1
|
Wang J, Chen Z, Lin X, Wang Z, Chen X, Zhang X, Li J, Liu J, Liu S, Wei S, Sun D, Lu X. Deciphering the Radial Ligand Effect of Biomimetic Amino Acid toward Stable Alkaline Oxygen Evolution. Inorg Chem 2025; 64:1164-1172. [PMID: 39764732 DOI: 10.1021/acs.inorgchem.4c04889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. p-Toluidine (PT), benzoic acid (BA), and p-aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH. Compared to the organic molecules containing a single functional group, the coexistence of carboxyl and amino groups served as the electron acceptor and donor, respectively, thereby optimizing the electronic structure and suppressing metal dissolution. The overpotential of the PABA-modified catalyst (NiFe-LDH-PABA) was significantly reduced to 225 mV at 10 mA cm-2, and the Tafel slope was only 38.7 mV dec-1. At a high current density of 500 mA cm-2, the NiFe-LDH-PABA catalyst can work stably in a 1 M KOH solution at 25 °C over 550 h with 96% retention of its initial activity. Density functional theory (DFT) calculations further confirmed that the work offers significant insight into the modulation by organic molecular structure and provides a new paradigm for creating organic-inorganic hybrid OER catalysts.
Collapse
Affiliation(s)
- Jianye Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Zengxuan Chen
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Xiaojing Lin
- College of Physics, University of Qingdao, Qingdao 266071, PR China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Xiaodong Chen
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Xingheng Zhang
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Jiao Li
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Jinpeng Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Shuxian Wei
- College of Science, China University of Petroleum, Qingdao 266580, PR China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China
| |
Collapse
|
2
|
Jiang M, Xu J, Chen Y, Wang L, Munroe P, Xie ZH, Peng S. High-Efficiency Photo-Assisted Large Current-Density Water Splitting with Mott-Schottky Heterojunctions. Angew Chem Int Ed Engl 2025; 64:e202415492. [PMID: 39373244 DOI: 10.1002/anie.202415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
The development of bifunctional photogenerated carrier-assisted electrocatalytic (PCA-EC) electrodes that operate with stability at large current-density remains a significant challenge. Herein, we demonstrate a simple sputtering-deposition process to synthesize a novel MnWO4/FeCoNi Mott-Schottky heterojunction coating and deposit it on a pure Ti substrate to prepare high-performance PCA-EC electrodes, which exhibits enhanced light absorption range/intensity and rapidly separated photogenerated electron-hole pairs. This design allows photogenerated electrons to directly participate in the hydrogen evolution reaction (HER), while the strong oxidation of photogenerated holes significantly reduces the defect formation energy of active metals, thereby facilitating the rapid reconstruction of highly active Ni(FeCo)OOH/MnOOH species for the oxygen evolution reaction (OER). As expected, the as-prepared electrode demonstrates the overpotentials of 64 mV for the HER and 204 mV for the OER at 10 mA cm-2 under illumination. Benefiting from the stable interface with Fe/Co/Ni-O-Mn/W bonding units, the dual-electrode photoassisted electrolytic cell achieves long-term stability at current densities of 500 and 1000 mA cm-2. This work provides detailed insights into the enhancement mechanism of PCA-EC and contributes to the development of photo-assisted water splitting electrodes for large current-density applications.
