dattatraya P Masal
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Choudhury
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aman Singh
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
26
|
Sader JK, Molder BA, Wulff JE. A Chan-Evans-Lam approach to trisubstituted vinyl ethers. Org Biomol Chem 2021; 19:9649-9653. [PMID: 34730598 DOI: 10.1039/d1ob01827b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Trisubstituted vinyl ethers were accessed via Chan-Evans-Lam coupling of vinyl trifluoroborates and primary aliphatic alcohols. This approach complements prior methods that required the use of neat liquid alcohol coupling partners. A palladium-catalyzed redox-relay Heck reaction was used to convert several vinyl ethers into aldehyde-functionalized 1,3-dihydroisobenzofurans.
Collapse
Affiliation(s)
- Jonathan K Sader
- Department of Chemistry, University of Victoria, PO Box 3065 STN CSC, Victoria, British Columbia, Canada, V8W 3V6.
| | - Bryce A Molder
- Department of Chemistry, University of Victoria, PO Box 3065 STN CSC, Victoria, British Columbia, Canada, V8W 3V6.
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, PO Box 3065 STN CSC, Victoria, British Columbia, Canada, V8W 3V6.
| |
Collapse
|
27
|
Ye YF, Yang WW, Zhang JW, Fu JY, Zhu JY, Wang YB. Phosphine-Catalyzed Synthesis of 3-Allyl-4-pyrones by the Tandem Reaction of Diynones and Allylic Alcohols. J Org Chem 2021; 86:14476-14484. [PMID: 34658239 DOI: 10.1021/acs.joc.1c01340] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A simple and effective tandem reaction of diynones and allylic alcohols was developed to afford functionalized 3-allyl-4-pyrones in moderate to excellent yields. This protocol underwent a Michael addition─Claisen rearrangement─O-cyclization process, which exhibited broad substrate tolerance, high regioselectivity, and atom economy under a metal-free condition. Moreover, functional transformation of the products was also further studied.
Collapse
Affiliation(s)
- Ya-Fang Ye
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Wan-Wan Yang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jing-Wen Zhang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ji-Ya Fu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Jun-Yan Zhu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yan-Bo Wang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| |
Collapse
|
28
|
Li L, Kail S, Weber SM, Hilt G. Indium‐katalysierte Transferhydrierung zur reduktiven Cyclisierung von 2‐Alkinylenonen zu trisubstituierten Furanen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luomo Li
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| | - Sascha Kail
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| | - Sebastian M. Weber
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| | - Gerhard Hilt
- Institut für Chemie Carl von Ossietzky Universität Oldenburg Carl-von-Ossietzky-Straße 9–11 26111 Oldenburg Deutschland
| |
Collapse
|
29
|
Li L, Kail S, Weber SM, Hilt G. Indium-Catalysed Transfer Hydrogenation for the Reductive Cyclisation of 2-Alkynyl Enones towards Trisubstituted Furans. Angew Chem Int Ed Engl 2021; 60:23661-23666. [PMID: 34476880 PMCID: PMC8597135 DOI: 10.1002/anie.202109266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Indexed: 01/04/2023]
Abstract
Indium tribromide catalysed the transfer hydrogenation from dihydroaromatic compounds, such as the commercially available γ-terpinene, to enones, which resulted in the cyclisation to trisubstituted furan derivatives. The reaction was initiated by a Michael addition of a hydride nucleophile to the enone subunit followed by a Lewis-acid-assisted cyclisation and the formation of a furan-indium intermediate and a Wheland intermediate derived from the dihydroaromatic starting material. The product was formed by protonation from the Wheland complex and replaced the indium tribromide substituent. In addition, a site-specific deuterium labelling of the dihydroaromatic HD surrogates resulted in site specific labelling of the products and gave useful insights into the reaction mechanism by H-D scrambling.
Collapse
Affiliation(s)
- Luomo Li
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky-Strasse 9–1126111OldenburgGermany
| | - Sascha Kail
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky-Strasse 9–1126111OldenburgGermany
| | - Sebastian M. Weber
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky-Strasse 9–1126111OldenburgGermany
| | - Gerhard Hilt
- Institut für ChemieCarl von Ossietzky Universität OldenburgCarl-von-Ossietzky-Strasse 9–1126111OldenburgGermany
| |
Collapse
|
30
|
Sitte NA, Menche M, Tužina P, Bienewald F, Schäfer A, Comba P, Rominger F, Hashmi ASK, Schaub T. Phosphine-Catalyzed Vinylation at Low Acetylene Pressure. J Org Chem 2021; 86:13041-13055. [PMID: 34469141 DOI: 10.1021/acs.joc.1c01807] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vinylation of various nucleophiles with acetylene at a maximum pressure of 1.5 bar is achieved by organocatalysis with easily accessible phosphines like tri-n-butylphosphine. A detailed mechanistic investigation by quantum-chemical and experimental methods supports a nucleophilic activation of acetylene by the phosphine catalyst. At 140 °C and typically 5 mol % catalyst loading, cyclic amides, oxazolidinones, ureas, unsaturated cyclic amines, and alcohols were successfully vinylated. Furthermore, the in situ generation of a vinyl phosphonium species can also be utilized in Wittig-type functionalization of aldehydes.
Collapse
Affiliation(s)
- Nikolai A Sitte
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany
| | - Maximilian Menche
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany.,BASF SE, Quantum Chemistry, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Pavel Tužina
- BASF SE, Chemical Synthesis Research, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Frank Bienewald
- BASF SE, Chemical Synthesis Research, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Ansgar Schäfer
- BASF SE, Quantum Chemistry, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| | - Peter Comba
- Institute of Inorganic Chemistry & Interdisciplinary Center for Scientific Computing, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Frank Rominger
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - A Stephen K Hashmi
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany.,Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Thomas Schaub
- Catalysis Research Laboratory (CaRLa), Im Neuenheimer Feld 584, D-69120 Heidelberg, Germany.,BASF SE, Chemical Synthesis Research, Carl-Bosch-Straße 38, D-67056 Ludwigshafen, Germany
| |
Collapse
|
31
|
Sherikar MS, Bettadapur KR, Lanke V, Prabhu KR. Rhodium(iii)-catalyzed synthesis of trisubstituted furans via vinylic C-H bond activation. Org Biomol Chem 2021; 19:7470-7474. [PMID: 34612365 DOI: 10.1039/d1ob01293b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report an Rh(iii)-catalyzed one-pot synthesis of trisubstituted furan derivatives through Cvinyl-H activation of α,β-unsaturated ketones with acrylates. The control study revealed that the Heck-type product obtained undergoes Paal-Knorr type cyclization in the presence of an Ag salt. Hence, the Ag salt plays a dual role of a halide scavenger and a Lewis acid catalyst for Paal-Knorr type cyclization. The furan product can be transferred into the respective alcohol and acid derivatives which are useful intermediates in synthesizing biologically active molecules.
Collapse
|