1
|
Beeren IAO, Morgan FLC, Rademakers T, Bauer J, Dijkstra PJ, Moroni L, Baker MB. Well-Defined Synthetic Copolymers with Pendant Aldehydes Form Biocompatible Strain-Stiffening Hydrogels and Enable Competitive Ligand Displacement. J Am Chem Soc 2024; 146:24330-24347. [PMID: 39163519 PMCID: PMC11378284 DOI: 10.1021/jacs.4c04988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Dynamic hydrogels are attractive platforms for tissue engineering and regenerative medicine due to their ability to mimic key extracellular matrix (ECM) mechanical properties like strain-stiffening and stress relaxation while enabling enhanced processing characteristics like injectability, 3D printing, and self-healing. Systems based on imine-type dynamic covalent chemistry (DCvC) have become increasingly popular. However, most reported polymers comprising aldehyde groups are based on either end-group-modified synthetic or side-chain-modified natural polymers; synthetic versions of side-chain-modified polymers are noticeably absent. To facilitate access to new classes of dynamic hydrogels, we report the straightforward synthesis of a water-soluble copolymer with a tunable fraction of pendant aldehyde groups (12-64%) using controlled radical polymerization and their formation into hydrogel biomaterials with dynamic cross-links. We found the polymer synthesis to be well-controlled with the determined reactivity ratios consistent with a blocky gradient microarchitecture. Subsequently, we observed fast gelation kinetics with imine-type cross-linking. We were able to vary hydrogel stiffness from ≈2 to 20 kPa, tune the onset of strain-stiffening toward a biologically relevant regime (σc ≈ 10 Pa), and demonstrate cytocompatibility using human dermal fibroblasts. Moreover, to begin to mimic the dynamic biochemical nature of the native ECM, we highlight the potential for temporal modulation of ligands in our system to demonstrate ligand displacement along the copolymer backbone via competitive binding. The combination of highly tunable composition, stiffness, and strain-stiffening, in conjunction with spatiotemporal control of functionality, positions these cytocompatible copolymers as a powerful platform for the rational design of next-generation synthetic biomaterials.
Collapse
Affiliation(s)
- Ivo A O Beeren
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Francis L C Morgan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jurica Bauer
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Pieter J Dijkstra
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
2
|
Karchilakis G, Varlas S, Johnson EC, Norvilaite O, Farmer MAH, Sanderson G, Leggett GJ, Armes SP. Capturing Enzyme-Loaded Diblock Copolymer Vesicles Using an Aldehyde-Functionalized Hydrophilic Polymer Brush. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14086-14098. [PMID: 38934738 PMCID: PMC11238591 DOI: 10.1021/acs.langmuir.4c01561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Compared to lipids, block copolymer vesicles are potentially robust nanocontainers for enzymes owing to their enhanced chemical stability, particularly in challenging environments. Herein we report that cis-diol-functional diblock copolymer vesicles can be chemically adsorbed onto a hydrophilic aldehyde-functional polymer brush via acetal bond formation under mild conditions (pH 5.5, 20 °C). Quartz crystal microbalance studies indicated an adsorbed amount, Γ, of 158 mg m-2 for vesicle adsorption onto such brushes, whereas negligible adsorption (Γ = 0.1 mg m-2) was observed for a control experiment conducted using a cis-diol-functionalized brush. Scanning electron microscopy and ellipsometry studies indicated a mean surface coverage of around 30% at the brush surface, which suggests reasonably efficient chemical adsorption. Importantly, such vesicles can be conveniently loaded with a model enzyme (horseradish peroxidase, HRP) using an aqueous polymerization-induced self-assembly formulation. Moreover, the immobilized vesicles remained permeable toward small molecules while retaining their enzyme payload. The enzymatic activity of such HRP-loaded vesicles was demonstrated using a well-established colorimetric assay. In principle, this efficient vesicle-on-brush strategy can be applied to a wide range of enzymes and functional proteins for the design of next-generation immobilized nanoreactors for enzyme-mediated catalysis.
