1
|
Wang Z, Xu H, Han X, Fan S, Zhu J. Manganese-Catalyzed Cycloalkene Ring Expansion Synthesis of Azaheterocycles. Org Lett 2024; 26:8559-8564. [PMID: 39356568 DOI: 10.1021/acs.orglett.4c03194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Herein, a Mn catalytic protocol has been developed for the cycloalkene ring expansion synthesis of azaheterocycles, allowing broad-substrate-scope access to pyridine and isoquinoline derivatives. The initial monoaddition of an azidyl radical to alkene and further as-generated C-radical addition to O2, followed by intramolecular rearrangement and aromatization, showcase a distinct Mn-catalyzed radical reactivity mode. The reaction features a short reaction time and a broad substrate scope, with applications demonstrated in complex structure elaboration and gram-scale vismodegib synthesis.
Collapse
Affiliation(s)
- Zhixin Wang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Hanxiao Xu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Xuanzhen Han
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Shuaixin Fan
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Roscales S, Csáky AG. Metal-Free Aminophosphonation: Eco-Friendly Synthesis and Photophysical Properties of Fluorescent 3-(Aminoimidazo[1,2-a]Pyridin-2-yl)Phosphonates. Angew Chem Int Ed Engl 2024:e202412300. [PMID: 39218782 DOI: 10.1002/anie.202412300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
We report a novel, metal-free procedure for the direct aminophosphonation of imidazo[1,2-a]pyridines in green solvents under open air conditions. This method is characterized by its mild and sustainable conditions, ease of operation, scalability, and excellent functional group compatibility. The synthesized compounds exhibit promising photophysical properties, including significant Stokes shifts and quantum yields, making them potential candidates for innovative fluorescent probes.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Paseo de Juan XXIII, 1, 28040-, Madrid, Spain
| | - Aurelio G Csáky
- Instituto Pluridisciplinar, Universidad Complutense, Paseo de Juan XXIII, 1, 28040-, Madrid, Spain
| |
Collapse
|
3
|
Zhao W, Zhang K, Huang J. Rh-Catalyzed Coupling of Aldehydes with Allylboronates Enables Facile Access to Ketones. Chemistry 2021; 28:e202103851. [PMID: 34967479 DOI: 10.1002/chem.202103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 11/09/2022]
Abstract
We present herein a novel strategy for the preparation of ketones from aldehydes and allylic boronicesters. This reaction involves the allylation of aldehydes with allylic boronicesters and the Rh-catalyzed chain-walking of homoallylic alcohols. The key to this successful development is the protodeboronation of alkenyl borylether intermediate via a tetravalent borate anion species in the presence of KHF 2 and MeOH. This approach features mild reaction conditions, broad substrate scope, and excellent functional group tolerance. Mechanistic studies also supported that the tandem allylation and chain-walking process was involved.
Collapse
Affiliation(s)
- Wanxiang Zhao
- Hunan University, chemistry, Yuelushan, Changsha, 410082, changsha, CHINA
| | | | - Jiaxin Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
4
|
Fang F, Chang J, Zhang J, Chen X. An Effective Osmium Precatalyst for Practical Synthesis of Diarylketones: Preparation, Reactivity, and Catalytic Application of [OsH- cis-(CO) 2- mer-{κ 3- P, B, P′-B(NCH 2PPh 2) 2- o-C 6H 4}]. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Fei Fang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jiarui Chang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
5
|
Xu H, Ye M, Yang K, Song Q. Regioselective Cross-Coupling of Isatogens with Boronic Acids to Construct 2,2-Disubstituted Indolin-3-one Derivatives. Org Lett 2021; 23:7776-7780. [PMID: 34617759 DOI: 10.1021/acs.orglett.1c02808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Herein we present a transition-metal-free cross-coupling reaction of isatogens with boronic acids through a 1,4-metalate shift of a boron "ate" complex. This coupling reaction provides a feasible method to deliver valuable 2,2-disubstituted indolin-3-one derivatives with excellent regioselectivity, which exhibit operational simplicity, good functional group tolerance, and a broad substrate scope.
Collapse
Affiliation(s)
- Hetao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mingxing Ye
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China.,Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|