Collapse
Affiliation(s)
- Minming Jiang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jiang Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yujie Chen
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Paul Munroe
- School of Materials Science and Engineering, University of New South Wales, NSW, 2052, Australia
| | - Zong-Han Xie
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|
3
|
Chen J, Wang J, Lou D, Xiang Y, Sun T, Tang Y, Wang M. Interfacial Synergism in NiMoO 4/FeOOH Heterostructure for Enhanced Alkaline Oxygen Evolution and Urea Oxidation. Chemistry 2024:e202404391. [PMID: 39715029 DOI: 10.1002/chem.202404391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
FeOOH with excellent catalytic properties for oxygen evolution and also considered to be a true active site has attracted great interest in recent years. However, the intrinsic low conductivity limits its catalytic performance. Herein, a one-dimensional core-shell NiMoO4/FeOOH heterojunction with high OER activity and stability was developed. At current densities of 10 and 100 mA cm-2, low overpotentials of 194 and 266 mV are need to drive oxygen evolution, meanwhile, the electrode exhibits high catalytic kinetics with small Tafel slopes of 53.4 mV dec-1 and excellent stability over 100 hours. Further analysis showed that the ultrathin FeOOH layer (~5 nm) uniformly covered the surface of NiMoO4 nanorods, acting as an active species and facilitating the surface change transfer to the interior. The internal NiMoO4 cores, on the other hand, provides reliable electron transmission as a highly conductive medium, and can effectively overcome the low conductivity of FeOOH. DFT calculations further manifest the strong electronic interactions between NiMoO4 and FeOOH species. The NiMoO4 core serves as mass transport of active materials is beneficial to tune the adsorption energy of OH- on the surface of electrocatalysts.
Collapse
Affiliation(s)
- Junyi Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
| | - Jing Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
| | - Dongsheng Lou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
| | - Yingying Xiang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
| | - Tongming Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong, 226019, Jiangsu Province, P. R. China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong, 226019, Jiangsu Province, P. R. China
| | - Minmin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, Jiangsu Province, P. R. China
- Nantong Key Laboratory of Intelligent and New Energy Materials, Nantong, 226019, Jiangsu Province, P. R. China
| |
Collapse
|
4
|
Wang J, Li Y, Xu T, Zheng J, Sun B, Xia W, Ge M, Yuan X, Cai Z. Recycled Cathodes in Rechargeable Aqueous Batteries as Ready-Made Electrodes for Oxygen Evolution Catalysis. Inorg Chem 2024; 63:13181-13185. [PMID: 38985134 DOI: 10.1021/acs.inorgchem.4c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The development of a low-cost and efficient oxygen evolution reaction (OER) electrode is of critical importance for water electrolysis technologies. The general approach to achieving a high-efficiency OER electrode is to regulate catalytic material structures by synthetic control. Here we reported an orthogonal approach to obtaining the OER electrode without intentional design and synthesis, namely, recycling MnO2 cathodes from failed rechargeable aqueous batteries and investigating them as ready-made catalytic electrodes. The recycled MnO2 cathode showed very little Zn2+ storage capacity but surprisingly high OER activity with a low overpotential of 307 mV at 10 mA cm-2 and a small Tafel slope of 77.9 mV dec-1, comparable to the state-of-the-art RuO2 catalyst (310 mV, 86.9 mV dec-1). In situ electrochemical and theoretical studies jointly revealed that the accelerated OER kinetics of the recycled MnO2 electrode was attributed to the enlarged active surface area of MnO2 and optimized electronic structure of Mn sites. This work suggests failed battery cathodes as successful catalysis electrodes for sustainable energy development.
Collapse
Affiliation(s)
- Jing Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yanqi Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tian Xu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jie Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Bingbing Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Weijie Xia
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Zhao Cai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hubei Key Laboratory of Fuel Cells, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
5
|
Zhang Z, Han L, Tao K. MnO x-decorated MOF-derived nickel-cobalt bimetallic phosphide nanosheet arrays for overall water splitting. Dalton Trans 2024; 53:1757-1765. [PMID: 38170799 DOI: 10.1039/d3dt03631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Exploring non-noble metal dual-functional electrocatalysts with high activity and stability for water splitting is highly desirable. In this study, using zeolitic imidazolate framework-L (ZIF-L) nanoarrays as the precursor, manganese oxide-decorated porous nickel-cobalt phosphide nanosheet arrays have been prepared on nickel foam (denoted as MnOx/NiCoP/NF) through cation etching, phosphorization and electrodeposition, which are utilized as an efficient dual-functional electrocatalyst for overall water splitting. The hierarchical porous nanosheet arrays provide abundant active sites for the electrochemical process, while the MnOx modification induces strong interfacial interaction, benefiting charge transfer. Thus, the MnOx/NiCoP/NF exhibits excellent electrocatalytic activity toward the hydrogen evolution reaction (HER, overpotential of 93 mV at 10 mA cm-2), oxygen evolution reaction (OER, overpotential of 240 mV at 10 mA cm-2) and overall water splitting (cell voltage of 1.59 V at 10 mA cm-2). Furthermore, it shows superior stability during continuous overall water splitting for 200 h. This work provides a simple and effective approach for developing efficient non-noble metal dual-functional catalysts for overall water splitting.
