1
|
Tao S, Jiang D. Accelerating Anhydrous Proton Transport in Covalent Organic Frameworks: Pore Chemistry and its Impacts. Angew Chem Int Ed Engl 2024; 63:e202408296. [PMID: 38843109 DOI: 10.1002/anie.202408296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 07/17/2024]
Abstract
Proton conduction is important in both fundamental research and technological development. Here we report designed synthesis of crystalline porous covalent organic frameworks as a new platform for high-rate anhydrous proton conduction. By developing nanochannels with different topologies as proton pathways and loading neat phosphoric acid to construct robust proton carrier networks in the pores, we found that pore topology is crucial for proton conduction. Its effect on increasing proton conductivity is in an exponential mode other than linear fashion, endowing the materials with exceptional proton conductivities exceeding 10-2 S cm-1 over a broad range of temperature and a low activation energy barrier down to 0.24 eV. Remarkably, the pore size controls conduction mechanism, where mesopores promote proton conduction via a fast-hopping mechanism, while micropores follow a sluggish vehicle process. Notably, decreasing phosphoric acid loading content drastically reduces proton conductivity and greatly increases activation energy barrier, emphasizing the pivotal role of well-developed proton carrier network in proton transport. These findings and insights unveil a new general and transformative guidance for designing porous framework materials and systems for high-rate ion conduction, energy storage, and energy conversion.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
2
|
Tao S, Jiang D. Exceptional Anhydrous Proton Conduction in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:18151-18160. [PMID: 38907725 DOI: 10.1021/jacs.4c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Covalent organic frameworks (COFs) offer an irreplaceable platform for mass transport, as they provide aligned one-dimensional channels as pathways. Especially, proton conduction is of great scientific interest and technological importance. However, unlike proton conduction under humidity, anhydrous proton conduction remains a challenge, as it requires robust materials and proceeds under harsh conditions. Here, we report exceptional anhydrous proton conduction in stable crystalline porous COFs by integrating neat phosphoric acid into the channels to form extended hydrogen-bonding networks. The phosphoric acid networks in the pores are stabilized by hierarchical multipoint and multichain hydrogen-bonding interactions with the 3D channel walls. We synthesized five hexagonal COFs that possess different pore sizes, which are gradually tuned from micropores to mesopores. Remarkably, mesoporous COFs with a high pore volume exhibit an exceptional anhydrous proton conductivity of 0.31 S cm-1, which marks the highest conductivity among all examples reported for COFs. We observed that the proton conductivity is dependent on the pore volume, pore size, and content of phosphoric acid. Increasing the pore volume improves the proton conductivity in an exponential fashion. Remarkably, changing the pore volume from 0.41 to 1.60 cm3 g-1 increases the proton conductivity by 1150-fold. Interestingly, as the pore size increases, the activation energy barrier of proton conduction decreases in linear mode. The mesopores enable fast proton hopping across the channels, while the micropores follow sluggish vehicle conduction. Experiments on tuning phosphoric acid loading contents revealed that a well-developed hydrogen-bonding phosphoric acid network in the pores is critical for proton conduction.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
3
|
He C, Tao S, Liu R, Zhi Y, Jiang D. Covalent Organic Frameworks: Linkage Chemistry and Its Critical Role in The Evolution of π Electronic Structures and Functions. Angew Chem Int Ed Engl 2024; 63:e202403472. [PMID: 38502777 DOI: 10.1002/anie.202403472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 03/21/2024]
Abstract
Covalent organic frameworks (COFs) provide a molecular platform for designing a novel class of functional materials with well-defined structures. A crucial structural parameter is the linkage, which dictates how knot and linker units are connected to form two-dimensional polymers and layer frameworks, shaping ordered π-array and porous architectures. However, the roles of linkage in the development of ordered π electronic structures and functions remain fundamental yet unresolved issues. Here we report the designed synthesis of COFs featuring four representative linkages: hydrazone, imine, azine, and C=C bonds, to elucidate their impacts on the evolution of π electronic structures and functions. Our observations revealed that the hydrazone linkage provides a non-conjugated connection, while imine and azine allow partial π conjugation, and the C=C bond permits full π-conjugation. Importantly, the linkage profoundly influences the control of π electronic structures and functions, unraveling its pivotal role in determining key electronic properties such as band gap, frontier energy levels, light absorption, luminescence, carrier density and mobility, and magnetic permeability. These findings highlight the significance of linkage chemistry in COFs and offer a general and transformative guidance for designing framework materials to achieve electronic functions.
Collapse
Affiliation(s)
- Chunyu He
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ruoyang Liu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yongfeng Zhi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
4
|
Luan TX, Zhang P, Wang Q, Xiao X, Feng Y, Yuan S, Li PZ, Xu Q. "All in One" Strategy for Achieving Superprotonic Conductivity by Incorporating Strong Acids into a Robust Imidazole-Linked Covalent Organic Framework. NANO LETTERS 2024. [PMID: 38603798 DOI: 10.1021/acs.nanolett.4c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The fabrication of solid-state proton-conducting electrolytes possessing both high performance and long-life reusability is significant but challenging. An "all-in-one" composite, H3PO4@PyTFB-1-SO3H, including imidazole, sulfonic acid, and phosphoric acid, which are essential for proton conduction, was successfully prepared by chemical post-modification and physical loading in the rationally pre-synthesized imidazole-based nanoporous covalent organic framework (COF), PyTFB-1. The resultant H3PO4@PyTFB-1-SO3H exhibits superhigh proton conductivity with its value even highly up to 1.15 × 10-1 S cm-1 at 353 K and 98% relative humidity (RH), making it one of the highest COF-based composites reported so far under the same conditions. Experimental studies and theoretical calculations further confirmed that the imidazole and sulfonic acid groups have strong interactions with the H3PO4 molecules and the synergistic effect of these three groups dramatically improves the proton conductivity properties of H3PO4@PyTFB-1-SO3H. This work demonstrated that by aggregating multiple proton carriers into one composite, effective proton-conducting electrolyte can be feasibly achieved.
