1
|
Sultana R, Kamihira M. Bioengineered heparin: Advances in production technology. Biotechnol Adv 2024; 77:108456. [PMID: 39326809 DOI: 10.1016/j.biotechadv.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heparin, a highly sulfated glycosaminoglycan, is considered an indispensable anticoagulant with diverse therapeutic applications and has been a mainstay in medical practice for nearly a century. Its potential extends beyond anticoagulation, showing promise in treating inflammation, cancer, and infectious diseases such as COVID-19. However, its current sourcing from animal tissues poses challenges due to variable structures and adulterations, impacting treatment efficacy and safety. Recent advancements in metabolic engineering and synthetic biology offer alternatives through bioengineered heparin production, albeit with challenges such as controlling molecular weight and sulfonation patterns. This review offers comprehensive insight into recent advancements, encompassing: (i) the metabolic engineering strategies in prokaryotic systems for heparin production; (ii) strides made in the development of bioengineered heparin; and (iii) groundbreaking approaches driving production enhancements in eukaryotic systems. Additionally, it explores the potential of recombinant Chinese hamster ovary cells in heparin synthesis, discussing recent progress, challenges, and future prospects, thereby opening up new avenues in biomedical research.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Linne Y, Lücke D, Gerdes K, Bajerke K, Kalesse M. Stereoselective Synthesis of Allylic Alcohols via Substrate Control on Asymmetric Lithiation. Chemistry 2024; 30:e202302699. [PMID: 37821794 DOI: 10.1002/chem.202302699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/01/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Allylic alcohols are a privileged motif in natural product synthesis and new methods that access them in a stereoselective fashion are highly sought after. Toward this goal, we found that chiral acetonide-protected polyketide fragments performing the Hoppe-Matteson-Aggarwal rearrangement in the absence of sparteine with high yields and diastereoselectivities rendering this protocol a highly valuable alternative to the Nozaki-Hiyama-Takai-Kishi reaction. Various stereodyads and -triads were investigated to determine their substrate induction. The mostly strong inherent stereoinduction was attributed to a combination of steric and electronic effects.
Collapse
Affiliation(s)
- Yannick Linne
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Daniel Lücke
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Kjeld Gerdes
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Kevin Bajerke
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany
- Centre of Biomolecular Drug Research (BMWZ), Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany
| |
Collapse
|
3
|
Linne E, Kalesse M. Stereoselective Construction of β-chiral Homoallyl Functionalities by Substrate- and Reagent-Controlled Iterative 1,2-Metallate Rearrangements. Org Lett 2023; 25:8210-8214. [PMID: 37943683 PMCID: PMC10683368 DOI: 10.1021/acs.orglett.3c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Homoallylic alcohols possessing chiral β-centers are considered highly valuable in the synthesis of polyketide-based natural products. Therefore, there is a significant demand for new methods that allow for their stereoselective access. In pursuit of this objective, we have successfully combined our substrate-controlled protocol of Hoppe-Matteson-Aggarwal chemistry with iterative 1,2-metallate rearrangements. Notably, this approach has proven effective in introducing not only primary alcohols but also other functional groups such as alkynes and protected amines.
Collapse
Affiliation(s)
- Elvira Linne
- Institute
of Organic Chemistry (OCI), Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute
of Organic Chemistry (OCI), Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
- Centre
of Biomolecular Drug Research (BMWZ), Gottfried
Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
4
|
Linne Y, Lohrberg D, Struwe H, Linne E, Stohwasser A, Kalesse M. 1,2-Metallate Rearrangement as a Toolbox for the Synthesis of Allylic Alcohols. J Org Chem 2023; 88:12623-12629. [PMID: 37594929 PMCID: PMC10476192 DOI: 10.1021/acs.joc.3c01309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Indexed: 08/20/2023]
Abstract
The development of new methods and protocols for the synthesis of biologically active substances remains one of the most important pillars in organic chemistry, and one of these privileged structural motifs are allylic alcohols. The method of choice to date for the synthesis of these is the Nozaki-Hiyama-Takai-Kishi reaction. We describe here a valuable alternative to the synthesis of allylic alcohols via 1,2-metallate rearrangement. In this work, various vinyl boronic esters with different functional groups have been applied in the Hoppe-Matteson-Aggarwal reaction. In addition, two monoterpenoids were constructed via this convergent synthetic strategy.
