1
|
Chen CX, Yang SS, Pang JW, He L, Zang YN, Ding L, Ren NQ, Ding J. Anthraquinones-based photocatalysis: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100449. [PMID: 39104553 PMCID: PMC11298862 DOI: 10.1016/j.ese.2024.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
In recent years, there has been significant interest in photocatalytic technologies utilizing semiconductors and photosensitizers responsive to solar light, owing to their potential for energy and environmental applications. Current efforts are focused on enhancing existing photocatalysts and developing new ones tailored for environmental uses. Anthraquinones (AQs) serve as redox-active electron transfer mediators and photochemically active organic photosensitizers, effectively addressing common issues such as low light utilization and carrier separation efficiency found in conventional semiconductors. AQs offer advantages such as abundant raw materials, controlled preparation, excellent electron transfer capabilities, and photosensitivity, with applications spanning the energy, medical, and environmental sectors. Despite their utility, comprehensive reviews on AQs-based photocatalytic systems in environmental contexts are lacking. In this review, we thoroughly describe the photochemical properties of AQs and their potential applications in photocatalysis, particularly in addressing key environmental challenges like clean energy production, antibacterial action, and pollutant degradation. However, AQs face limitations in practical photocatalytic applications due to their low electrical conductivity and solubility-related secondary contamination. To mitigate these issues, the design and synthesis of graphene-immobilized AQs are highlighted as a solution to enhance practical photocatalytic applications. Additionally, future research directions are proposed to deepen the understanding of AQs' theoretical mechanisms and to provide practical applications for wastewater treatment. This review aims to facilitate mechanistic studies and practical applications of AQs-based photocatalytic technologies and to improve understanding of these technologies.
Collapse
Affiliation(s)
- Cheng-Xin Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing, 100096, China
| | - Lei He
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ya-Ni Zang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Lan Ding
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
2
|
Li C, Yu A, Zhao W, Long G, Zhang Q, Mei S, Yao CJ. Extending the π-Conjugation of a Donor-Acceptor Covalent Organic Framework for High-Rate and High-Capacity Lithium-Ion Batteries. Angew Chem Int Ed Engl 2024:e202409421. [PMID: 39136328 DOI: 10.1002/anie.202409421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 11/01/2024]
Abstract
Realizing high-rate and high-capacity features of Lihium-organic batteries is essential for their practical use but remains a big challenge, which is due to the instrinsic poor conductivity, limited redox kinetics and low utility of organic electrode mateials. This work presents a well-designed donor-acceptor Covalent Organic Framework (COFs) with extended conjugation, mesoscale porosity, and dual redox-active centers to promote fast charge transfer and multi-electron processes. As anticipated, the prepared cathode with benzo [1,2-b:3,4-b':5,6-b''] trithiophene (BTT) as p-type and pyrene-4,5,9,10-tetraone (PTO) as n-type material (BTT-PTO-COF) delivers impressive specific capacity (218 mAh g-1 at 0.2 A g-1 in ether-based electrolyte and 275 mAh g-1 at 0.2 A g-1 in carbonate-based electrolyte) and outstanding rate capability (79 mAh g-1 at 50 A g-1 in ether-based electrolyte and 124 mAh g-1 at 10 A g-1 in carbonate-based electrolyte). In addition, the potential of BTT-PTO-COF electrode for prototype batteries has been demonstrated by full cells of dual-ion (FDIBs), which attain comparable electrochemical performances to the half cells. Moreover, mechanism studies combining ex situ characterization and theoratical calculations reveal the efficient dual-ion storage process and facile charge transfer of BTT-PTO-COF. This work not only expands the diversity of redox-active COFs but also provide concept of structure design for high-rate and high-capacity organic electrodes.