Collapse
Affiliation(s)
- Tian-Xiang Luan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Pengtu Zhang
- School of Chemical Engineering, Shandong Institute of Pertroleum and Chemical Technology, Dongying 257061, Shandong Province, China
| | - Qiurong Wang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong Province, China
| | - Yijing Feng
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Shiling Yuan
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
- School of Chemical Engineering, Shandong Institute of Pertroleum and Chemical Technology, Dongying 257061, Shandong Province, China
| | - Pei-Zhou Li
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Inter-disciplinary Science, Shandong University, Ji'nan 250100, Shandong Province, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, Guangdong Province, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Zhao FJ, Zhu Y, Chen Y, Ren XY, Dong H, Zhang H, Ren Q, Luo HB, Zou Y, Ren XM. Acidified Nitrogen Self-Doped Porous Carbon with Superprotonic Conduction for Applications in Solid-State Proton Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305765. [PMID: 37821399 DOI: 10.1002/smll.202305765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Solid proton electrolytes play a crucial role in various electrochemical energy storage and conversion devices. However, the development of fast proton conducting solid proton electrolytes at ambient conditions remains a significant challenge. In this study, a novel acidified nitrogen self-doped porous carbon material is presented that demonstrates exceptional superprotonic conduction for applications in solid-state proton battery. The material, designated as MSA@ZIF-8-C, is synthesized through the acidification of nitrogen-doped porous carbon, specifically by integrating methanesulfonic acid (MSA) into zeolitic imidazolate framework-derived nitrogen self-doped porous carbons (ZIF-8-C). This study reveals that MSA@ZIF-8-C achieves a record-high proton conductivity beyond 10-2 S cm-1 at ambient condition, along with good long-term stability, positioning it as a cutting-edge alternative solid proton electrolyte to the default aqueous H2 SO4 electrolyte in proton batteries.
Collapse
Affiliation(s)
- Feng-Jia Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yun Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Ying Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xing-Yu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hao Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Han Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Qiu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yang Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
6
|
Yu B, Lin RB, Xu G, Fu ZH, Wu H, Zhou W, Lu S, Li QW, Jin Y, Li JH, Zhang Z, Wang H, Yan Z, Liu X, Wang K, Chen B, Jiang J. Linkage conversions in single-crystalline covalent organic frameworks. Nat Chem 2024; 16:114-121. [PMID: 37723258 DOI: 10.1038/s41557-023-01334-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/18/2023] [Indexed: 09/20/2023]
Abstract
Single-crystal X-ray diffraction is a powerful characterization technique that enables the determination of atomic arrangements in crystalline materials. Growing or retaining large single crystals amenable to it has, however, remained challenging with covalent organic frameworks (COFs), especially suffering from post-synthetic modifications. Here we show the synthesis of a flexible COF with interpenetrated qtz topology by polymerization of tetra(phenyl)bimesityl-based tetraaldehyde and tetraamine building blocks. The material is shown to be flexible through its large, anisotropic positive thermal expansion along the c axis (αc = +491 × 10-6 K-1), as well as through a structural transformation on the removal of solvent molecules from its pores. The as-synthesized and desolvated materials undergo single-crystal-to-single-crystal transformation by reduction and oxidation of its imine linkages to amine and amide ones, respectively. These redox-induced linkage conversions endow the resulting COFs with improved stability towards strong acid; loading of phosphoric acid leads to anhydrous proton conductivity up to ca. 6.0 × 10-2 S cm-1.
Collapse
Affiliation(s)
- Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Zhi-Hua Fu
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Hui Wu
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Wei Zhou
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Shanfu Lu
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, China
| | - Qian-Wen Li
- State Key Laboratory of Structural Chemistry, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jing-Hong Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Zhenguo Zhang
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Space and Environment, Beihang University, Beijing, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Zier Yan
- Rigaku Beijing Corporation, Beijing, China
| | - Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
7
|
Winterstein S, Privalov AF, Greve C, Siegel R, Pötzschner B, Bettermann M, Adolph L, Timm J, Marschall R, Rössler EA, Herzig EM, Vogel M, Senker J. Ultrafast Proton Conduction in an Aqueous Electrolyte Confined in Adamantane-like Micropores of a Sulfonated, Aromatic Framework. J Am Chem Soc 2023; 145:27563-27575. [PMID: 38060438 PMCID: PMC10740000 DOI: 10.1021/jacs.3c09257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Sulfonated, cross-linked porous polymers are promising frameworks for aqueous high-performance electrolyte-host systems for electrochemical energy storage and conversion. The systems offer high proton conductivities, excellent chemical and mechanical stabilities, and straightforward water management. However, little is known about mass transport mechanisms in such nanostructured hosts. We report on the synthesis and postsynthetic sulfonation of an aromatic framework (SPAF-2) with a 3D-interconnected nanoporosity and varying sulfonation degrees. Water adsorption produces the system SPAF-2H20. It features proton exchange capacities up to 6 mequiv g-1 and exceptional proton conductivities of about 1 S cm-1. Two contributions are essential for the highly efficient transport. First, the nanometer-sized pores link the charge transport to the diffusion of adsorbed water molecules, which is almost as fast as bulk water. Second, continuous exchange between interface-bound and mobile species enhances the conductivities at elevated temperatures. SPAF-2H20 showcases how to tailor nanostructured electrolyte-host systems with liquid-like conductivities.
