1
|
Hu J, Wang X. Metalized Borylene in Boron-Gold Carbonyl Complexes: Infrared Spectra and Theoretical Calculations. Chemistry 2025; 31:e202403368. [PMID: 39562177 DOI: 10.1002/chem.202403368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
Borylenes (:B-R) that are built on a single B-R bond between boron and another nonmetallic atom or group are a heated subject of special interest due to their intriguing transition-metal-mimicking reactivity, but the relative lack of understanding for the electronic structure and chemical bonding of transition metal borides leads to lingering neglect of metalized borylenes (:B-M) based on covalent B-M bonding. Here we use infrared photodissociation spectroscopy in combination with density functional calculations to study the geometric structure and chemical bonding of boron-gold carbonyl complex cations. The structure and bonding analyses demonstrated that the BAu(CO)3 + and BAu2(CO)4 + complexes can be described as bis-carbonyl-trapped borylene adducts. While the metal-rich BAu3(CO)4 + complex represents an unusual multicenter-bond-stabilized borylene cation with excellent σ-acidity and π-backbonding capability for CO activation, featuring Cs symmetry with a quasi-T-shaped BAu3 + core. It is manifested that BAu3 + presents greater amphoteric reactivity and improved stability compared to BAu1,2 + due to the presence of the three-center-two-electron Au-B-Au bond. This study discloses a conceptually new platform for accessing reactive metalized borylenes by exploiting the boron-mediated multicenter-bond stabilization strategy and using more bench-stable and ubiquitous metal carbonyl fragments as starting materials, thus providing a broader opportunity for the design of novel chemical structures and catalytic reactions.
Collapse
Affiliation(s)
- Jin Hu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Xuefeng Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
2
|
Li X, Huang W, Lian Y, Tao S. Graph Neural Network Model Accelerates Biomass Adsorption Energy Prediction on Iron-group Hydrotalcite Electrocatalysts. J Phys Chem Lett 2024; 15:10725-10733. [PMID: 39418087 DOI: 10.1021/acs.jpclett.4c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Iron-group layered double hydroxides (LDH) have demonstrated excellent biomass electrooxidation performance. However, the development of these materials relies on extensive experiments and high computational costs. Therefore, we developed a graph neural network (GNN) (named GALE-Net 2.0) for predicting the adsorption energies in the electrocatalytic reaction of 5-hydroxymethylfurfural (HMF). A data set of the adsorption energies of organic molecules on the LDH was constructed. The GNN model predicted that the 1:2 CoNi-doped LDH catalyst would demonstrate excellent HMF electrooxidation performance. The calculation time was reduced from 24 h with the density functional theory (DFT) calculations to 1 h with the GALE-Net 2.0. The mean absolute error of the GNN model was 0.17 eV, which is consistent with the accuracy of the DFT calculations. Moreover, the model showed some generality as it successfully predicted the adsorption energy of furan derivatives. Our results suggest that GALE-Net 2.0 can accelerate the design of electrocatalysts.
Collapse
Affiliation(s)
- Xinghai Li
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, Liaoning Province China
| | - Wei Huang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, Liaoning Province China
| | - Yuechang Lian
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, Liaoning Province China
| | - Shengyang Tao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian 116024, Liaoning Province China
| |
Collapse
|
3
|
Liu Z, Zhao J, Yang Y, Yan Y, Yao X, Jiao J, Zhang F, Jia J, Li Y. Heterodinuclear AuNi(CO) n- ( n = 2-3) Complexes Featuring an Anionic Au - as a Donor Ligand for Ni(CO) n. J Phys Chem A 2024; 128:6917-6926. [PMID: 39133664 DOI: 10.1021/acs.jpca.4c03782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The gas-phase heterodinuclear gold-nickel carbonyl AuNi(CO)n- (n = 2-3) anion complexes were mass-selected and studied by using photoelectron velocity-map imaging spectroscopy in combination with quantum-chemical calculations, which can establish both the geometries and electronic structures of these anions. These complexes are all confirmed to be singlet ground states with one gold atom bonded at the central nickel atom of the Ni(CO)n moieties. Further bonding analyses indicate that unlike the alkali-metals as covalently bonded ligands to form the electron-sharing alkali-metal-nickel bonding in the alkali-metal-nickel carbonyl anionic complexes, the Au atom in the AuNi(CO)n- complexes serves as a datively bound ligand for Ni(CO)n to form gold-to-nickel dative bonding.
