1
|
Yu S, Liu Z, Lyu JM, Guo CM, Yang XY, Jiang P, Wang YL, Hu ZY, Sun MH, Li Y, Chen LH, Su BL. Engineering surface framework TiO 6 single sites for unprecedented deep oxidative desulfurization. Natl Sci Rev 2024; 11:nwae085. [PMID: 38577670 PMCID: PMC10989657 DOI: 10.1093/nsr/nwae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Catalytic oxidative desulfurization (ODS) using titanium silicate catalysts has emerged as an efficient technique for the complete removal of organosulfur compounds from automotive fuels. However, the precise control of highly accessible and stable-framework Ti active sites remains highly challenging. Here we reveal for the first time by using density functional theory calculations that framework hexa-coordinated Ti (TiO6) species of mesoporous titanium silicates are the most active sites for ODS and lead to a lower-energy pathway of ODS. A novel method to achieve highly accessible and homogeneously distributed framework TiO6 active single sites at the mesoporous surface has been developed. Such surface framework TiO6 species exhibit an exceptional ODS performance. A removal of 920 ppm of benzothiophene is achieved at 60°C in 60 min, which is 1.67 times that of the best catalyst reported so far. For bulky molecules such as 4,6-dimethyldibenzothiophene (DMDBT), it takes only 3 min to remove 500 ppm of DMDBT at 60°C with our catalyst, which is five times faster than that with the current best catalyst. Such a catalyst can be easily upscaled and could be used for concrete industrial application in the ODS of bulky organosulfur compounds with minimized energy consumption and high reaction efficiency.
Collapse
Affiliation(s)
- Shen Yu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Zhan Liu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Jia-Min Lyu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chun-Mu Guo
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xiao-Yu Yang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Peng Jiang
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yi-Long Wang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Zhi-Yi Hu
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
| | - Ming-Hui Sun
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yu Li
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Li-Hua Chen
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Bao-Lian Su
- Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Laboratory of Inorganic Materials Chemistry, University of Namur, Namur B-5000, Belgium
| |
Collapse
|
2
|
Liu J, Yuan B, Chen D, Dong L, Xie H, Zhong S, Ji Y, Liu Y, Han J, Yang C, He W. Pseudocapacitance and diffusion-controlled dual modes of MoS2 nano-particles enable high long-cycle anode capacity. CHEMICAL ENGINEERING JOURNAL ADVANCES 2023. [DOI: 10.1016/j.ceja.2023.100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
3
|
Chen X, Peng M, Xiao D, Liu H, Ma D. Fully Exposed Metal Clusters: Fabrication and Application in Alkane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xiaowen Chen
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dequan Xiao
- Center for Integrative Materials Discovery, Department of Chemistry and Chemical and Biomedical Engineering, University of New Haven, West Haven, Connecticut 06516, United States
| | - Hongyang Liu
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, People’s Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
4
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
5
|
Khare R, Weindl R, Jentys A, Reuter K, Shi H, Lercher JA. Di- and Tetrameric Molybdenum Sulfide Clusters Activate and Stabilize Dihydrogen as Hydrides. JACS AU 2022; 2:613-622. [PMID: 35373212 PMCID: PMC8965828 DOI: 10.1021/jacsau.1c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 06/14/2023]
Abstract
NaY zeolite-encapsulated dimeric (Mo2S4) and tetrameric (Mo4S4) molybdenum sulfide clusters stabilize hydrogen as hydride binding to Mo atoms. Density functional theory (DFT) calculations and adsorption measurements suggest that stabilization of hydrogen as sulfhydryl (SH) groups, as typical for layered MoS2, is thermodynamically disfavored. Competitive adsorption of H2 and ethene on Mo was probed by quantifying adsorbed CO on partly hydrogen and/or ethene covered samples with IR spectroscopy. During hydrogenation, experiment and theory suggest that Mo is covered predominately with ethene and sparsely with hydride. DFT calculations further predict that, under reaction conditions, each Mo x S y cluster can activate only one H2, suggesting that the entire cluster (irrespective of its nuclearity) acts as one active site for hydrogenation. The nearly identical turnover frequencies (24.7 ± 3.3 molethane·h-1·molcluster -1), apparent activation energies (31-32 kJ·mol-1), and reaction orders (∼0.5 in ethene and ∼1.0 in H2) show that the active sites in both clusters are catalytically indistinguishable.