Collapse
Affiliation(s)
- Simon
F. Winterstein
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Alexei F. Privalov
- Institute
for Condensed Matter Physics, Technical
University of Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Christopher Greve
- Dynamics
and Structure Formation, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Renée Siegel
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Björn Pötzschner
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Michael Bettermann
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Lea Adolph
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Jana Timm
- Physical
Chemistry III, Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Roland Marschall
- Physical
Chemistry III, Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Ernst A. Rössler
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Eva M. Herzig
- Dynamics
and Structure Formation, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| | - Michael Vogel
- Institute
for Condensed Matter Physics, Technical
University of Darmstadt, Hochschulstr. 6, 64289 Darmstadt, Germany
| | - Jürgen Senker
- Inorganic
Chemistry III and Northern Bavarian NMR Centre, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany
| |
Collapse
|
8
|
Zhang S, Lombardo L, Tsujimoto M, Fan Z, Berdichevsky EK, Wei YS, Kageyama K, Nishiyama Y, Horike S. Synthesizing Interpenetrated Triazine-based Covalent Organic Frameworks from CO 2. Angew Chem Int Ed Engl 2023; 62:e202312095. [PMID: 37743667 DOI: 10.1002/anie.202312095] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Crystalline triazine-based covalent organic frameworks (COFs) are aromatic nitrogen-rich porous materials. COFs typically show high thermal/chemical stability, and are promising for energy applications, but often require harsh synthesis conditions and suffer from low crystallinity. In this work, we propose an environmentally friendly route for the synthesis of crystalline COFs from CO2 molecules as a precursor. The mass ratio of CO2 conversion into COFs formula unit reaches 46.3 %. The synthesis consists of two steps; preparation of 1,4-piperazinedicarboxaldehyde from CO2 and piperazine, and condensation of the dicarboxaldehyde and melamine to construct the framework. The CO2 -derived COF has a 3-fold interpenetrated structure of 2D layers determined by powder X-ray diffraction, high-resolution transmission electron microscopy, and select-area electron diffraction. The structure shows a high Brunauer-Emmett-Teller surface area of 945 m2 g-1 and high stability against strong acid (6 M HCl), base (6 M NaOH), and boiling water over 24 hours. Post-modification of the framework with oxone has been demonstrated to modulate hydrophilicity, and it exhibits proton conductivity of 2.5×10-2 S cm-1 at 85 °C, 95 % of relative humidity.
Collapse
Affiliation(s)
- Siquan Zhang
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Loris Lombardo
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masahiko Tsujimoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Zeyu Fan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ellan K Berdichevsky
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yong-Sheng Wei
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kotoha Kageyama
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | | | - Satoshi Horike
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Rayong, 21210, Thailand
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
9
|
Zhang SL, Guo ZC, Su AR, Yang J, Li ZF, Si YB, Li G. Comparative Study on Proton Conductivity and Mechanism Analysis of Two Imidazole Modified Imine-Based Covalent Organic Frameworks. Chemistry 2023; 29:e202302146. [PMID: 37449402 DOI: 10.1002/chem.202302146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
This work elucidates the potential impact of intramolecular H-bonds within the pore walls of covalent organic frameworks (COFs) on proton conductivity. Employing DaTta and TaTta as representative hosts, it was observed that their innate proton conductivities (σ) are both unsatisfactory and σ(DaTta)<σ(TaTta). Intriguingly, the performance of both imidazole-loaded products, Im@DaTta and Im@TaTta is greatly improved, and the σ of Im@DaTta (0.91×10-2 S cm-1 ) even surpasses that of Im@TaTta (3.73×10-3 S cm-1 ) under 100 °C and 98 % relative humidity. The structural analysis, gas adsorption tests, and activation energy calculations forecast the influence of imidazole on the H-bonded system within the framework, leading to observed changes in proton conductivity. It is hypothesized that intramolecular H-bonds within the COF framework impede efficient proton transmission. Nevertheless, the inclusion of an imidazole group disrupts these intramolecular bonds, leading to the formation of an abundance of intermolecular H-bonds within the pore channels, thus contributing to a dramatic increase in proton conductivity. The related calculation of Density Functional Theory (DFT) provides further evidence for this inference.