Collapse
Affiliation(s)
- Zhiling Liu
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Jikang Zhao
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Yufeng Yang
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Yonghong Yan
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Xiaoyue Yao
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Jingmei Jiao
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Fuqiang Zhang
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Jianfeng Jia
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| | - Ya Li
- School of Geographical Sciences, Shanxi Normal University. No. 339, Taiyu Road, Taiyuan, Shanxi 030031, People's Republic of China
| |
Collapse
|
4
|
Hu J, Xing X, Wang X. Formation of Delocalized Linear M-B-M Covalent Bonds: A Combined Experimental and Theoretical Study of BM 2(CO) 8+ (M = Co, Rh, Ir) Complexes. Inorg Chem 2024; 63:13459-13467. [PMID: 38982873 DOI: 10.1021/acs.inorgchem.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Investigations of transition-metal boride clusters not only lead to novel structures but also provide important information about the metal-boron bonds that are critical to understanding the properties of boride materials. The geometric structures and bonding features of heteronuclear boron-containing transition metal carbonyl cluster cations BM(CO)6+ and BM2(CO)8+ (M = Co, Rh, and Ir) are studied by a combination of the infrared photodissociation spectroscopy and density functional calculations at B3LYP/def2-TZVP level. The completely coordinated BM2(CO)8+ complexes are characterized as a sandwich structure composed of two staggered M(CO)4 fragments and a boron cation, featuring a D3d symmetry and 1Eg electronic ground state as well as metal-anchored carbonyls in an end-on manner. In conjunction with theoretical calculations, multifold metal-boron-metal bonding interactions in BM2(CO)8+ complexes involving the filled d orbitals of the metals and the empty p orbitals of the boron cation were unveiled, namely, one σ-type M-B-M bond and two π-type M-B-M bonds. Accordingly, the BM2(CO)8+ complexes can be described as a linear conjugated (OC)4M═B═M(CO)4 skeleton with a formal B-M bond index of 1.5. The three delocalized d-p-d covalent bonds render compensation for the electron deficiency of the cationic boron center and endow both metal centers with the favorable 18-electron structure, thus contributing much to the overall structural stability of the BM2(CO)8+ cations. As a comparison, the saturated BRh(CO)6+ and BIr(CO)6+ complexes are determined to be a doublet Cs-symmetry structure with an unbridged (OC)2B-M(CO)4 pattern, involving a two-center σ-type (OC)2B → M(CO)4+ dative single bond along with a weak covalent B-M half bond. This work offers important insight into the structure and bonding of late transition metal boride carbonyl cluster cations.
Collapse
Affiliation(s)
- Jin Hu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaopeng Xing
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuefeng Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
5
|
Zhang Z, Ling Z, Ju B, Li G, Yuan Q, Cheng L, Xie H, Jiang L. Observation of the Transition from Triple Bonds to Single Bonds between Ru-Ge Bonding in RuGeO(CO) n- ( n = 3-5). J Phys Chem Lett 2024; 15:6952-6957. [PMID: 38940497 DOI: 10.1021/acs.jpclett.4c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
This work reports the observation and characterization of heterobinuclear transition-metal main-group metal oxide carbonyl complex anions, RuGeO(CO)n- (n = 3-5), by combining mass-selected photoelectron velocity map imaging spectroscopy and quantum chemistry calculations. The experimentally determined vertical electron detachment energy of RuGeO(CO)3- surpasses those of RuGeO(CO)4- and RuGeO(CO)5-, which is attributed to distinctive bonding features. RuGeO(CO)3- manifests one covalent σ and two Ru-to-Ge dative π bonds, contrasting with the sole covalent σ bond present in RuGeO(CO)4- and RuGeO(CO)5-. Unpaired spin density distribution analysis reveals a 17-electron configuration at the Ru center in RuGeO(CO)3- and an 18-electron configuration in RuGeO(CO)4- and RuGeO(CO)5-. This work closes a gap in the quantitative physicochemical characterization of heteronuclear oxide carbonyl complexes, enhancing our insights into catalytic processes of CO/GeO on the metal surface at the molecular level.