Collapse
Affiliation(s)
- Zheng Zhang
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China.
| |
Collapse
|
6
|
Wang Z, Jin X, Chen F, Kuang X, Min J, Duan H, Li J, Chen J. Oxygen vacancy induced interaction between Pt and TiO 2 to improve the oxygen reduction performance. J Colloid Interface Sci 2023; 650:901-912. [PMID: 37453314 DOI: 10.1016/j.jcis.2023.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
In proton exchange membrane fuel cells (PEMFCS), a Pt-based catalyst has been plagued by activity and durability, making it difficult to implement in large-scale commercial applications. In this paper, a composite material formed by titanium dioxide and carbon black containing oxygen vacancies (TiO2(OV)-C) was used as a functional support to successfully load Pt nanoparticles (NPS). The introduction of oxygen vacancies induces the formation of a connection between Pt and TiO2, which not only strengthens the fixation of Pt by the composite support but also optimizes the local charge density of Pt. Compared with Pt/C (0.842 V) and Pt/TiO2-C (0.841 V), the half-wave potential (E1/2) of Pt/TiO2(OV)-C (0.862 V) is increased by 20 mV and 21 mV, respectively. After a long-term durability test, the E1/2 of Pt/TiO2(OV)-C is only attenuated by 5 mV. In addition, the mass activity (MA) and specific activity (SA) decreased from 183.4 mA mg-1 and 0.565 mA cm-2 to 144.4 mA mg-1 and 0.483 mA cm-2 at 0.85 V, only decreasing by 21% and 17 %, showing good stability. X-ray photoelectron spectroscopies (XPS) and density functional theory (DFT) calculations show that the interaction between Pt and TiO2 reduces the d-band center of Pt, thereby improving the desorption of intermediates *OH, which in turn promotes the activity of alkaline ORR. This study not only shows that OV plays a key role in the process of inducing interaction, but also deeply studies the influence of this interaction on the active site Pt, which provides more choices for the design of excellent multiphase catalysts.
Collapse
Affiliation(s)
- Ziyu Wang
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Xuekun Jin
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Fengjuan Chen
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Xuanyu Kuang
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Junyong Min
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Haiming Duan
- Key Laboratory of Solid State Physics and Devices Autonomous Region, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, Xinjiang, PR China; Key Laboratory of Energy Materials Chemistry, Ministry of Education, Institute of Applied Chemistry, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianjun Chen
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Cho DK, Yan B, Park SJ, Yoon YS, Lim HW, Hwang SK, Park IJ, Kim JY. Hierarchical Heterogeneous NiFe Layered Double Hydroxides for Efficient Solar-Powered Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43933-43941. [PMID: 37675887 DOI: 10.1021/acsami.3c10075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Highly active, stable, and low-cost oxygen evolution reaction (OER) electrocatalysts are urgently needed for the realization of large-scale industrial hydrogen production via water electrolysis. Layered double hydroxides (LDHs) stand out as one of the most promising nonprecious electrocatalysts worth pursuing. Here, a hierarchical heterogeneous Ni2+Fe3+@Ni2+Fe2+ LDH was successfully synthesized via a sequential electrodeposition technique using separate electrolytes containing iron precursors with different valence states (Fe2+, Fe3+). The underlying highly crystalline Ni2+Fe2+ LDH nanosheet array provides a large surface for the catalytically more active Ni2+Fe3+ LDH overlayer with low crystallinity. The resulting Ni2+Fe3+@Ni2+Fe2+ LDH demonstrates excellent OER activity with overpotentials of 218 and 265 mV to reach current densities of 10 and 100 mA cm-2, respectively, as well as good long-term stability for 30 h even at a high current density of 500 mA cm-2. In an overall water splitting, an electrolyzer using an electrocatalyst of Sn4P3/CoP2 as a cathode requires only a cell voltage of 1.55 V at 10 mA cm-2. Furthermore, the solar-powered overall water splitting system consisting of our electrolyzer and a perovskite/Si tandem solar cell exhibits a high solar-to-hydrogen conversion efficiency of 15.3%.