Collapse
Affiliation(s)
- Shuai-Long Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Zhong-Cheng Guo
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - An-Ran Su
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Jian Yang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Zi-Feng Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Yu-Bing Si
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, 450001, Henan, P.R. China
| |
Collapse
|
10
|
Joseph V, Nagai A. Recent advancements of covalent organic frameworks (COFs) as proton conductors under anhydrous conditions for fuel cell applications. RSC Adv 2023; 13:30401-30419. [PMID: 37849707 PMCID: PMC10578502 DOI: 10.1039/d3ra04855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
Recent electrochemical energy conversion devices require more advanced proton conductors for their broad applications, especially, proton exchange membrane fuel cell (PEMFC) construction. Covalent organic frameworks (COFs) are an emerging class of organic porous crystalline materials that are composed of organic linkers and connected by strong covalent bonds. The unique characteristics including well-ordered and tailorable pore channels, permanent porosity, high degree of crystallinity, excellent chemical and thermal stability, enable COFs to be the potential proton conductors in fuel cell devices. Generally, proton conduction of COFs is dependent on the amount of water (extent of humidity). So, the constructed fuel cells accompanied complex water management system which requires large radiators and airflow for their operation at around 80 °C to avoid overheating and efficiency roll-off. To overcome such limitations, heavy-duty fuel cells require robust proton exchange membranes with stable proton conduction at elevated temperatures. Thus, proton conducting COFs under anhydrous conditions are in high demand. This review summarizes the recent progress in emerging COFs that exhibit proton conduction under anhydrous conditions, which may be prospective candidates for solid electrolytes in fuel cells.
Collapse
Affiliation(s)
| | - Atsushi Nagai
- Ensemble3 - Centre of Excellence Wólczyńska 133 01-919 Warszawa Poland
| |
Collapse
|
11
|
Yao W, Chen Y, Fang T, Liu X, Zhao X, Gao S, Li Z, Wang H, Wang J. Liquid-Liquid Phase Separation of Aqueous Ionic Liquids in Covalent Organic Frameworks for Thermal Switchable Proton Conductivity. J Phys Chem Lett 2023; 14:8165-8174. [PMID: 37671781 DOI: 10.1021/acs.jpclett.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Covalent organic frameworks (COFs) have regular channels that can accommodate guest molecules to provide highly conductive solid electrolytes. However, designing smart, conductive COFs remains a great challenge. Herein, we report the first example of PEG-functionalized ionic liquids (ILs) anchored on the COF walls by strong hydrogen bonding to fabricate thermally responsive COFs (ILm@COF). We found that similar to the traditional IL/water mixture, the ILs undergo lower critical solution temperature (LCST)-type phase behavior within COF nanopores under high moisture levels. However, the phase separation temperature of aqueous IL decreases in COF channels due to the strong interaction between the IL and COF. Thus, the proton conductivity of ILm@COF can be reversibly switched by phase miscibility and separation in COF nanopores, and there is no obvious decrease even after 20 switching cycles. Our work provides important clues for understanding liquid-liquid phase separation in a confined nanospace and opens a new pathway to switchable proton conductivity.
Collapse
Affiliation(s)
- Wenhui Yao
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, P. R. China
| | - Yongkui Chen
- School of Chemistry and Materials Engineering, Xinxiang University, Xinxiang, Henan 453003, P. R. China
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Timing Fang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Xiao Zhao
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Shuaiqi Gao
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Li
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Huiyong Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Key Laboratory of Green Chemical Media and Reactions (Ministry of Education), Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
12
|
Guo Y, Wei J, Ying Y, Liu Y, Zhou W, Yu Q. Recent Progress of Crystalline Porous Frameworks for Intermediate-Temperature Proton Conduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11166-11187. [PMID: 37533296 DOI: 10.1021/acs.langmuir.3c01205] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Proton exchange membranes (PEMs), especially for work under intermediate temperatures (100-200 °C), have attracted great interest because of the high CO toleration and facial water management of the corresponding proton exchange membrane fuel cells (PEMFCs). Traditional polymer PEMs faced challenges of low stability and proton carrier leaking. Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are promising to overcome these issues contributed by nanometer-sized channels. Herein we summarized the recent development of MOF/COF-based intermediate-temperature proton conductors. The strategies of framework engineering and pore impregnation were introduced in detail for raising proton conductivity. The proton-conducting mechanism was described as well. This spotlight will provide new insight into the fabrication of MOF/COF proton conductors under intermediate-temperature and anhydrous conditions.
Collapse
Affiliation(s)
- Yi Guo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Junsheng Wei
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yulong Ying
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yu Liu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Weiqiang Zhou
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Qing Yu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
13
|
Rahman N, Ahmad I. Insights into the statistical physics modeling and fractal like kinetic approach for the adsorption of As(III) on coordination polymer gel based on zirconium(IV) and 2-thiobarbituric acid. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131783. [PMID: 37327609 DOI: 10.1016/j.jhazmat.2023.131783] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/13/2023] [Accepted: 06/03/2023] [Indexed: 06/18/2023]
Abstract
A novel coordination polymer gel based on zirconium(IV) and 2-thiobarbituric (ZrTBA) was synthesized and explored its potential to remediate As(III) from water. Box-Behnken design with desirability function and genetic algorithm yielded the optimized conditions (initial concentration=194 mg L-1, dosage = 42.2 mg, time= 95 min and pH = 4.9) for maximum removal efficiency (99.19 %). The experimental saturation capacity for As(III) was 178.30 mg g-1. The steric parameter n > 1 of the best fitted statistical physics model: monolayer with two energies (R2 = 0.987-0.992) suggested multimolecular mechanism with vertical orientation of As(III) molecules onto the two active sites. XPS and FTIR confirmed the two active sites being zirconium and oxygen. The adsorption energies (E1 = 35.81-37.63 kJ/mol; E2 = 29.50-36.49 kJ/mol) and isosteric heat of adsorption indicated that physical forces governed the As(III) uptake. DFT calculations implied that the weak electrostatic interaction and hydrogen bonding were involved. The best fitted (R2>0.99) fractal like pseudo first order model established energetic heterogeneity. ZrTBA showed excellent removal efficiency in the presence of potential interfering ions and could be used up to 5 cycles of adsorption-desorption with < 8 % loss in the efficiency. ZrTBA removed ≥96.06 % As(III) from real water samples spiked at different levels of As(III).