Collapse
Affiliation(s)
- Ziheng Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zicheng Ling
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Bangmin Ju
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qinqin Yuan
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Longjiu Cheng
- Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
6
|
Hu J, Wang X. Infrared Photodissociation Spectroscopy of Dinuclear Vanadium-Group Metal Carbonyl Complexes: Diatomic Synergistic Activation of Carbon Monoxide. Molecules 2024; 29:2831. [PMID: 38930895 PMCID: PMC11206424 DOI: 10.3390/molecules29122831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The geometric structure and bonding features of dinuclear vanadium-group transition metal carbonyl cation complexes in the form of VM(CO)n+ (n = 9-11, M = V, Nb, and Ta) are studied by infrared photodissociation spectroscopy in conjunction with density functional calculations. The homodinuclear V2(CO)9+ is characterized as a quartet structure with CS symmetry, featuring two side-on bridging carbonyls and an end-on semi-bridging carbonyl. In contrast, for the heterodinuclear VNb(CO)9+ and VTa(CO)9+, a C2V sextet isomer with a linear bridging carbonyl is determined to coexist with the lower-lying CS structure analogous to V2(CO)9+. Bonding analyses manifest that the detected VM(CO)9+ complexes featuring an (OC)6M-V(CO)3 pattern can be regarded as the reaction products of two stable metal carbonyl fragments, and indicate the presence of the M-V d-d covalent interaction in the CS structure of VM(CO)9+. In addition, it is demonstrated that the significant activation of the bridging carbonyls in the VM(CO)9+ complexes is due in large part to the diatomic cooperation of M-V, where the strong oxophilicity of vanadium is crucial to facilitate its binding to the oxygen end of the carbonyl groups. The results offer important insight into the structure and bonding of dinuclear vanadium-containing transition metal carbonyl cluster cations and provide inspiration for the design of active vanadium-based diatomic catalysts.
Collapse
Affiliation(s)
| | - Xuefeng Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China;
| |
Collapse
|
7
|
Liu YQ, Kalita AJ, Zhang HY, Cui LJ, Yan B, Guha AK, Cui ZH, Pan S. BeM(CO)3- (M = Co, Rh, Ir) and BeM(CO)3 (M = Ni, Pd, Pt): Triply bonded terminal beryllium in zero oxidation state. J Chem Phys 2024; 160:184308. [PMID: 38738611 DOI: 10.1063/5.0181343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
We perform detailed potential energy surface explorations of BeM(CO)3- (M = Co, Rh, Ir) and BeM(CO)3 (M = Ni, Pd, Pt) using both single-reference and multireference-based methods. The present results at the CASPT2(12,12)/def2-QZVPD//M06-D3/def2-TZVPPD level reveal that the global minimum of BeM(CO)3- (M = Co, Rh, Ir) and BePt(CO)3 is a C3v symmetric structure with an 1A1 electronic state, where Be is located in a terminal position bonded to M along the center axis. For other cases, the C3v symmetric structure is a low-lying local minimum. Although the present complexes are isoelectronic with the recently reported BFe(CO)3- complex having a B-Fe quadruple bond, radial orbital-energy slope (ROS) analysis reveals that the highest occupied molecular orbital (HOMO) in the title complexes is slightly antibonding in nature, which bars a quadruple bonding assignment. Similar weak antibonding nature of HOMO in the previously reported BeM(CO)4 (M = Ru, Os) complexes is also noted in ROS analysis. The bonding analysis through energy decomposition analysis in combination with the natural orbital for chemical valence shows that the bonding between Be and M(CO)3q (q = -1 for M = Co, Rh, Ir and q = 0 for M = Ni, Pd, Pt) can be best described as Be in the ground state (1S) interacting with M(CO)30/- via dative bonds. The Be(spσ) → M(CO)3q σ-donation and the complementary Be(spσ) ← M(CO)3q σ-back donation make the overall σ bond, which is accompanied by two weak Be(pπ) ← M(CO)3q π-bonds. These complexes represent triply bonded terminal beryllium in an unusual zero oxidation state.