Collapse
Affiliation(s)
- Rachit Khare
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
| | - Roland Weindl
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
| | - Andreas Jentys
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
| | - Karsten Reuter
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
- Fritz
Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Hui Shi
- School
of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou, 225009 Jiangsu China
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, 85747 Garching, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Liu H, Wang P, Jiang J, Cheng G, Wu T, Zhang Y. Construction of stable Mo xS y/CeO 2 heterostructures for the electrocatalytic hydrogen evolution reaction. Phys Chem Chem Phys 2022; 24:4891-4898. [PMID: 35137755 DOI: 10.1039/d1cp05466j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The unique structures of polynuclear MoxSy clusters make it possible to maximize the number of their active sites and for them to be good candidates for HER catalysts. An appropriate support is highly necessary not only to avoid the desorption of MoxSy clusters in a working environment, but also to improve their HER activity. Our work here shows that the CeO2 support could provide strong support for interaction with various MoxSy clusters and the formed MoxSy/CeO2 hetero-structures also have modest ΔGH* for the HER. The electronic features of MoxSy clusters are regulated by the CeO2 support, which leads to charge redistribution on edge atoms and plays a key role in H adsorption. Our studies provide instructive predictions on efficient candidates of molybdenum-sulfur based catalysts for the HER.
Collapse
Affiliation(s)
- Hongxian Liu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Pai Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Jinxiu Jiang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Gang Cheng
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, P. R. China
| | - Tongwei Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China.
| |
Collapse
|
7
|
Wang CH, DeBeer S. Structure, reactivity, and spectroscopy of nitrogenase-related synthetic and biological clusters. Chem Soc Rev 2021; 50:8743-8761. [PMID: 34159992 DOI: 10.1039/d1cs00381j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The reduction of dinitrogen (N2) is essential for its incorporation into nucleic acids and amino acids, which are vital to life on earth. Nitrogenases convert atmospheric dinitrogen to two ammonia molecules (NH3) under ambient conditions. The catalytic active sites of these enzymes (known as FeM-cofactor clusters, where M = Mo, V, Fe) are the sites of N2 binding and activation and have been a source of great interest for chemists for decades. In this review, recent studies on nitrogenase-related synthetic molecular complexes and biological clusters are discussed, with a focus on their reactivity and spectroscopic characterization. The molecular models that are discussed span from simple mononuclear iron complexes to multinuclear iron complexes and heterometallic iron complexes. In addition, recent work on the extracted biological cofactors is discussed. An emphasis is placed on how these studies have contributed towards our understanding of the electronic structure and mechanism of nitrogenases.
Collapse
Affiliation(s)
- Chen-Hao Wang
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
8
|
Weindl R, Khare R, Kovarik L, Jentys A, Reuter K, Shi H, Lercher JA. Zeolite-Stabilized Di- and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites. Angew Chem Int Ed Engl 2021; 60:9301-9305. [PMID: 33576131 PMCID: PMC8252740 DOI: 10.1002/anie.202015769] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/05/2021] [Indexed: 11/24/2022]
Abstract
Supercages of faujasite (FAU)‐type zeolites serve as a robust scaffold for stabilizing dinuclear (Mo2S4) and tetranuclear (Mo4S4) molybdenum sulfide clusters. The FAU‐encaged Mo4S4 clusters have a distorted cubane structure similar to the FeMo‐cofactor in nitrogenase. Both clusters possess unpaired electrons on Mo atoms. Additionally, they show identical catalytic activity per sulfide cluster. Their catalytic activity is stable (>150 h) for ethene hydrogenation, while layered MoS2 structures deactivate significantly under the same reaction conditions.
Collapse
Affiliation(s)
- Roland Weindl
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Andreas Jentys
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany
| | - Karsten Reuter
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany.,Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technical University of Munich, 85747, Garching, Germany.,Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|