Collapse
Affiliation(s)
- Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Izhar Ahmad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
14
|
Wang FD, Yang LJ, Wang XX, Rong Y, Yang LB, Zhang CX, Yan FY, Wang QL. Pyrazine-Functionalized Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H 2 Evolution with High Proton Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207421. [PMID: 36890778 DOI: 10.1002/smll.202207421] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Indexed: 06/08/2023]
Abstract
The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.
Collapse
Affiliation(s)
- Feng-Dong Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Juan Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xin-Xin Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yi Rong
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Bin Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Fang-You Yan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
15
|
Zeng H, Tang Y, Luan L, Dong X, Zou G, Lin Z. Ionothermal synthesis and proton conductive behaviors of an organic–inorganic hybrid nickel dihydrogen phosphate. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
16
|
Guo F, Zhang W, Yang S, Wang L, Yu G. 2D Covalent Organic Frameworks Based on Heteroacene Units. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207876. [PMID: 36703526 DOI: 10.1002/smll.202207876] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a unique new class of porous materials that arrange building units into periodic ordered frameworks through strong covalent bonds. Accompanied with structural rigidity and well-defined geometry, heteroacene-based COFs have natural advantages in constructing COFs with high stability and crystallinity. Heteroacene-based COFs usually have high physical and chemical properties, and their extended π-conjugation also leads to relatively low energy gap, effectively promoting π-electron delocalization between network units. Owing to excellent electron-withdrawing or -donating ability, heteroacene units have incomparable advantages in the preparation of donor-acceptor type COFs. Therefore, the physicochemical robust and fully conjugated heteroacene-based COFs solve the problem of traditional COFs lacking π-π interaction and chemical stability. In recent years, significant breakthroughs are made in this field, the choice of various linking modes and building blocks has fundamentally ensured the final applications of COFs. It is of great significance to summarize the heteroacene-based COFs for improving its complexity and controllability. This review first introduces the linkages in heteroacene-based COFs, including reversible and irreversible linkages. Subsequently, some representative building blocks are summarized, and their related applications are especially emphasized. Finally, conclusion and perspectives for future research on heteroacene-based COFs are presented.
Collapse
Affiliation(s)
- Fu Guo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Wang J, Liu L, Liu Y, Zhang XM, Li J. Entropy-Driven Ultrafast Ion Conduction Via Confining Organic Plastic Crystals in Ordered Nanochannels of Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207831. [PMID: 36670085 DOI: 10.1002/smll.202207831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Low conductivity over a wide temperature region due to ultra-slow ion migration dynamics is a key issue in the field of solid-state electrolytes (SSE), which needs to be solved and improved. Covalent organic frameworks (COFs), a rapidly growing class of porous crystalline materials, emerge as a new research hotspot in the field of SSEs. This is due to their homogeneously dispersed sites and well-defined pathways for ion diffusion, demonstrating great advantages over conventional non-porous solids. Herein, a composite solid electrolyte by confining organic ionic plastic crystal (OIPC) in the 1D ordered nanochannels of COFs as the host matrix for solid-state lithium-ion conduction, is reported. Due to the loss of coupling between PBu4 + cations and TFSI- anions, the cation-anion interaction is weakened; and thus, the lithium-ion transportation is facilitated. As a result, the COF-confining OIPC SSEs show ultra-high lithium-ion conductivity of 0.048 S cm-1 at 30 °C and 0.021 S cm-1 at the extremely low temperature of -30 °C. The dynamic origin of this fast ion conduction is characterized by differential scanning calorimetry (DSC), X-ray photoelectron spectroscopy (XPS), and variable temperature solid-state nuclear magnetic resonance (NMR) spectroscopy.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Crystalline Materials, Shanxi University, Wucheng Rd, No 92, Taiyuan, 030006, China
| | - Lili Liu
- Institute of Crystalline Materials, Shanxi University, Wucheng Rd, No 92, Taiyuan, 030006, China
| | - Yukun Liu
- Institute of Crystalline Materials, Shanxi University, Wucheng Rd, No 92, Taiyuan, 030006, China
| | - Xian-Ming Zhang
- Institute of Crystalline Materials, Shanxi University, Wucheng Rd, No 92, Taiyuan, 030006, China
| | - Juan Li
- Institute of Crystalline Materials, Shanxi University, Wucheng Rd, No 92, Taiyuan, 030006, China
| |
Collapse
|
18
|
Zhou LL, Guan Q, Zhou W, Kan JL, Dong YB. An iodide-containing covalent organic framework for enhanced radiotherapy. Chem Sci 2023; 14:3642-3651. [PMID: 37006674 PMCID: PMC10056114 DOI: 10.1039/d3sc00251a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023] Open
Abstract
Metal-free radiosensitizers, particularly iodine, have shown promise in enhancing radiotherapy due to their suitable X-ray absorption capacities and negligible biotoxicities. However, conventional iodine compounds have very short circulating half-lives and are not retained in tumors very well, which significantly limits their applications. Covalent organic frameworks (COFs) are highly biocompatible crystalline organic porous materials that are flourishing in nanomedicine but have not been developed for radiosensitization applications. Herein, we report the room-temperature synthesis of an iodide-containing cationic COF by the three-component one-pot reaction. The obtained TDI-COF can be a tumor radiosensitizer for enhanced radiotherapy by radiation-induced DNA double-strand breakage and lipid peroxidation and inhibits colorectal tumor growth by inducing ferroptosis. Our results highlight the excellent potential of metal-free COFs as radiotherapy sensitizers.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| | - Wei Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021 China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| |