Collapse
Affiliation(s)
- Yu-Qian Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Amlan J Kalita
- Department of Chemistry, University of Science & Technology, Meghalaya, Ri-Bhoi, Meghalaya 793101, India
| | - Hui-Yu Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Li-Juan Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Bing Yan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Ankur K Guha
- Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam 781001, India
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130023, China
| | - Sudip Pan
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| |
Collapse
|
8
|
Hu J, Xin K, Lin X, Xing X, Wang X. Infrared Photodissociation Spectroscopy of Mass-Selected Dinuclear Transition Metal Boride Carbonyl Cluster Cations. J Phys Chem A 2024; 128:2049-2057. [PMID: 38471016 DOI: 10.1021/acs.jpca.3c07819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The transition-metal-boron bonding interactions and geometric structures of heterodinuclear transition metal carbonyl cluster cations BM(CO)n+ (M = Co, Ni, and Cu) are studied by a combination of the infrared photodissociation spectroscopy and density functional theory calculations at the B3LYP/def2-TZVP level. The BCu(CO)5+ and BCo(CO)6+ cations are characterized as an (CO)2B-M(CO)3/4+ structure involving an σ-type (OC)2B → M(CO)3,4+ dative bonding with end-on carbonyls, while for BNi(CO)5,6+ complexes with a bridged carbonyl, a 3c-2e bond involving the 5σ electrons of the bridged carbonyl and an electron-sharing bond between the B(CO)2 fragment and the Ni(CO)2,3+ subunits were revealed. Moreover, the fundamental driving force of the exclusive existence of a bridged carbonyl group in the boron-nickel complexes has been demonstrated to stem from the desire of the B and Ni centers for the favorable 8- and 18-electron structures.
Collapse
Affiliation(s)
- Jin Hu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ke Xin
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuan Lin
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaopeng Xing
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuefeng Wang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
9
|
Ju B, Zhang Z, Kong X, Zou J, Li G, Xie H, Jiang L. Photoelectron velocity map imaging spectroscopy of group 14 elements and iron tetracarbonyl anionic clusters MFe(CO)4- (M = Si, Ge, Sn). J Chem Phys 2024; 160:044307. [PMID: 38294311 DOI: 10.1063/5.0187204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The heteronuclear group 14 M-iron tetracarbonyl clusters MFe(CO)4- (M = Si, Ge, Sn) anions have been generated in the gas phase by laser ablation of M-Fe alloys and detected by mass and photoelectron spectroscopy. With the support of quantum chemical calculations, the geometric and electronic structures of MFe(CO)4- (M = Si, Ge, Sn) are elucidated, which shows that all the MFe(CO)4- clusters have the M-Fe bonded, iron-centered, and carbonyl-terminal M-Fe(CO)4 structure with the C2v symmetry and a 2B2 ground state. The M-Fe bond can be considered a double bond, which includes one σ electron sharing bond and one π dative bond. The C-O bonds in those anionic clusters are calculated to be elongated to different extents, and in particular, the C-O bonds in SiFe(CO)4- are elongated more. The Si-Fe alloy thus turns out to be a better collocation to activate the C-O bonds in the gas phase among group 14. The present findings have important implications for the rational development of high-performance catalysts with isolated metal atoms/clusters dispersed on supports.
Collapse
Affiliation(s)
- Bangmin Ju
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ziheng Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Xiangtao Kong
- Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, People's Republic of China
| | - Jinghan Zou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|
10
|
Yang J, Du S, Ju B, Zhang Z, Li G, Zou J, Cao J, Jing Q, Xie H, Jiang L. Spectroscopic Signature of the Carbon-Carbon Coupling Reaction between Carbon Monoxide and Nickel Carbide. J Phys Chem A 2023. [PMID: 38032280 DOI: 10.1021/acs.jpca.3c06197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Spectroscopic characterization of ketenylidene complexes is of essential importance for understanding the structure-reactivity relationships of the catalytic sites. Here, we report a size-specific photoelectron velocity map imaging spectroscopic study of the reactions of carbon monoxide with nickel carbide. Quantum chemical calculations have been conducted to search for the energetically favorable isomers and to recognize the experimental spectra. The target products with the chemical formula of NiC(CO)n- (n = 3-5) are characterized to have an intriguing ketenylidene CCO unit. The evolution from NiC(CO)3- to NiC(CO)4- involves the breaking and formation of the Ni-C bond and the coordination conversion between the terminal and bridging carbonyls. Experimental and theoretical analyses reveal an efficient C-C bond formation process within the reactions of carbon monoxide and laser-vaporized nickel carbide. This work highlights the pivotal roles played by metal carbides in the C-C bond formation and also proposes new ideas for the design and chemical control of a broad class of complexes with unique physical and chemical properties.