Collapse
Affiliation(s)
- Georgios Karchilakis
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Spyridon Varlas
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Oleta Norvilaite
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Matthew A. H. Farmer
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - George Sanderson
- GEO
Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K.
| | - Graham J. Leggett
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
3
|
Rider MS, Johnson EC, Bates D, Wardley WP, Gordon RH, Oliver RDJ, Armes SP, Leggett GJ, Barnes WL. Strong coupling in molecular systems: a simple predictor employing routine optical measurements. NANOPHOTONICS 2024; 13:2453-2467. [PMID: 38836102 PMCID: PMC11147498 DOI: 10.1515/nanoph-2023-0879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/08/2024] [Indexed: 06/06/2024]
Abstract
We provide a simple method that enables readily acquired experimental data to be used to predict whether or not a candidate molecular material may exhibit strong coupling. Specifically, we explore the relationship between the hybrid molecular/photonic (polaritonic) states and the bulk optical response of the molecular material. For a given material, this approach enables a prediction of the maximum extent of strong coupling (vacuum Rabi splitting), irrespective of the nature of the confined light field. We provide formulae for the upper limit of the splitting in terms of the molar absorption coefficient, the attenuation coefficient, the extinction coefficient (imaginary part of the refractive index) and the absorbance. To illustrate this approach, we provide a number of examples, and we also discuss some of the limitations of our approach.
Collapse
Affiliation(s)
- Marie S. Rider
- Department of Physics and Astronomy, University of Exeter, Stocker Road, DevonEX4 4QL, UK
| | - Edwin C. Johnson
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Demetris Bates
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - William P. Wardley
- Department of Physics and Astronomy, University of Exeter, Stocker Road, DevonEX4 4QL, UK
| | - Robert H. Gordon
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
| | - Robert D. J. Oliver
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, UK
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Steven P. Armes
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Graham J. Leggett
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - William L. Barnes
- Department of Physics and Astronomy, University of Exeter, Stocker Road, DevonEX4 4QL, UK
| |
Collapse
|
4
|
Hunter SJ, Abu Elella MH, Johnson EC, Taramova L, Brotherton EE, Armes SP, Khutoryanskiy VV, Smallridge MJ. Mucoadhesive pickering nanoemulsions via dynamic covalent chemistry. J Colloid Interface Sci 2023; 651:334-345. [PMID: 37544222 DOI: 10.1016/j.jcis.2023.07.162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/29/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023]
Abstract
HYPOTHESIS Submicron oil droplets stabilized using aldehyde-functionalized nanoparticles should adhere to the primary amine groups present at the surface of sheep nasal mucosal tissue via Schiff base chemistry. EXPERIMENTS Well-defined sterically-stabilized diblock copolymer nanoparticles of 20 nm diameter were prepared in the form of concentrated aqueous dispersions via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization of 2,2,2-trifluoroethyl methacrylate (TFEMA) using a water-soluble methacrylic precursor bearing cis-diol groups. Some of these hydroxyl-functional nanoparticles were then selectively oxidized using an aqueous solution of sodium periodate to form a second batch of nanoparticles bearing pendent aldehyde groups within the steric stabilizer chains. Subjecting either hydroxyl- or aldehyde-functional nanoparticles to high-shear homogenization with a model oil (squalane) produced oil-in-water Pickering macroemulsions of 20-30 µm diameter. High-pressure microfluidization of such macroemulsions led to formation of the corresponding Pickering nanoemulsions with a mean droplet diameter of around 200 nm. Quartz crystal microbalance (QCM) experiments were used to examine adsorption of both nanoparticles and oil droplets onto a model planar substrate bearing primary amine groups, while a fluorescence microscopy-based mucoadhesion assay was developed to assess adsorption of the oil droplets onto sheep nasal mucosal tissue. FINDINGS Squalane droplets coated with aldehyde-functional nanoparticles adhered significantly more strongly to sheep nasal mucosal tissue than those coated with the corresponding hydroxyl-functional nanoparticles. This difference was attributed to the formation of surface imine bonds via Schiff base chemistry and was also observed for the two types of nanoparticles alone in QCM studies. Preliminary biocompatibility studies using planaria indicated only mild toxicity for these new mucoadhesive Pickering nanoemulsions, suggesting potential applications for the localized delivery of hydrophobic drugs.