Collapse
|
19
|
Sun Y, Wei J, Fu Z, Zhang M, Zhao S, Xu G, Li C, Zhang J, Zhou T. Bio-Inspired Synthetic Hydrogen-Bonded Organic Frameworks for Efficient Proton Conduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208625. [PMID: 36401823 DOI: 10.1002/adma.202208625] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a rising class of promising proton-conducting materials. However, they always suffer from the inherent contradiction between chemical stability and proton conduction. Herein, inspired by the self-assembly of lipid bilayer membranes, a series of aminomethylphosphonic acid-derived single-component HOFs are successfully developed with different substituents attached to the phosphonate oxygen group. They remain highly stable in strong acid or alkaline water solutions for one month owing to the presence of charge-assisted hydrogen bonds. Interestingly, in the absence of external proton carriers, the methyl-substituted phosphonate-based HOF exhibits a very high proton conductivity of up to 4.2 × 10-3 S cm-1 under 80 °C and 98% relative humidity. This value is not only comparable to that of HOFs consisting of mixed ligands but also is the highest reported in single-component HOFs. A combination of single-crystal structure analysis and density functional theory calculations reveals that the high conductivity is attributed to the strengthened H-bonding interactions between positively charged amines and negatively charged phosphonate groups in the channel of bio-inspired HOFs. This finding demonstrates that the well-defined molecular structure of proton conductors is of great importance in the precise understanding of the relationship between structure and property.
Collapse
Affiliation(s)
- Yayong Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Jing Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Zhihua Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Minyi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tianhua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Xie J, Niu N, Fu X, Su X, Wang D, Qin A, Han T, Tang BZ. Catalyst-free synthesis of diverse fluorescent polyoxadiazoles for the facile formation and morphology visualization of microporous films and cell imaging. Chem Sci 2023; 14:903-915. [PMID: 36755704 PMCID: PMC9890602 DOI: 10.1039/d2sc05960f] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The development of facile polymerizations toward functional heterocyclic polymers is of great significance for chemistry and materials science. As an important class of heterocyclic polymers, polyoxadiazoles (PODs) have found applications in various fields. However, the synthetic difficulties of PODs greatly restrict their structural diversity and property investigation. Herein, we report a series of catalyst-free multicomponent polymerizations (MCPs) that can facilely synthesize functional PODs with well-defined and diversified topological structures from commercially available or readily accessible aldehydes, carboxylic acids, secondary amines, and (N-isocyanimino)triphenylphosphorane at room temperature. Unlike conventional Ugi polycondensations, the present Ugi-type MCPs can in situ generate oxadiazole moieties in polymer backbones. The obtained PODs possess good solubility, high thermal and morphological stability, and excellent film-forming ability. The introduction of aggregation-induced emission (AIE) moieties together with the inherent structural features of PODs endow these polymers with multiple functionalities. The AIE-active linear PODs can form fluorescent microporous films with stable and ordered structures based on the simple breath figure patterning method, and the self-assembly morphologies can be directly visualized by fluorescence microscopy in a high-contrast and sensitive manner. Moreover, both the linear and hyperbranched AIE-active PODs possess excellent biocompatibility, good lysosome specificity, and excellent photobleaching resistance, which enable them to serve as promising lysosome-specific fluorescent probes in biological imaging.
Collapse
Affiliation(s)
- Junyao Xie
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Niu Niu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China .,College of Physics and Optoelectronic Engineering, Shenzhen University Shenzhen 518060 China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of TechnologyGuangzhou510640China
| | - Xiang Su
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, AIE Institute, South China University of TechnologyGuangzhou510640China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University Shenzhen 518060 China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| |
Collapse
|
21
|
Ren Q, Chen Y, Kong YR, Zhang J, Luo HB, Liu Y, Zou Y, Ren XM. Metal-Organic Framework-Derived N-Doped Porous Carbon for a Superprotonic Conductor at above 100 °C. Inorg Chem 2022; 61:20057-20063. [PMID: 36455074 DOI: 10.1021/acs.inorgchem.2c03458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The development of proton conductors capable of working at above 100 °C is of great significance for proton exchange membrane electrolysis cells (PEMECs) and proton exchange membrane fuel cells (PEMFCs) but remains to be an enormous challenge to date. In this work, we demonstrate for the first time that the N-doped porous carbon derived from metal-organic frameworks (MOFs) with great superiority can be exploited for high-performing proton conductors at above 100 °C. Through the pyrolysis of ZIF-8, the N-doped porous carbon (ZIF-8-C) featuring high chemical resistance to Fenton's reagent was readily prepared and then served as a robust host to accommodate H3PO4 molecules for proton transport. Upon impregnation with H3PO4, the resulting PA@ZIF-8-C exhibits low water swelling and high proton conduction of over 10-2 S cm-1 at a temperature above 100 °C, which is superior to many reported proton conductors. This work provides a new approach for the design of high-performing proton conductors at above 100 °C.