Collapse
Affiliation(s)
- Jianpeng Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, 237 Nanhu Road, Xinyang 464000, China
| | - Shihu Du
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Bangmin Ju
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ziheng Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jinghan Zou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Juntao Cao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, 237 Nanhu Road, Xinyang 464000, China
| | - Qiangshan Jing
- College of Chemistry and Chemical Engineering, Xinyang Normal University, 237 Nanhu Road, Xinyang 464000, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
11
|
Chi C, Yang Z, Zeng B, Qin Q, Meng L. Spectroscopic characterization of heteronuclear iron-chromium carbonyl cluster anions. Phys Chem Chem Phys 2023; 25:32173-32183. [PMID: 37986618 DOI: 10.1039/d3cp04248k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Infrared photodissociation spectroscopy has been used to investigate CrFe(CO)n- (n = 4-9) clusters in the gas phase. Comparison of the observed spectra in the carbonyl stretching frequency region with those predicted for low-lying isomers by DFT calculations showed that the observed CrFe(CO)n- (n = 4-8) clusters could be characterized to have Cr-Fe bonded (OC)4Fe-Cr(CO)n-4 structures. The coexistence of isomers with the (OC)Fe-Cr(CO)5 and (OC)3Fe-Cr(CO)4 structures was also observed for CrFe(CO)6- and CrFe(CO)7- anions, respectively. The CrFe(CO)n- (n = 4-8) complexes were strongly bonded systems. The CrFe(CO)8- complex was a coordination-saturated cluster, and the CrFe(CO)9- anion was characterized to contain a CrFe(CO)8- core tagged by one CO molecule. Bonding analysis revealed that the Cr-Fe bonds in the CrFe(CO)n- (n = 4-8) clusters were predominantly σ-type single bonds. The iron center in the Fe(CO)4 moiety and the chromium center in the Cr(CO)5 moiety fulfilled the 18-electron configuration for the CrFe(CO)n- (n = 4-6) clusters. As in the CrFe(CO)n- (n = 7, 8) complexes, the iron center in the Fe(CO)4 moiety exhibited a 17-electron configuration, while the chromium center in the Cr(CO)4 moiety exhibited a 16-electron configuration. These findings provide valuable insights into the structure and bonding mechanism of heterometallic carbonyl clusters.
Collapse
Affiliation(s)
- Chaoxian Chi
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang Province 315211, China.
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
| | - Zhixiang Yang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
| | - Bin Zeng
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
| | - Qifeng Qin
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
| | - Luyan Meng
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, Jiangxi Province 330013, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315020, China
| |
Collapse
|
12
|
Guha AK. Identification of Global Minimum of HNBeCO Complex. J Phys Chem A 2023; 127:9743-9747. [PMID: 37938901 DOI: 10.1021/acs.jpca.3c05289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Multiple bonding has always excited chemists. Recently, triple bonding between beryllium and N atoms in the HNBeCO complex has been reported based on experimental infrared spectroscopy and theoretical calculations. However, the present work reports a different structure based on a detailed potential energy surface scan. The global minimum geometry features only a weak partial Be-N double bond. The global minimum geometry lies very deep in the potential energy surface with respect to the reported one. Isomerization kinetics reveals that the reported structure has to overcome a very small barrier (5.4 kcal/mol) to isomerize to the global one. Although the previously reported structure is a real minimum, the present study identifies a much lower energy structure. A re-examination of the experimental spectra might show that the global minimum has also been observed.
Collapse
Affiliation(s)
- Ankur K Guha
- Advanced Computational Chemistry Centre, Department of Chemistry, Cotton University, Panbazar, Guwahati, Assam 781001, India
| |
Collapse
|
13
|
Jin X, Wang G, Zhou M. Mg(I)-Fe(-II) and Mg(0)-Mg(I) covalent bonding in the Mg nFe(CO) 4- ( n = 1, 2) anion complexes: an infrared photodissociation spectroscopic and theoretical study. Phys Chem Chem Phys 2023; 25:7697-7703. [PMID: 36866694 DOI: 10.1039/d2cp05719k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Heteronuclear magnesium-iron carbonyl anion complexes MgFe(CO)4- and Mg2Fe(CO)4- are produced in the gas phase and are detected by mass-selected infrared photodissociation spectroscopy in the carbonyl stretching frequency region. The geometric structures and the metal-metal bonding are discussed with the aid of quantum chemical calculations. Both complexes are characterized to have a doublet electronic ground state with C3v symmetry containing a Mg-Fe bond or a Mg-Mg-Fe bonding unit. Bonding analyses indicate that each complex involves an electron-sharing Mg(I)-Fe(-II) σ bond. The Mg2Fe(CO)4- complex involves a relatively weak covalent Mg(0)-Mg(I) σ bond.