Collapse
Affiliation(s)
- Saul J Hunter
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| | - Mahmoud H Abu Elella
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK; Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Edwin C Johnson
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| | - Laura Taramova
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Emma E Brotherton
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, UK.
| | | | | |
Collapse
|
5
|
Brotherton EE, Josland D, György C, Johnson EC, Chan DH, Smallridge MJ, Armes SP. Histidine-Functionalized Diblock Copolymer Nanoparticles Exhibit Enhanced Adsorption onto Planar Stainless Steel. Macromol Rapid Commun 2023; 44:e2200903. [PMID: 36534428 PMCID: PMC11497266 DOI: 10.1002/marc.202200903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/12/2022] [Indexed: 12/23/2022]
Abstract
RAFT aqueous emulsion polymerization of isopropylideneglycerol monomethacrylate (IPGMA) is used to prepare a series of PGEO5MA46 -PIPGMAy nanoparticles, where PGEO5MA is a hydrophilic methacrylic steric stabilizer block bearing pendent cis-diol groups. TEM studies confirm a spherical morphology while dynamic light scattering (DLS) analysis indicated that the z-average particle diameter can be adjusted by varying the target degree of polymerization for the core-forming PIPGMA block. Periodate oxidation is used to convert the cis-diol groups on PGEO5MA46 -PIPGMA500 and PGEO5MA46 -PIPGMA1000 nanoparticles into the analogous aldehyde-functionalized nanoparticles, which are then reacted with histidine via reductive amination. In each case, the extent of functionalization is more than 99% as determined by 1 H NMR spectroscopy. Aqueous electrophoresis studies indicate that such derivatization converts initially neutral nanoparticles into zwitterionic nanoparticles with an isoelectric point at pH 7. DLS studies confirm that such histidine-derivatized nanoparticles remain colloidally stable over a wide pH range. A quartz crystal microbalance is employed at 25°C to assess the adsorption of both the cis-diol- and histidine-functionalized nanoparticles onto planar stainless steel at pH 6. The histidine-bearing nanoparticles adsorb much more strongly than their cis-diol counterparts. For the highest adsorbed amount of 70.5 mg m-2 , SEM indicates a fractional surface coverage of 0.23 for the adsorbed nanoparticles.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Daniel Josland
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Csilla György
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Edwin C. Johnson
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | - Derek H.H. Chan
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| | | | - Steven P. Armes
- Dainton BuildingDepartment of ChemistryThe University of SheffieldBrook HillSheffieldSouth YorkshireS3 7HFUK
| |
Collapse
|
6
|
Brotherton EE, Johnson EC, Smallridge MJ, Hammond DB, Leggett GJ, Armes SP. Hydrophilic Aldehyde-Functional Polymer Brushes: Synthesis, Characterization, and Potential Bioapplications. Macromolecules 2023; 56:2070-2080. [PMID: 36938510 PMCID: PMC10018759 DOI: 10.1021/acs.macromol.2c02471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) is used to polymerize a cis-diol-functional methacrylic monomer (herein denoted GEO5MA) from planar silicon wafers. Ellipsometry studies indicated dry brush thicknesses ranging from 40 to 120 nm. The hydrophilic PGEO5MA brush is then selectively oxidized using sodium periodate to produce an aldehyde-functional hydrophilic PAGEO5MA brush. This post-polymerization modification strategy provides access to significantly thicker brushes compared to those obtained by surface-initiated ARGET ATRP of the corresponding aldehyde-functional methacrylic monomer (AGEO5MA). The much slower brush growth achieved in the latter case is attributed to the relatively low aqueous solubility of the AGEO5MA monomer. X-ray photoelectron spectroscopy (XPS) analysis confirmed that precursor PGEO5MA brushes were essentially fully oxidized to the corresponding PAGEO5MA brushes within 30 min of exposure to a dilute aqueous solution of sodium periodate at 22 °C. PAGEO5MA brushes were then functionalized via Schiff base chemistry using an amino acid (histidine), followed by reductive amination with sodium cyanoborohydride. Subsequent XPS analysis indicated that the mean degree of histidine functionalization achieved under optimized conditions was approximately 81%. Moreover, an XPS depth profiling experiment confirmed that the histidine groups were uniformly distributed throughout the brush layer. Surface ζ potential measurements indicated a significant change in the electrophoretic behavior of the zwitterionic histidine-functionalized brush relative to that of the non-ionic PGEO5MA precursor brush. The former brush exhibited cationic character at low pH and anionic character at high pH, with an isoelectric point being observed at around pH 7. Finally, quartz crystal microbalance studies indicated minimal adsorption of a model globular protein (BSA) on a PGEO5MA brush-coated substrate, whereas strong protein adsorption via Schiff base chemistry occurred on a PAGEO5MA brush-coated substrate.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Edwin C. Johnson
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | | | - Deborah B. Hammond
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Graham J. Leggett
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, The University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, U.K.