Collapse
Affiliation(s)
- Chengqiu Li
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ao Yu
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - WenKai Zhao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Beijing, 100081, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Beijing, 100081, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Shilin Mei
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chang-Jiang Yao
- State Key Laboratory of Explosion Science and Safety Protection, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
3
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Liu C, Mo C, Zhong L, Gong X, Zhang Y, Wang X, Yang F, Li J, Lu J, Yu D. Unique Octupolar 2D-Polymer Frameworks as Mixed Conductors and Metal-Free Catalysts for Dual-Promoted Li and S Electrochemistry: Multi-regulation Role of Ethoxylation Chemistry. Angew Chem Int Ed Engl 2023; 62:e202312016. [PMID: 37691000 DOI: 10.1002/anie.202312016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Here, we for the first time introduce ethoxylation chemistry to develop a new octupolar cyano-vinylene-linked 2D polymer framework (Cyano-OCF-EO) capable of acting as efficient mixed electron/ion conductors and metal-free sulfur evolution catalysts for dual-promoted Li and S electrochemistry. Our strategy creates a unique interconnected network of strongly-coupled donor 3-(acceptor-core) octupoles in Cyano-OCF-EO, affording enhanced intramolecular charge transfer, substantial active sites and crowded open channels. This enables Cyano-OCF-EO as a new versatile separator modifier, which endows the modified separator with superior catalytic activity for sulfur conversion and rapid Li ion conduction with the high Li+ transference number up to 0.94. Thus, the incorporation of Cyano-OCF-EO can concurrently regulate sulfur redox reactions and Li-ion flux in Li-S cells, attaining boosted bidirectional redox kinetics, inhibited polysulfide shuttle and dendrite-free Li anodes. The Cyano-OCF-EO-involved Li-S cell is endowed with excellent overall electrochemical performance especially large areal capacity of 7.5 mAh cm-2 at high sulfur loading of 8.7 mg cm-2 . Mechanistic studies unveil the dominant multi-promoting effect of the triethoxylation on electron and ion conduction, polysulfide adsorption and catalytic conversion as well as previously-unexplored -CN/C-O dual-site synergistic effect for enhanced polysulfide adsorption and reduced energy barrier toward Li2 S conversion.
Collapse
Affiliation(s)
- Cong Liu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunshao Mo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Linfeng Zhong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoqi Gong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yang Zhang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaotong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Fan Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Jing Li
- Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Jiang Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High Performance Polymer-based Composites of Guangdong Province, GBRCE for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Jia C, Duan A, Liu C, Wang WZ, Gan SX, Qi QY, Li Y, Huang X, Zhao X. One-Dimensional Covalent Organic Framework as High-Performance Cathode Materials for Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300518. [PMID: 36918750 DOI: 10.1002/smll.202300518] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/22/2023] [Indexed: 06/15/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as a new class of cathode materials for energy storage in recent years. However, they are limited to two-dimensional (2D) or three-dimensional (3D) framework structures. Herein, this work reports designed synthesis of a redox-active one-dimensional (1D) COF and its composites with 1D carbon nanotubes (CNTs) via in situ growth. Used as cathode materials for Li-ion batteries, the 1D COF@CNT composites with unique dendritic core-shell structure can provide abundant and easily accessible redox-active sites, which contribute to improve diffusion rate of lithium ions and the corresponding specific capacity. This synergistic structural design enables excellent electrochemical performance of the cathodes, giving rise to 95% utilization of redox-active sites, high rate capability (81% capacity retention at 10 C), and long cycling stability (86% retention after 600 cycles at 5 C). As the first example to explore the application of 1D COFs in the field of energy storage, this study demonstrates the great potential of this novel type of linear crystalline porous polymers in battery technologies.
Collapse
Affiliation(s)
- Chao Jia
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - An Duan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Chao Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wen-Zhuang Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shi-Xian Gan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qiao-Yan Qi
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yongjun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaoyu Huang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xin Zhao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
7
|
Zhang L, Wang R, Liu Z, Wan J, Zhang S, Wang S, Hua K, Liu X, Zhou X, Luo X, Zhang X, Cao M, Kang H, Zhang C, Guo Z. Porous Organic Polymer with Hierarchical Structure and Limited Volume Expansion for Ultrafast and Highly Durable Sodium Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210082. [PMID: 36738238 DOI: 10.1002/adma.202210082] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/16/2023] [Indexed: 05/17/2023]
Abstract
Sustainable organic electrode materials, as promising alternatives to conventional inorganic electrode materials for sodium-ion batteries (SIBs), are still challenging to realize long-lifetime and high-rate batteries because of their poor conductivity, limited electroactivity, and severe dissolution. It is also urgent to deeply reveal their electrochemical mechanism and evolution processes. A porous organic polymer (POP) with a conjugated and hierarchical structure is designed and synthesized here. The unique molecule and structure endow the POP with electron delocalization, high ionic diffusivity, plentiful active sites, exceptional structure stability, and limited solubility in electrolytes. When evaluated as an anode for SIBs, the POP exhibits appealing electrochemical properties regarding reversible capacity, rate behaviors, and long-duration life. Importantly, using judiciously combined experiments and theoretical computation, including in situ transmission electron microscopy (TEM), and ex situ spectroscopy, we reveal the Na-storage mechanism and dynamic evolution processes of the POP, including 12-electron reaction process with Na, low volume expansion (125-106% vs the initial 100%), and stable composition and structure evolution during repeating sodiation/de-sodiation processes. This quantitative design for ultrafast and highly durable sodium storage in the POP could be of immediate benefit for the rational design of organic electrode materials with ideal electrochemical properties.