Collapse
Affiliation(s)
- Deok Ki Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Bingyi Yan
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SNU Materials Education/Research Division for Creative Global Leaders, Seoul National University, Seoul 08826, Republic of Korea
| | - So Jeong Park
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Seon Yoon
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Woo Lim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Kyung Hwang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Ik Jae Park
- Department of Applied Physics Engineering, Sookmyung Women's University, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Jin Young Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Ju M, Chen Z, Zhu H, Cai R, Lin Z, Chen Y, Wang Y, Gao J, Long X, Yang S. Fe(III) Docking-Activated Sites in Layered Birnessite for Efficient Water Oxidation. J Am Chem Soc 2023; 145:11215-11226. [PMID: 37173623 DOI: 10.1021/jacs.3c01181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Non-noble metal catalysts for promoting the sluggish kinetics of oxygen evolution reaction (OER) are essential to efficient water splitting for sustainable hydrogen production. Birnessite has a local atomic structure similar to that of an oxygen-evolving complex in photosystem II, while the catalytic activity of birnessite is far from satisfactory. Herein, we report a novel Fe-Birnessite (Fe-Bir) catalyst obtained by controlled Fe(III) intercalation- and docking-induced layer reconstruction. The reconstruction dramatically lowers the OER overpotential to 240 mV at 10 mA/cm2 and the Tafel slope to 33 mV/dec, making Fe-Bir the best of all the reported Bir-based catalysts, even on par with the best transition-metal-based OER catalysts. Experimental characterizations and molecular dynamics simulations elucidate that the catalyst features active Fe(III)-O-Mn(III) centers interfaced with ordered water molecules between neighboring layers, which lower reorganization energy and accelerate electron transfer. DFT calculations and kinetic measurements show non-concerted PCET steps conforming to a new OER mechanism, wherein the neighboring Fe(III) and Mn(III) synergistically co-adsorb OH* and O* intermediates with a substantially reduced O-O coupling activation energy. This work highlights the importance of elaborately engineering the confined interlayer environment of birnessite and more generally, layered materials, for efficient energy conversion catalysis.
Collapse
Affiliation(s)
- Min Ju
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Zhuwen Chen
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hong Zhu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Rongming Cai
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Zedong Lin
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Yanpeng Chen
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Yingjie Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518107, China
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xia Long
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Shihe Yang
- School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, China
| |
Collapse
|
9
|
Zhang D, Li M, Yong X, Song H, Waterhouse GIN, Yi Y, Xue B, Zhang D, Liu B, Lu S. Construction of Zn-doped RuO 2 nanowires for efficient and stable water oxidation in acidic media. Nat Commun 2023; 14:2517. [PMID: 37130878 PMCID: PMC10154325 DOI: 10.1038/s41467-023-38213-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/21/2023] [Indexed: 05/04/2023] Open
Abstract
Oxygen evolution reaction catalysts capable of working efficiently in acidic media are highly demanded for the commercialization of proton exchange membrane water electrolysis. Herein, we report a Zn-doped RuO2 nanowire array electrocatalyst with outstanding catalytic performance for the oxygen evolution reaction under acidic conditions. Overpotentials as low as 173, 304, and 373 mV are achieved at 10, 500, and 1000 mA cm-2, respectively, with robust stability reaching to 1000 h at 10 mA cm-2. Experimental and theoretical investigations establish a clear synergistic effect of Zn dopants and oxygen vacancies on regulating the binding configurations of oxygenated adsorbates on the active centers, which then enables an alternative Ru-Zn dual-site oxide path of the reaction. Due to the change of reaction pathways, the energy barrier of rate-determining step is reduced, and the over-oxidation of Ru active sites is alleviated. As a result, the catalytic activity and stability are significantly enhanced.