Collapse
Affiliation(s)
- Yannick Linne
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Daniel Lohrberg
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Henry Struwe
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Elvira Linne
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Anastasia Stohwasser
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, 30167 Hannover, Germany
- Centre
of Biomolecular Drug Research (BMWZ), Gottfried
Wilhelm Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
5
|
Linne Y, Birkner M, Flormann J, Lücke D, Becker JA, Kalesse M. Sparteine-Free, Highly Stereoselective Construction of Complex Allylic Alcohols Using 1,2-Metallate Rearrangements. JACS AU 2023; 3:1695-1710. [PMID: 37388702 PMCID: PMC10301690 DOI: 10.1021/jacsau.3c00114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 07/01/2023]
Abstract
Stereotriads bearing allylic alcohols are privileged structures in natural products, and new methods accessing these in a stereoselective fashion are highly sought after. Toward this goal, we found that the use of chiral polyketide fragments allows for performing the Hoppe-Matteson-Aggarwal rearrangement in the absence of sparteine with high yields and diastereoselectivities, rendering this protocol a highly valuable alternative to the Nozaki-Hiyama-Takai-Kishi reaction. The switch of directing groups in most cases resulted in the reversed stereochemical outcome, which could be explained by conformational analysis on density functional theory level and a Felkin-like model.
Collapse
Affiliation(s)
- Yannick Linne
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Maike Birkner
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Jan Flormann
- Institute
of Physical Chemistry and Electrochemistry, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3a, 30167 Hannover, Germany
| | - Daniel Lücke
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
| | - Jörg August Becker
- Institute
of Physical Chemistry and Electrochemistry, Gottfried Wilhelm Leibniz Universität Hannover, Callinstraße 3a, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute
of Organic Chemistry, Gottfried Wilhelm
Leibniz Universität Hannover, Schneiderberg 1b, 30167 Hannover, Germany
- Centre
of Biomolecular Drug Research (BMWZ), Gottfried
Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
6
|
Liu K, Guo L, Chen X, Liu L, Gao C. Microbial synthesis of glycosaminoglycans and their oligosaccharides. Trends Microbiol 2023; 31:369-383. [PMID: 36517300 DOI: 10.1016/j.tim.2022.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Compared with chemical synthesis and tissue extraction methods, microbial synthesis of glycosaminoglycans (GAGs) is attractive because of the advantages of eco-friendly processes, production safety, and sustainable development. However, boosting the efficiency of microbial cell factories, precisely regulating GAG molecular weights, and rationally controlling the sulfation degree of GAGs remain challenging. To address these issues, various strategies, including genetic, enzymatic, metabolic, and fermentation engineering, have been developed. In this review, we summarize the recent progress in the construction of efficient GAG-producing microbial cell factories, regulation of the molecular weight of GAGs, and modification of GAG chains. Moreover, future studies, remaining challenges, and potential solutions in this field are discussed.
Collapse
Affiliation(s)
- Kaifang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Etling C, Tedesco G, Di Marco A, Kalesse M. Asymmetric Total Synthesis of Illisimonin A. J Am Chem Soc 2023; 145:7021-7029. [PMID: 36926847 PMCID: PMC10064331 DOI: 10.1021/jacs.3c01262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The discovery of illisimonin A in 2017 extended the structural repertoire of the Illicium sesquiterpenoids─a class of natural products known for their high oxidation levels and neurotrophic properties─with a new carbon backbone combining the strained trans-pentalene and norbornane substructures. We report an asymmetric total synthesis of (-)-illisimonin A that traces its tricyclic carbon framework back to a spirocyclic precursor, generated by a tandem-Nazarov/ene cyclization. As crucial link between the spirocyclic key intermediate and illisimonin A, a novel approach for the synthesis of tricyclo[5.2.1.01,5]decanes via radical cyclization was explored. This approach was applied in a two-stage strategy consisting of Ti(III)-mediated cyclization and semipinacol rearrangement to access the natural product's carbon backbone. These key steps were combined with carefully orchestrated C-H oxidations to establish the dense oxidation pattern.