Collapse
Affiliation(s)
- Longhai Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Rui Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zixiang Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jiandong Wan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Shilin Zhang
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Siming Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Kang Hua
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Xiaohao Liu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Xunzhu Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Xiansheng Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Xiaoyang Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Mengge Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Hongwei Kang
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, P. R. China
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Zaiping Guo
- School of Chemical Engineering & Advanced Materials, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
8
|
Shi Y, Yang J, Gao F, Zhang Q. Covalent Organic Frameworks: Recent Progress in Biomedical Applications. ACS NANO 2023; 17:1879-1905. [PMID: 36715276 DOI: 10.1021/acsnano.2c11346] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline organic porous material with specific features and interesting structures, including porosity, large surface area, and biocompatibility. These features enable COFs to be considered as excellent candidates for applications in various fields. Recently, COFs have been widely demonstrated as promising materials for biomedical applications because of their excellent physicochemical properties and ultrathin structures. In this review, we cover the recent progress of COF materials for applications in photodynamic therapy, gene delivery, photothermal therapy, drug delivery, bioimaging, biosensing, and combined therapies. Moreover, the critical challenges and further perspectives with regards to COFs for future biology-facing applications are also discussed.
Collapse
Affiliation(s)
- Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Jinglun Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
| | - Feng Gao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Sau S, Samanta SK. Triphenylamine-anthraquinone based donor-acceptor conjugated microporous polymers for photocatalytic hydroxylation of phenylboronic acids. Chem Commun (Camb) 2023; 59:635-638. [PMID: 36533677 DOI: 10.1039/d2cc05334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triphenylamine-based donor-acceptor conjugated microporous polymers, namely PTPA-AQ and PTPA-AM, were synthesized for the first time via Suzuki-Miyaura coupling of tris(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-amine as a donor with 2,6-dibromoanthracene-9,10-dione and 2,2'-(2,6-dibromoanthracene-9,10-diylidene)dimalononitrile acceptors for efficient visible-light driven oxidative hydroxylation of various phenylboronic acids. The dimalononitrile derivative having greater acceptor ability showed tunable photophysical properties of PTPA-AM (lower band gap of 1.47 eV and better exciton separation efficiency) as well as porosity (lower Brunauer-Emmett-Teller (BET) surface area of 43 m2 g-1). PTPA-AQ having higher BET surface area (400 m2 g-1), suitable HOMO-LUMO positions and an optimal band gap (1.94 eV) showed better photocatalytic activity for the hydroxylation with yields up to 96%.
Collapse
Affiliation(s)
- Soumitra Sau
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
10
|
Lian L, Li K, Ren L, Han D, Lv X, Wang HG. Imine-Linked Triazine-Based Conjugated Microporous Polymers/carbon nanotube composites as Organic Anode Materials for Lithium-Ion Batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Sustainably Recycling and Upcycling of Single-Use Plastic Wastes through Heterogeneous Catalysis. Catalysts 2022. [DOI: 10.3390/catal12080818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The huge amount of plastic waste has caused a series of environmental and economic problems. Depolymerization of these wastes and their conversion into desired chemicals have been regarded as a promising route for dealing with these issues, which strongly relies on catalysis for C-C and C-O bond cleavage and selective transformation. Here, we reviewed recent developments in catalysis systems for dealing with single-use plastics, such as polyethylene, polypropylene, and polyethylene glycol terephthalate. The recycling processes of depolymerization into original monomers and conversion into other economic-incentive chemicals were systemically discussed. Rational designs of catalysts for efficient conversion were particularly highlighted. Overall, improving the tolerance of catalysts to impurities in practical plastics, reducing the economic cost during the catalytic depolymerization process, and trying to obtain gaseous hydrogen from plastic wastes are suggested as the developing trends in this field.
Collapse
|
12
|
Construction of Macroporous Co 2SnO 4 with Hollow Skeletons as Anodes for Lithium-Ion Batteries. Gels 2022; 8:gels8050257. [PMID: 35621555 PMCID: PMC9140520 DOI: 10.3390/gels8050257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing the energy density of lithium-ion batteries (LIBs) can broaden their applications in energy storage but remains a formidable challenge. Herein, with polyacrylic acid (PAA) as phase separation agent, macroporous Co2SnO4 with hollow skeletons was prepared by sol-gel method combined with phase separation. As the anode of LIBs, the macroporous Co2SnO4 demonstrates high capacity retention (115.5% at 200 mA·g−1 after 300 cycles), affording an ultrahigh specific capacity (921.8 mA h·g−1 at 1 A·g−1). The present contribution provides insight into engineering porous tin-based materials for energy storage.