Collapse
Affiliation(s)
- Xiaoyang Jin
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University Shanghai, Shanghai 200438, China.
| | - Guanjun Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University Shanghai, Shanghai 200438, China.
| | - Mingfei Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University Shanghai, Shanghai 200438, China.
| |
Collapse
|
14
|
Parambath S, Narayanan S J J, Parameswaran P. Five-membered N-heterocyclic beryllium(I) compounds: fluctuating electronic structures with ambiphilic reactivity. Dalton Trans 2023; 52:3378-3385. [PMID: 36810658 DOI: 10.1039/d2dt03263e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structure, bonding, and reactivity of the five-membered N-heterocyclic beryllium compounds (NHBe), BeN2C2H4 (1) and BeN2(CH3)2C2H2 (2) were studied at the M06/def2-TZVPP//BP86/def2-TZVPP level of theory. The molecular orbital analysis indicates that NHBe is an aromatic 6π-electron system with an unoccupied σ-type spn-hybrid orbital on Be. Energy decomposition analysis combined with natural orbitals for chemical valence has been carried out with Be and L (L = N2C2H4 (1), N2(CH3)2C2H2 (2)) in their different electronic states as fragments at the BP86/TZ2P level of theory. The results indicate that the best bonding representation can be considered as an interaction between Be+ having the 2s02px12py02pz0 electronic configuration and L-. Accordingly, L- forms two donor-acceptor σ-bonds and one electron sharing π-bond with Be+. Compounds 1 and 2 show high proton and hydride affinity at beryllium, indicating its ambiphilic reactivity. The protonated structure results from adding a proton on the lone pair of electrons in the doubly excited state. On the other hand, the hydride adduct is formed by donating electrons from the hydride to an unoccupied σ-type spn-hybrid orbital on Be. These compounds show very high exothermic reaction energy for adduct formation with two electron donor ligands such as cAAC, CO, NHC, and PMe3.
Collapse
Affiliation(s)
- Sneha Parambath
- Department of Chemistry, National Institute of Technology, Calicut, Kerala, India.
| | - Jishnu Narayanan S J
- Department of Chemistry, National Institute of Technology, Calicut, Kerala, India.
| | | |
Collapse
|
15
|
Parambath S, Parameswaran P. Two σ- and two π-dative quadruple bonds between the s-block element and transition metal in [BeM(CO) 4; M = Fe - Os]. Phys Chem Chem Phys 2022; 24:20183-20188. [PMID: 35997149 DOI: 10.1039/d2cp02331h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the chemical bonding and reactivity of the first example of neutral 18 valence electron transition metal complexes of beryllium, [BeM(CO)4; M = Fe - Os], in trigonal bipyramidal coordination geometry, where the bonding between the transition metal and the s-block element beryllium (M-Be) can be best described by dative quadruple bonds. In contrast to the conventional multiple bonding pattern, the quadruple bonds comprise two σ-bonds and two π-bonds, viz., one Be → M σ-bond, one M → Be σ-bond, and two M → Be π-bonds. Since the M-Be quadruple bonds are described by dative interactions, the Be centre shows ambiphilic character as indicated by the high proton and hydride affinity values.
Collapse
Affiliation(s)
- Sneha Parambath
- Department of Chemistry, National Institute of Technology Calicut, Kerala, India.