Collapse
Affiliation(s)
- Dafeng Zhang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Mengnan Li
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Xue Yong
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
- Department of Chemistry, The University of Sheffield, Sheffield, S3 7HF, UK
| | - Haoqiang Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China
| | | | - Yunfei Yi
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Bingjie Xue
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Dongliang Zhang
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China
| | - Baozhong Liu
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China.
| | - Siyu Lu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450000, P. R. China.
| |
Collapse
|
10
|
Xu C, Xiong F, Wang Y, Nai J, Zhang W. Improving the intrinsic activity of ultrathin 2D-2D heterostructures by bridge-bonded Ni-O-Ti ligands for efficient oxygen evolution. NANOTECHNOLOGY 2023; 34:255402. [PMID: 36962944 DOI: 10.1088/1361-6528/acc743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The integration of ultrathin two-dimensional (2D) semiconductors with other conductive 2D materials to form hybrid electrocatalysts with abundant heterointerfaces can enhance the electrocatalytic activity by facilitating interfacial charge transfer. However, the hybrid electrocatalysts with weak interfacial bonding have limited effect on the electrocatalytic performance because the intrinsic activity of interfacial sites cannot be altered by weak interfacial interactions. As a proof-of-concept, we design ultrathin 2D-2D heterostructures with bridge-bonded Ni-O-Ti ligands based on single-layered Ti3C2TxMXene and metal hydroxides, and further reveal the structure-activity correlation between interfacial bonding and electrocatalytic oxygen evolution reaction by combining theoretical and experimental studies. Density functional theory calculations reveal the modulation of the electronic structure of interfacial metal sites after the formation of bridged interfacial Ni-O-Ti bonding. Compared with the hydrogen-bond-linked heterostructure, the ultrathin 2D-2D heterostructure with bridge-bonded Ni-O-Ti ligands shows enhanced intrinsic activity and stability towards electrocatalytic oxygen evolution with a very low overpotential of 205 mV at 10 mA cm-2and the long-term durability. This work provides a new understanding and approach for the design and development of 2D hybrid catalysts with highly efficient electrocatalytic activity.
Collapse
Affiliation(s)
- Chenhui Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Furong Xiong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yao Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jianwei Nai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
11
|
Zhai P, Wang C, Zhao Y, Zhang Y, Gao J, Sun L, Hou J. Regulating electronic states of nitride/hydroxide to accelerate kinetics for oxygen evolution at large current density. Nat Commun 2023; 14:1873. [PMID: 37015944 PMCID: PMC10073178 DOI: 10.1038/s41467-023-37091-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/02/2023] [Indexed: 04/06/2023] Open
Abstract
Rational design efficient transition metal-based electrocatalysts for oxygen evolution reaction (OER) is critical for water splitting. However, industrial water-alkali electrolysis requires large current densities at low overpotentials, always limited by intrinsic activity. Herein, we report hierarchical bimetal nitride/hydroxide (NiMoN/NiFe LDH) array as model catalyst, regulating the electronic states and tracking the relationship of structure-activity. As-activated NiMoN/NiFe LDH exhibits the industrially required current density of 1000 mA cm-2 at overpotential of 266 mV with 250 h stability for OER. Especially, in-situ electrochemical spectroscopic reveals that heterointerface facilitates dynamic structure evolution to optimize electronic structure. Operando electrochemical impedance spectroscopy implies accelerated OER kinetics and intermediate evolution due to fast charge transport. The OER mechanism is revealed by the combination of theoretical and experimental studies, indicating as-activated NiMoN/NiFe LDH follows lattice oxygen oxidation mechanism with accelerated kinetics. This work paves an avenue to develop efficient catalysts for industrial water electrolysis via tuning electronic states.
Collapse
Affiliation(s)
- Panlong Zhai
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Chen Wang
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yuanyuan Zhao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Yanxue Zhang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Junfeng Gao
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian, 116024, P. R. China.