Collapse
|
13
|
Zheng P, Han C, Luo LW, Dong P, Ma W, Zhang C, Chen Y, Jiang JX. Quinone-based conjugated polymer cathodes synthesized via direct arylation for high performance Li-organic batteries. Chem Commun (Camb) 2022; 58:4763-4766. [PMID: 35342917 DOI: 10.1039/d2cc01092e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Direct arylation cross-coupling reaction was employed to prepare quinone-based conjugated polymer cathodes, which realize a high reversible capacity of 200 mA h g-1 at 0.05 A g-1, an excellent rate capability of 111 mA h g-1 at 30 A g-1 (150C), and a stable cycling performance for more than 3000 cycles.
Collapse
Affiliation(s)
- Peiyun Zheng
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Changzhi Han
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Lian-Wei Luo
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Peihua Dong
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Wenyan Ma
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Chong Zhang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Yu Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| | - Jia-Xing Jiang
- Key Laboratory for Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China.
| |
Collapse
|
14
|
Luo D, Li M, Ma Q, Wen G, Dou H, Ren B, Liu Y, Wang X, Shui L, Chen Z. Porous organic polymers for Li-chemistry-based batteries: functionalities and characterization studies. Chem Soc Rev 2022; 51:2917-2938. [PMID: 35285470 DOI: 10.1039/d1cs01014j] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Porous organic polymers (POPs), a versatile class of materials that possess many tunable properties such as high chemical absorptivity and ionic conductivity, are emerging candidate electrode materials, permselective membranes, ionic conductors, interfacial stabilizers and functional precursors to synthesize advanced porous carbon. Based on their crystal structure features, the emerging POPs can be classified into two subclasses: amorphous POPs (hyper cross-linked polymers, polymers with intrinsic microporosity, conjugated microporous polymers, porous aromatic frameworks, etc.) and crystalline POPs (covalent organic frameworks, etc.). This tutorial review provides a brief introduction of different types of POPs in terms of their classification and functions for tackling the remaining challenges in various types of Li-chemistry-based batteries. In situ and ex situ characterization studies are also discussed to highlight their importance and applicability for the structural investigation of POPs to reveal the underlying mechanism of POPs over the course of the electrochemical process. Although some revolutionary advances have been achieved, the development of POPs in Li-chemistry-based batteries is still in its infancy. Perspectives regarding future application and mechanistic insights of POPs in battery studies are outlined at the end.
Collapse
Affiliation(s)
- Dan Luo
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. .,Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong 510006, China.
| | - Matthew Li
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Qianyi Ma
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Guobin Wen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. .,Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong 510006, China.
| | - Haozhen Dou
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Bohua Ren
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. .,Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong 510006, China.
| | - Yizhou Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong 510006, China. .,South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou 510006, China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou 510006, China
| | - Lingling Shui
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangdong 510006, China.
| | - Zhongwei Chen
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, Waterloo Institute for Sustainable Energy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
15
|
Fang Z, Li Y, Li J, Shu C, Zhong L, Lu S, Mo C, Yang M, Yu D. Capturing Visible Light in Low-Band-Gap C 4 N-Derived Responsive Bifunctional Air Electrodes for Solar Energy Conversion and Storage. Angew Chem Int Ed Engl 2021; 60:17615-17621. [PMID: 34014029 DOI: 10.1002/anie.202104790] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Indexed: 02/03/2023]
Abstract
We report facile synthesis of low-band-gap mesoporous C4 N particles and their use as responsive bifunctional oxygen catalysts for visible-light-sensitive (VLS) rechargeable Zn-air battery (RZAB) and polymer-air battery (RPAB). Compared to widely studied g-C3 N4 , C4 N shows a smaller band gap of 1.99 eV, with a larger photocurrent response, and it can function as visible-light-harvesting antenna and bifunctional oxygen reduction/evolution (ORR/OER) catalysts, enabling effective photocoupling to tune oxygen catalysis. The C4 N-enabled VLS-RZAB displays a low charge voltage of 1.35 V under visible light, which is below the theoretical RZAB voltage of 1.65 V, corresponding to a high energy efficiency of 97.78 %. Pairing a C4 N cathode with a polymer anode also endows an VLS-RPAB with light-boosted charge performance. It is revealed that the ORR and OER active sites in C4 N are separate carbon sites near pyrazine-nitrogen atoms and photogenerated energetic holes can activate OER for improved reaction kinetics.
Collapse
Affiliation(s)
- Zhengsong Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yuan Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jing Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chenhao Shu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Linfeng Zhong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaolin Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Chunshao Mo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Meijia Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
16
|
Fang Z, Li Y, Li J, Shu C, Zhong L, Lu S, Mo C, Yang M, Yu D. Capturing Visible Light in Low‐Band‐Gap C
4
N‐Derived Responsive Bifunctional Air Electrodes for Solar Energy Conversion and Storage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhengsong Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Yuan Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Jing Li
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Chenhao Shu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Linfeng Zhong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Shaolin Lu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Chunshao Mo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Meijia Yang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| |
Collapse
|