| | | |
Collapse
|
16
|
Kaur S, Bera M, Santra A, Munshi S, Sterbinsky GE, Wu T, Moonshiram D, Paria S. Effect of Redox-Inactive Metal Ion-Nickel(III) Interactions on the Redox Properties and Proton-Coupled Electron Transfer Reactivity. Inorg Chem 2022; 61:14252-14266. [PMID: 36041064 DOI: 10.1021/acs.inorgchem.2c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mononuclear nickel(II) and nickel(III) complexes of a bisamidate-bisalkoxide ligand, (NMe4)2[NiII(HMPAB)] (1) and (NMe4)[NiIII(HMPAB)] (2), respectively, have been synthesized and characterized by various spectroscopic techniques including X-ray crystallography. The reaction of redox-inactive metal ions (Mn+ = Ca2+, Mg2+, Zn2+, Y3+, and Sc3+) with 2 resulted in 2-Mn+ adducts, which was assessed by an array of spectroscopic techniques including X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and reactivity studies. The X-ray structure of Ca2+ coordinated to Ni(III) complexes, 2-Ca2+T, was determined and exhibited an average Ni-Ca distance of 3.1253 Å, close to the metal ions' covalent radius. XAS analysis of 2-Ca2+ and 2-Y3+ in solution further revealed an additional coordination to Ca and Y in the 2-Mn+ adducts with shortened Ni-M distances of 2.15 and 2.11 Å, respectively, implying direct bonding interactions between Ni and Lewis acids (LAs). Such a short interatomic distance between Ni(III) and M is unprecedented and was not observed before. EPR analysis of 2 and 2-Mn+ species, moreover, displayed rhombic signals with gav > 2.12 for all complexes, supporting the +III oxidation state of Ni. The NiIII/NiII redox potential of 2 and 2-Mn+ species was determined, and a plot of E1/2 of 2-Mn+ versus pKa of [M(H2O)n]m+ exhibited a linear relationship, implying that the NiIII/NiII potential of 2 can be tuned with different redox-inactive metal ions. Reactivity studies of 2 and 2-Mn+ with different 4-X-2,6-ditert-butylphenol (4-X-DTBP) and other phenol derivatives were performed, and based on kinetic studies, we propose the involvement of a proton-coupled electron transfer (PCET) pathway. Analysis of the reaction products after the reaction of 2 with 4-OMe-DTBP showed the formation of a Ni(II) complex (1a) where one of the alkoxide arms of the ligand is protonated. A pKa value of 24.2 was estimated for 1a. The reaction of 2-Mn+ species was examined with 4-OMe-DTBP, and it was observed that the k2 values of 2-Mn+ species increase by increasing the Lewis acidity of redox-inactive metal ions. However, the obtained k2 values for 2-Mn+ species are much lower compared to the k2 value for 2. Such a variation of PCET reactivity between 2 and 2-Mn+ species may be attributed to the interactions between Ni(III) and LAs. Our findings show the significance of the secondary coordination sphere effect on the PCET reactivity of Ni(III) complexes and furnish important insights into the reaction mechanism involving high-valent nickel species, which are frequently invoked as key intermediates in Ni-mediated enzymatic reactions, solar-fuel catalysis, and biomimetic/synthetic transformation reactions.
Collapse
Affiliation(s)
- Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - George E Sterbinsky
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Tianpin Wu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
17
|
Wang L, Pan S, Wang G, Zeng X, Zhou M, Frenking G. Triple bonding between beryllium and nitrogen in HNBeCO. Chem Commun (Camb) 2022; 58:8532-8535. [PMID: 35802125 DOI: 10.1039/d2cc02969c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The HNBeCO complex is generated via the reaction of a beryllium atom with a HNCO molecule in a solid neon matrix, which is identified via infrared absorption spectroscopy with isotopic substitutions. The complex is characterized to have a linear structure with a very short Be-N bond distance. Bonding analyses indicate that the complex involves an unprecedented HNBeCO triple bond consisting of two degenerate electron-sharing π bonds and a dative σ bond with the π bonds being much stronger than the σ bond.
Collapse
Affiliation(s)
- Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Sudip Pan
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043, Marburg, Germany.
| | - Guanjun Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai, 200438, China.
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043, Marburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China.,Donostia International Physics Center (DIPC), P.K. 1072, 20080 Donostia, Euskadi, Spain
| |
Collapse
|
18
|
Zhou Y, Liu H, Jin X, Xing X, Wang X, Wang G, Zhou M. Significant π Bonding in Coinage Metal Complexes OCTMCCO- from Infrared Photodissociation Spectroscopy and Theoretical Calculations. J Chem Phys 2022; 157:014302. [DOI: 10.1063/5.0099789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A series of coinage metal complexes in the form of TMC(CO)n- (TM=Cu, Ag, Au; n = 0-3) were generated using a laser ablation-supersonic expansion ion source in the gas phase. Mass-selected infrared photodissociation spectroscopy in conjunction with quantum chemical calculations indicated that the TMC(CO)3- complexes contain a linear OCTMCCO- core anion. Bonding analyses suggest that the linear OCTMCCO- anions are better described as the bonding interactions between a singlet ground state TM+ metal cation and the OC/CCO2- ligands in the singlet ground state. Besides the strong ligands to metal σ donation bonding components, the π-bonding components also contribute significantly to the metal-ligands bonding due to the synergetic effects of the CO and CCO2- ligands. The strengths of the bonding of the three metals show a V-shaped trend in which the second-row transition metal Ag exhibits the weakest interactions whereas the third-row transition metal Au has the strongest interactions due to the relativistic effects.