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, P. R. China
- Department of Chemistry, School of Engineering Science in Chemical, Biotechnology and Health KTH Royal Institute of Technology, Stockholm, 10044, Sweden
| | - Jungang Hou
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China.
| |
Collapse
|
12
|
Lin L, Xin R, Yuan M, Wang T, Li J, Xu Y, Xu X, Li M, Du Y, Wang J, Wang S, Jiang F, Wu W, Lu C, Huang B, Sun Z, Liu J, He J, Sun G. Revealing Spin Magnetic Effect of Iron-Group Layered Double Hydroxides with Enhanced Oxygen Catalysis. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Liu Lin
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Ruiyun Xin
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Mengwei Yuan
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Tongyue Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jie Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yunming Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Xuhui Xu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Mingxuan Li
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Yu Du
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jianing Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Shuyi Wang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Fubin Jiang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Wenxin Wu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Caicai Lu
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Binbin Huang
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Zemin Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
| | - Jian Liu
- Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao266101, China
| | - Jinlu He
- Inner Mongolia University, 235 West University Street, Hohhot010021, China
| | - Genban Sun
- Center for Advanced Materials Research & College of Arts and Sciences, Experiment and Practice Innovation Education Center, Beijing Normal University, Zhuhai519087, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing100875, China
| |
Collapse
|
13
|
Yan X, Wang Z, Bao J, Song Y, She X, Yuan J, Hua Y, Lv G, Li H, Xu H. CoMo layered double hydroxide equipped with carbon nanotubes for electrocatalytic oxygen evolution reaction. NANOTECHNOLOGY 2022; 34:065401. [PMID: 36252529 DOI: 10.1088/1361-6528/ac9abd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
To carry out effective resource reforming of sustainable electricity, hydrogen production by electrochemical water splitting provides an eco-friendly and economical way. Nevertheless, the oxygen evolution reaction (OER) at the anode is limited by the slow reaction process, which hinders the large-scale development and application of electrolysis technology. In this work, we present an electrocatalyst with superior OER performance, which attributed to the abundant active sites and good electronic conductivity. The two-dimensional CoMo Layered Double Hydroxide nanosheets are synthesized and deposited on conductive carbon nanotubes (CoMo LDH/CNTs), and then hybrid composites show better catalytic performance than their undecorated counterpart under identical conditions. Specifically, CoMo LDH/CNTs exhibit the low overpotential of 268 mV to obtain 10 mA cm-2and satisfactory stability (more than 40 h). We emphasize that this hybridization strategy with a conductive supporting framework could design more abundant and low-cost OER electrocatalysts to minimize electrical energy consumption, thereby achieving efficient conversion between energy sources.
Collapse
Affiliation(s)
- Xuesheng Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
- State Power Investment Group Hubei Branch, Wuhan 430061, People's Republic of China
| | - Zhaolong Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Jian Bao
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Yanhua Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
| | - Xiaojie She
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China
| | - Junjie Yuan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Yingjie Hua
- The Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| | - Guoai Lv
- Yangzhou China-Power Hydrogen Equipment Co., Ltd, Yangzhou 225000, Jiangsu, People's Republic of China
| | - Huaming Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| | - Hui Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, People's Republic of China
| |
Collapse
|
14
|
Fabrication of the novel NiFe-LDHs @γ-MnOOH nanorod electrocatalyst for effective water oxidation. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Tang J, Xu X, Tang T, Zhong Y, Shao Z. Perovskite-Based Electrocatalysts for Cost-Effective Ultrahigh-Current-Density Water Splitting in Anion Exchange Membrane Electrolyzer Cell. SMALL METHODS 2022; 6:e2201099. [PMID: 36251791 DOI: 10.1002/smtd.202201099] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Development of cost-effective water splitting technology that allows low-overpotential operation at high current density with non-precious catalysts is the key for large-scale hydrogen production. Herein, it is demonstrated that the versatile perovskite-based oxides, usually applied for operating at low current density and room temperature in alkaline solution, can be developed into low-cost, highly active and durable electrocatalysts for operating at high current densities in a zero-gap anion exchange membrane electrolyzer cell (AEMEC). The composite perovskite with mixed phases of Ruddlesden-Popper and single perovskite is applied as the anode in AEMEC and exhibits highly promising performance with an overall water-splitting current density of 2.01 A cm-2 at a cell voltage of only 2.00 V at 60 °C with stable performance. The elevated temperature to promote anion diffusion in membrane boosts oxygen evolution kinetics by enhancing lattice-oxygen participation. The bifunctionality of perovskites further promises the more cost-effective symmetrical AEMEC configuration, and a primary cell with the composite perovskite as both electrodes delivers 3.00 A cm-2 at a cell voltage of only 2.42 V. This work greatly expands the use of perovskites as robust electrocatalysts for industrial water splitting at high current density with great practical application merit.