Collapse
Affiliation(s)
- Qiu Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Ying Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Ya-Ru Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Jin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Yangyang Liu
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032-8202, United States
| | - Yang Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
22
|
Dual-sided symmetric crystalline orientation of covalent organic framework membranes for unidirectional anhydrous proton conduction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Li J, Wang J, Shui F, Yi M, Zhang Z, Liu X, Zhang L, You Z, Yang R, Yang S, Li B, Bu XH. Superhigh intrinsic proton conductivity in densely carboxylic covalent organic framework. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Liu X, Jin Y, Wang H, Yang X, Zhang P, Wang K, Jiang J. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203605. [PMID: 35905464 DOI: 10.1002/adma.202203605] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The poor electronic and ionic conductivities of covalent organic frameworks (COFs) severely restrict the development of COF-based electrodes for practical rechargeable batteries, therefore inspiring more research interest from the direction of both material synthesis and technology. Herein, a dual-porous COF, USTB-6, with good crystallinity and rich redox-active sites is conceived and fabricated by the polymerization of 2,3,8,9,14,15-hexa(4-formylphenyl)diquinoxalino [2,3-a:2',3'-c]phenazine and 2,7-diaminopyrene-4,5,9,10-tetraone. In particular, the heterogeneous polymerization of the same starting materials in the presence of graphene affords uniformly dispersed COF nanosheets with a thickness of 8.3 nm on a conductive carbon substrate, effectively enhancing the electronic conductivity of the COF-based electrode. Such a graphene-supported USTB-6 nanosheets cathode when used in a lithium-ion battery exhibits a specific capacity of 285 mA h g-1 at a current density of 0.2 C and excellent rate performance with a prominent capacity of 188 mA h g-1 at 10 C. More importantly, a capacity of 170 mA h g-1 is retained by using the USTB-6 nanosheets cathode after 6000 cycles charge and discharge measurement at 5 C.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Pianpian Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
25
|
Jiang G, Zou W, Ou Z, Zhang L, Zhang W, Wang X, Song H, Cui Z, Liang Z, Du L. Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angew Chem Int Ed Engl 2022; 61:e202208086. [DOI: 10.1002/anie.202208086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Guoxing Jiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Wenwu Zou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhaoyuan Ou
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Weifeng Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Xiujun Wang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Huiyu Song
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Zhenxing Liang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 China
| |
Collapse
|
26
|
Bhandari P, Mukherjee PS. Post‐Synthesis Conversion of an Unstable Imine Cage to a Stable Cage with Amide Moieties Towards Selective Receptor for Fluoride. Chemistry 2022; 28:e202201901. [DOI: 10.1002/chem.202201901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Pallab Bhandari
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry Indian Institute of Science Bangalore 560012 India
| |
Collapse
|
27
|
Jiang G, Zou W, Ou Z, Zhang L, Zhang W, Wang X, Song H, Cui Z, Liang Z, Du L. Tuning the Interlayer Interactions of 2D Covalent Organic Frameworks Enables an Ultrastable Platform for Anhydrous Proton Transport. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Guoxing Jiang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Wenwu Zou
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhaoyuan Ou
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Longhai Zhang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Weifeng Zhang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Xiujun Wang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Huiyu Song
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhiming Cui
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Zhenxing Liang
- South China University of Technology School of Chemistry and Chemical Engineering 381 Wushan Road Tianhe District Guangzhou CHINA
| | - Li Du
- South China University of Technology 381 Wushan Road Tianhe District Guangzhou CHINA
| |
Collapse
|
28
|
Wang K, Yan S, Han T, Wu Q, Yan N, Kang M, Ge J, Wang D, Tang BZ. Cascade C-H-Activated Polyannulations toward Ring-Fused Heteroaromatic Polymers for Intracellular pH Mapping and Cancer Cell Killing. J Am Chem Soc 2022; 144:11788-11801. [PMID: 35736562 DOI: 10.1021/jacs.2c04032] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of straightforward and efficient synthetic methods toward ring-fused heteroaromatic polymers with attractive functionalities has great significance in both chemistry and materials science. Herein, we develop a facile cascade C-H-activated polyannulation route that can in situ generate multiple ring-fused aza-heteroaromatic polymers from readily available monomers in an atom-economical manner. A series of complex polybenzimidazole derivatives with high absolute molecular weights of up to 24 000 are efficiently produced in high yields within 2 h. Benefiting from their unique imidazole-containing ring-fused structures with multiple aryl pendants, the obtained polymers show excellent thermal and morphological stability, good solution processability, high refractive index, small chromic dispersion, as well as remarkable acid-base-responsive fluorescence. Taking advantage of the ratiometric fluorescence response of the triphenylamine-substituted heteroaromatic polymer to pH variations, we successfully apply it as a sensitive fluorescence probe for the mapping and quantitative analysis of intracellular pH in live cells. Furthermore, through the simple N-methylation reaction of the ring-fused polybenzimidazoles, diverse azonia-containing polyelectrolytes are readily produced, which can efficiently kill cancer cells via the synergistic effects of dark toxicity and phototoxicity.