Collapse
Affiliation(s)
| | | | | | - Xiaopeng Xing
- School of Chemical Science and Engineering, Tongji University, China
| | | | | | | |
Collapse
|
19
|
Goesten MG. Be–Be π‐Bonding and Predicted Superconductivity in MBe
2
(M=Zr, Hf). Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maarten G. Goesten
- Centre for Integrated Materials Research Department of Chemistry Aarhus University Langelandsgade 140 8000 Aarhus Denmark
- Interdisciplinary Nanoscience Centre Aarhus University Gustav Wieds Vej 14 8000 Aarhus Denmark
- Division of Physical Sciences and Engineering (PSE) King Abdullah University of Science and Technology Thuwal 23955 Saudi Arabia
| |
Collapse
|
20
|
Liu Z, Lin Q, Li Y, He J, Jiao J, Li L, Yan Y, Wu H, Zhang F, Jia J, Xie H. Photoelectron velocity-map imaging spectroscopy of nickel carbide: Examination of the low-lying electronic states. NEW J CHEM 2022. [DOI: 10.1039/d2nj01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoelectron detachment of nickel carbide anion has been characterized using the photoelectron velocity-map imaging spectroscopy, allowing for a precise assignment of the electron affinity, vibrational frequencies, energy spacing and...
Collapse
|
21
|
Hu SX, Zhang P, Zhang P. Electronic Structures and Properties of Bimetallic Plutonium Group 13 Carbonyl Compounds [XPuCO] (X = B, Al, and Ga). Inorg Chem 2021; 60:18794-18803. [PMID: 34841875 DOI: 10.1021/acs.inorgchem.1c02503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bonding features of heterobimetallic complexes containing f-block elements are fundamental content in actinide chemistry. In order to account for the structural periodicity of the X-Pu carbonyls and the formation of chemical bonds between bimetallic plutonium and group 13 carbonyl compounds, we report a comprehensively quantum-chemical study of the electronic structure and properties of XPuCO (X = B, Al, and Ga). With increasing atomic radii of the group 13 elements, the XPuCO structure alternates from cyclic [PuCBO] to linear [AlCPuO] and [GaCPuO]. The bonding analysis indicates that the donor-acceptor model is the best description for bonding interactions of metal and ligands with different donation patterns of CBO → Pu and XC → PuO (X = Al and Ga). The apparent XC ← PuO backdonation increases the C-Pu bond strength markedly and stabilizes the linear geometry of [AlCPuO] and [GaCPuO], while spin-orbit coupling is found to be significant in the stabilization of [PuCBO]. The ground electron configurations and natural orbital analysis indicate that cyclic [PuCBO] and linear [XCPuO] (X = Al and Ga) are considered as complexes of Pu(III) and Pu(V), respectively. The trend presents a valuable insight for the 5f/6d-np bonding interactions, especially for the fundamental understanding of transuranic elements.
Collapse
Affiliation(s)
- Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.,Beijing Computational Science Research Center, Beijing 100193, China
| | - Peng Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ping Zhang
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
22
|
Goesten M. Be-Be π bonding and predicted superconductivity in MBe2 (M=Zr, Hf). Angew Chem Int Ed Engl 2021; 61:e202114303. [PMID: 34687576 DOI: 10.1002/anie.202114303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 11/10/2022]
Abstract
Beryllium, an s-block element, forms an aromatic network of delocalized Be-Be π bonds in alloys ZrBe2 and HfBe2. This gives rise to a structure that fits description as stacked [Be2]4- layers with tetravalent cations in between. The [Be2]4- sublattice is isoelectronic and isostructural to graphite, as well as the [B]-2 sublattice in MgB2, and it bears identical manifestations of π bonding in its electronic band structure. These come in the form of degeneracies at K and H in the Brillouin zone, separated in energy as the result of interlayer orbital interactions. Zr and Hf use their valence d orbitals to form bonds with the layers, leading to nearly identical band structures. Like MgB2, ZrBe2 and HfBe2 are computed to be phonon-mediated superconductors at ambient pressures, with respective critical temperatures of 11.4 K and 8.8 K. The coupling strength between phonons and free electrons is very similar, so that the difference in critical temperatures is controlled by the mass of constituent interlayer ions.
Collapse
Affiliation(s)
- Maarten Goesten
- Aarhus University: Aarhus Universitet, Center for Integrated Materials Research, Department of Chemistry, Langelandsgade 140, 8000, Aarhus, DENMARK
| |
Collapse
|