Collapse
Affiliation(s)
- Jiayi Tang
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Tony Tang
- Blackstone Minerals Limited, Perth, WA, 6005, Australia
| | - Yijun Zhong
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia
| |
Collapse
|
16
|
Wu X, Zhao S, Yin L, Wang L, Li L, Hu F, Peng S. Amorphous porous sulfides nanosheets with hydrophilic/aerophobic surface for high-current-density water splitting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Electrochemical activation strategy assisted morphology engineering Co-Fe layered double hydroxides for oxygen hydrogen evolution and supercapacitor. J Colloid Interface Sci 2022; 632:186-195. [DOI: 10.1016/j.jcis.2022.10.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
|
18
|
Li X, Wang C, Zheng S, Xue H, Xu Q, Braunstein P, Pang H. Electrochemical activation-induced surface-reconstruction of NiO x microbelt superstructure of core-shell nanoparticles for superior durability electrocatalysis. J Colloid Interface Sci 2022; 624:443-449. [PMID: 35667206 DOI: 10.1016/j.jcis.2022.05.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 01/29/2023]
Abstract
The tailoring of intrinsic electronic structures and extrinsic hierarchical morphologies is widely recognized as a promising strategy to enhance the oxygen evolution reaction (OER) performance of electrocatalysts. It is generally accepted that the surface of the transition metal-based electrocatalyst exposed to the alkaline electrolyte is highly oxidized and reconstructed, forming an amorphous layer during the electrochemical process. This amorphous active phase is favorable for OER due to its abundant dangling bonds, vacancies and defects, which is tricky to be rationally prepared by conventional methods. Herein, a facile access to crystalline / amorphous NiOx microbelt superstructure of core-shell nanoparticles is presented, which is assembled of crystalline NiO nanoparticles coated with amorphous Ni3+/Ni2+ oxide layer. Electrochemical activation induces the in-situ surface reconstruction of the NiOx microbelt superstructure, resulting in a thicker outer amorphous Ni3+/Ni2+ layer further facilitating OER. Owing to the optimization of the in-situ surface reconstruction, the NiOx microbelt superstructure with crystalline / amorphous dual phases exhibited both high electrocatalytic activity and superior durability for OER, with the original microbelt superstructure retained after 50000 s I-t test.
Collapse
Affiliation(s)
- Xinran Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Changli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shasha Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Qiang Xu
- Department of Materials Science and Engineering and Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Pierre Braunstein
- Institute of Chemistry (UMR 7177 CNRS), Université de Strasbourg, Strasbourg, Cedex 67081, France
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
| |
Collapse
|
19
|
Li M, Zhang D, Yi Y, Xue B, Liu B. Boosting anodic methanol upgrading over RuO2 through integration with CeO2 for energy-saving H2 generation in acidic environment. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Wang P, Luo Y, Zhang G, Chen Z, Ranganathan H, Sun S, Shi Z. Interface Engineering of Ni xS y@MnO xH y Nanorods to Efficiently Enhance Overall-Water-Splitting Activity and Stability. NANO-MICRO LETTERS 2022; 14:120. [PMID: 35505126 PMCID: PMC9065220 DOI: 10.1007/s40820-022-00860-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/06/2022] [Indexed: 05/08/2023]
Abstract
Three-dimensional (3D) core-shell heterostructured NixSy@MnOxHy nanorods grown on nickel foam (NixSy@MnOxHy/NF) were successfully fabricated via a simple hydrothermal reaction and a subsequent electrodeposition process. The fabricated NixSy@MnOxHy/NF shows outstanding bifunctional activity and stability for hydrogen evolution reaction and oxygen evolution reaction, as well as overall-water-splitting performance. The main origins are the interface engineering of NixSy@MnOxHy, the shell-protection characteristic of MnOxHy, and the 3D open nanorod structure, which remarkably endow the electrocatalyst with high activity and stability. Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional (3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam (NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of NixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction (OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm-2, respectively, along with high stability of 150 h at 100 mA cm-2. Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm-2, accompanied by excellent stability at 100 mA cm-2 for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Yuanzhi Luo
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Gaixia Zhang
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada.