| |
Collapse
|
7
|
Antignano I, D’Acunzo F, Arena D, Casciardi S, Del Giudice A, Gentile F, Pelosi M, Masci G, Gentili P. Influence of Nanoaggregation Routes on the Structure and Thermal Behavior of Multiple-Stimuli-Responsive Micelles from Block Copolymers of Oligo(ethylene glycol) Methacrylate and the Weak Acid [2-(Hydroxyimino)aldehyde]butyl Methacrylate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14371-14386. [PMID: 36346681 PMCID: PMC9686140 DOI: 10.1021/acs.langmuir.2c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this work, we compare nanoaggregation driven by pH-induced micellization (PIM) and by the standard solvent displacement (SD) method on a series of pH-, light-, and thermosensitive amphiphilic block copolymers. Specifically, we investigate poly(HIABMA)-b-poly(OEGMA) and poly(HIABMA)-b-poly(DEGMA-r-OEGMA), where HIABMA = [(hydroxyimino)aldehyde]butyl methacrylate, OEGMA = oligo(ethylene glycol)methyl ether methacrylate, and DEGMA = di(ethylene glycol)methyl ether methacrylate. The weakly acidic HIA group (pKa ≈ 8) imparts stability to micelles at neutral pH, unlike most of the pH-responsive copolymers investigated in the literature. With SD, only some of our copolymers yield polymeric micelles (34-59 nm), and their thermoresponsivity is either poor or altogether absent. In contrast, PIM affords thermoresponsive, smaller micelles (down to 24 nm), regardless of the polymer composition. In some cases, cloud points are remarkably well defined and exhibit limited hysteresis. By combining turbidimetric, dyamic light scattering, and small-angle X-ray scattering measurements, we show that SD yields loose micelles with POEGMA segments partly involved in the formation of the hydrophobic core, whereas PIM yields more compact core-shell micelles with a well-defined PHIABMA core. We conclude that pH-based nanoaggregation provides advantages over block-selective solvation to obtain compact micelles exhibiting well-defined responses to external stimuli.