Collapse
Affiliation(s)
- Christoph Etling
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Giada Tedesco
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Anna Di Marco
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | - Markus Kalesse
- Institute of Organic Chemistry, Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| |
Collapse
|
8
|
Tian H, Holyoke CW, Fleming FF. Stereoselective Synthesis of ( E)- and ( Z)-Isocyanoalkenes. Org Lett 2022; 24:8657-8661. [PMID: 36399331 DOI: 10.1021/acs.orglett.2c03461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
(E)- and (Z)-isocyanoalkenes were selectively synthesized via the sequential cross coupling of vinyl iodides with formamide, followed by dehydration. The optimal catalyst, generated in situ from CuII and trans-N,N'-dimethyl-1,2-cyclohexanediamine, rapidly coupled (E)- or (Z)-vinyl iodides with formamide, which minimized the isomerization of the resultant vinyl formamide. The method efficiently provided a range of acyclic, carbocyclic, and heterocyclic isocyanoalkenes; the versatility is illustrated with the selective, stereodivergent syntheses of the diastereomeric isocyanoalkene antibiotics, B371 and E-B371.
Collapse
Affiliation(s)
- Huan Tian
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Caleb W Holyoke
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Fraser F Fleming
- Department of Chemistry, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Fiorito D, Keskin S, Bateman JM, George M, Noble A, Aggarwal VK. Stereocontrolled Total Synthesis of Bastimolide B Using Iterative Homologation of Boronic Esters. J Am Chem Soc 2022; 144:7995-8001. [PMID: 35499478 PMCID: PMC9100475 DOI: 10.1021/jacs.2c03192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/29/2022]
Abstract
Bastimolide B is a polyhydroxy macrolide isolated from marine cyanobacteria displaying antimalarial activity. It features a dense array of hydroxylated stereogenic centers with 1,5-relationships along a hydrocarbon chain. These 1,5-polyols represent a particularly challenging motif for synthesis, as the remote position of the stereocenters hampers stereocontrol. Herein, we present a strategy for 1,5-polyol stereocontrolled synthesis based on iterative boronic ester homologation with enantiopure magnesium carbenoids. By merging boronic ester homologation and transition-metal-catalyzed alkene hydroboration and diboration, the acyclic backbone of bastimolide B was rapidly assembled from readily available building blocks with full control over the remote stereocenters, enabling the total synthesis to be completed in 16 steps (LLS).
Collapse
Affiliation(s)
- Daniele Fiorito
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | | | - Joseph M. Bateman
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Malcolm George
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
10
|
Linne Y, Bonandi E, Tabet C, Geldsetzer J, Kalesse M. The Total Synthesis of Chondrochloren A. Angew Chem Int Ed Engl 2021; 60:6938-6942. [PMID: 33450788 PMCID: PMC8048958 DOI: 10.1002/anie.202016072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/13/2021] [Indexed: 12/01/2022]
Abstract
The first total synthesis of chondrochloren A is accomplished using a 1,2‐metallate rearrangement addition as an alternative for the Nozaki‐Hiyama‐Kishi reaction. This transformation also avoids the inherent challenges of this polyketide segment and provides a new, unprecedented strategy to assemble polyketidal frameworks. The formation of the Z‐enamide is accomplished using a Z‐selective cross coupling of the corresponding amide to a Z‐vinyl bromide.
Collapse
Affiliation(s)
- Yannick Linne
- Institute for Organic Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Elisa Bonandi
- Institute for Organic Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Christopher Tabet
- Institute for Organic Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany
| | - Jan Geldsetzer
- Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Markus Kalesse
- Institute for Organic Chemistry, Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 1B, 30167, Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Gottfried Wilhelm Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany.,Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124, Braunschweig, Germany
| |
Collapse
|