| | - Zhangsen Chen
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada
| | - Hariprasad Ranganathan
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada
| | - Shuhui Sun
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada.
| | - Zhicong Shi
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
21
|
Yao Y, Hu E, Zheng H, Chen Y, Wang Z, Cui Y, Qian G. Scalable Synthesis of NiFe‐LDH/Ni
9
S
8
/NF Nanosheets by Two‐Step Corrosion for Efficient Oxygen Electrocatalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202101280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yue Yao
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Enlai Hu
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Heqi Zheng
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Yi Chen
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Zhiyu Wang
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials Cyrus Tang Center for Sensor Materials and Applications School of Materials Science and Engineering Zhejiang University Hangzhou 31002 P. R. China
| |
Collapse
|
22
|
Ju M, Cai R, Ren J, Chen J, Qi L, Long X, Yang S. Conductive Polymer Intercalation Tunes Charge Transfer and Sorption-Desorption Properties of LDH Enabling Efficient Alkaline Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37063-37070. [PMID: 34318664 DOI: 10.1021/acsami.1c08429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controlling and tuning surface properties of a catalyst have always been a prime challenge for efficient hydrogen production via water splitting. Here, we report a facile method for tuning both charger transfer and sorption-desorption properties of NiFe layered double hydroxide (LDH) by intercalating a conductive polymer of polypyrrole (ppy) via an interlayer confined polymerization synthesis (ICPS) process. Ex situ characterizations and in situ electrochemical quartz-crystal microbalance with dissipation (EQCM-D) tracking experiments showed that the intercalated ppy not only improved the charge transfer property of the resulting hybrid catalyst LDH-ppy but also made it more flexible and adaptive for quick and reversible sorption-desorption of reactants and intermediates during the oxygen evolution reaction (OER) process. Consequently, the as-prepared LDH-ppy exhibited a doubled catalytic current density over the bare LDH, as visualized by in situ scanning electrochemical microscopy (SECM) at the subnanometer scale. This work sheds light on orchestrating the charge and sorbate transfer abilities of catalysts for efficient water splitting by smartly combining inorganic and organic layers.
Collapse
Affiliation(s)
- Min Ju
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Rongming Cai
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jiazheng Ren
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Jinxi Chen
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xia Long
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Shihe Yang
- Guangdong Provincial Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| |
Collapse
|
23
|
Ding P, Meng C, Liang J, Li T, Wang Y, Liu Q, Luo Y, Cui G, Asiri AM, Lu S, Sun X. NiFe Layered-Double-Hydroxide Nanosheet Arrays on Graphite Felt: A 3D Electrocatalyst for Highly Efficient Water Oxidation in Alkaline Media. Inorg Chem 2021; 60:12703-12708. [PMID: 34357774 DOI: 10.1021/acs.inorgchem.1c01783] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is of great importance to rationally design and develop earth-abundant nanocatalysts for high-efficiency water electrolysis. Herein, NiFe layered double hydroxide was in situ grown hydrothermally on a 3D graphite felt (NiFe LDH/GF) as a high-efficiency catalyst in facilitating the oxygen evolution reaction (OER). In 1.0 M KOH, NiFe LDH/GF requires a low overpotential of 214 mV to deliver a geometric current density of 50 mA cm-2 (η50 mA cm-2 = 214 mV), surpassing that NiFe LDH supported on a 2D graphite paper (NiFe LDH/GP; η50 mA cm-2 = 301 mV). More importantly, NiFe LDH/GF shows good durability at 50 mA cm-2 within 50 h of OER catalysis testing and delivers a faradaic efficiency of nearly 100% in the electrocatalysis of OER.
Collapse
Affiliation(s)
- Peng Ding
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.,Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chuqian Meng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jie Liang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yonglan Luo
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Guanwei Cui
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science & Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|