Collapse
Affiliation(s)
- Irene Antignano
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Francesca D’Acunzo
- Institute
of Biological Systems (ISB), Italian National Research Council (CNR),
Sezione Meccanismi di Reazione, c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Roma, Italy
| | - Davide Arena
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Stefano Casciardi
- National
Institute for Insurance Against Accidents at Work (INAIL Research),
Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida 1, 00078Monte Porzio Catone (Rome), Italy
| | | | - Francesca Gentile
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Maria Pelosi
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Giancarlo Masci
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
| | - Patrizia Gentili
- Department
of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185Roma, Italy
- Institute
of Biological Systems (ISB), Italian National Research Council (CNR),
Sezione Meccanismi di Reazione, c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185Roma, Italy
| |
Collapse
|
8
|
Akar E, Kandemir D, Luleburgaz S, Kumbaraci V, Durmaz H. Efficient Post-Polymerization modification of pendant aldehyde functional polymer via reductive etherification reaction. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Brotherton EE, Neal TJ, Kaldybekov DB, Smallridge MJ, Khutoryanskiy VV, Armes SP. Aldehyde-functional thermoresponsive diblock copolymer worm gels exhibit strong mucoadhesion. Chem Sci 2022; 13:6888-6898. [PMID: 35774174 PMCID: PMC9200053 DOI: 10.1039/d2sc02074b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
A series of thermoresponsive diblock copolymer worm gels is prepared via reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate using a water-soluble methacrylic precursor bearing pendent cis-diol groups. Selective oxidation using an aqueous solution of sodium periodate affords the corresponding aldehyde-functional worm gels. The aldehyde groups are located within the steric stabilizer chains and the aldehyde content can be adjusted by varying the periodate/cis-diol molar ratio. These aldehyde-functional worm gels are evaluated in terms of their mucoadhesion performance with the aid of a fluorescence microscopy-based assay. Using porcine urinary bladder mucosa as a model substrate, we demonstrate that these worm gels offer a comparable degree of mucoadhesion to that afforded by chitosan, which is widely regarded to be a 'gold standard' positive control in this context. The optimum degree of aldehyde functionality is approximately 30%: lower degrees of functionalization lead to weaker mucoadhesion, whereas higher values compromise the desirable thermoresponsive behavior of these worm gels.
Collapse
Affiliation(s)
- Emma E Brotherton
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Thomas J Neal
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| | - Daulet B Kaldybekov
- School of Pharmacy, University of Reading, Whiteknights PO Box 224, Reading Berkshire RG6 6DX UK
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University Almaty 050040 Kazakhstan
| | | | - Vitaliy V Khutoryanskiy
- School of Pharmacy, University of Reading, Whiteknights PO Box 224, Reading Berkshire RG6 6DX UK
| | - Steven P Armes
- Dainton Building, Department of Chemistry, University of Sheffield Brook Hill Sheffield South Yorkshire S3 7HF UK
| |
Collapse
|
10
|
Brotherton EE, Smallridge MJ, Armes SP. Aldehyde-Functional Diblock Copolymer Nano-objects via RAFT Aqueous Dispersion Polymerization. Biomacromolecules 2021; 22:5382-5389. [PMID: 34814688 DOI: 10.1021/acs.biomac.1c01327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the rational design of aldehyde-functional sterically stabilized diblock copolymer nano-objects in aqueous solution via polymerization-induced self-assembly. More specifically, reversible addition-fragmentation chain transfer aqueous dispersion polymerization of 2-hydroxypropyl methacrylate is conducted using a water-soluble precursor block in which every methacrylic repeat unit contains a pendent oligo(ethylene glycol) side chain capped with a cis-diol unit. Systematic variation of the reaction conditions enables the construction of a pseudo-phase diagram, which ensures the reproducible targeting of pure spheres, worms, or vesicles. Selective oxidation of the pendent cis-diol groups using aqueous sodium periodate under mild conditions introduces geminal diols (i.e., the hydrated form of an aldehyde obtained in the presence of water) into the steric stabilizer chains without loss of colloidal stability. In the case of diblock copolymer vesicles, such derivatization leads to the formation of a worm population, indicating partial loss of the original morphology. However, this problem can be circumvented by cross-linking the membrane-forming block prior to periodate oxidation. Moreover, such covalently stabilized aldehyde-functionalized vesicles can be subsequently reacted with either glycine or histidine in aqueous solution, followed by reductive amination to prevent hydrolysis of the labile imine bond. ζ potential measurements confirm that this derivatization significantly affects the electrophoretic behavior of these vesicles. Similarly, the membrane-crosslinked aldehyde-functionalized vesicles can be reacted with a model globular protein, bovine serum albumin, to produce "stealthy" protein-decorated vesicles.
Collapse
Affiliation(s)
- Emma E Brotherton
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| | - Mark J Smallridge
- GEO Specialty Chemicals, Hythe, Southampton, Hampshire SO45 3ZG, U.K
| | - Steven P Armes
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K
| |
Collapse
|