Collapse
Affiliation(s)
- Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Saisai Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Neng Yan
- Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinyin Ge
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
29
|
Liu X, Zhu C, Yin J, Li J, Zhang Z, Li J, Shui F, You Z, Shi Z, Li B, Bu XH, Nafady A, Ma S. Installation of synergistic binding sites onto porous organic polymers for efficient removal of perfluorooctanoic acid. Nat Commun 2022; 13:2132. [PMID: 35440580 PMCID: PMC9019033 DOI: 10.1038/s41467-022-29816-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Herein, we report a strategy to construct highly efficient perfluorooctanoic acid (PFOA) adsorbents by installing synergistic electrostatic/hydrophobic sites onto porous organic polymers (POPs). The constructed model material of PAF-1-NDMB (NDMB = N,N-dimethyl-butylamine) demonstrates an exceptionally high PFOA uptake capacity over 2000 mg g-1, which is 14.8 times enhancement compared with its parent material of PAF-1. And it is 32.0 and 24.1 times higher than benchmark materials of DFB-CDP (β-cyclodextrin (β-CD)-based polymer network) and activated carbon under the same conditions. Furthermore, PAF-1-NDMB exhibits the highest k2 value of 24,000 g mg-1 h-1 among all reported PFOA sorbents. And it can remove 99.99% PFOA from 1000 ppb to <70 ppt within 2 min, which is lower than the advisory level of Environmental Protection Agency of United States. This work thus not only provides a generic approach for constructing PFOA adsorbents, but also develops POPs as a platform for PFOA capture.
Collapse
Affiliation(s)
- Xiongli Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Changjia Zhu
- Department of Chemistry, University of North Texas 1508W Mulberry St, Denton, TX, 76201, USA
| | - Jun Yin
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Advanced Membranes and Porous Materials Center, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Kingdom of Saudi Arabia; KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Jixin Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhiyuan Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Jinli Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Feng Shui
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Zifeng You
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China.
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China.
| | - Ayman Nafady
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shengqian Ma
- Department of Chemistry, University of North Texas 1508W Mulberry St, Denton, TX, 76201, USA.
| |
Collapse
|
30
|
Zhang J, Lei Q, Luan L, Zeng H, Zou G, Lin Z. N-Methylimidazolium containing metal phosphate–oxalates: solvent-free synthesis, crystal structure, and proton conduction. CrystEngComm 2022. [DOI: 10.1039/d1ce01659h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two new metal phosphate–oxalates were prepared under solvent-free conditions using N-methylimidazole as a proton carrier, and display interesting proton-conducting behaviours.
Collapse
Affiliation(s)
- Junfeng Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qing Lei
- Department of Criminal Investigation, Sichuan Police College, Luzhou 646000, China
| | - Lindong Luan
- Department of Criminal Investigation, Sichuan Police College, Luzhou 646000, China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
31
|
Chen Y, Qiu J, Zhang XG, Wang H, Yao W, Li Z, Xia Q, Zhu G, Wang J. A Visible Light/Heat Responsive Covalent Organic Framework for Highly Efficient and Switchable Proton Conductivity. Chem Sci 2022; 13:5964-5972. [PMID: 35685812 PMCID: PMC9132063 DOI: 10.1039/d2sc02100e] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, covalent organic frameworks (COFs) have attracted enormous interest as a new generation of proton-exchange membranes, chemical sensors and electronic devices. However, to design high proton conductivity COFs,...
Collapse
Affiliation(s)
- Yongkui Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
- School of Chemistry and Materials Engineering, Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Jikuan Qiu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Xia-Guang Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Wenhui Yao
- School of Chemistry and Materials Engineering, Xinxiang University Xinxiang Henan 453003 P. R. China
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Qingchun Xia
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University Xinxiang Henan 453007 P. R. China
| |
Collapse
|
32
|
Tan KT, Tao S, Huang N, Jiang D. Water cluster in hydrophobic crystalline porous covalent organic frameworks. Nat Commun 2021; 12:6747. [PMID: 34799574 PMCID: PMC8604923 DOI: 10.1038/s41467-021-27128-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
Progress over the past decades in water confinement has generated a variety of polymers and porous materials. However, most studies are based on a preconception that small hydrophobic pores eventually repulse water molecules, which precludes the exploration of hydrophobic microporous materials for water confinement. Here, we demonstrate water confinement across hydrophobic microporous channels in crystalline covalent organic frameworks. The frameworks are designed to constitute dense, aligned and one-dimensional polygonal channels that are open and accessible to water molecules. The hydrophobic microporous frameworks achieve full occupation of pores by water via synergistic nucleation and capillary condensation and deliver quick water exchange at low pressures. Water confinement experiments with large-pore frameworks pinpoint thresholds of pore size where confinement becomes dominated by high uptake pressure and large exchange hysteresis. Our results reveal a platform based on microporous hydrophobic covalent organic frameworks for water confinement. Research on water confinement in small hydrophobic pores remains scarce because of a preconception that small hydrophobic pores repulse water molecules. Here, the authors demonstrate water confinement across hydrophobic microporous channels in crystalline covalent organic frameworks.
Collapse
Affiliation(s)
- Ke Tian Tan
- Department of Chemistry, Faculty of Science, National University of Singapore, 3, Science Drive 3, Singapore, 117543, Singapore
| | - Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3, Science Drive 3, Singapore, 117543, Singapore
| | - Ning Huang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3, Science Drive 3, Singapore, 117543, Singapore
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3, Science Drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
33
|
Chen SH, Luo SH, Xing LJ, Jiang K, Huo YP, Chen Q, Wang ZY. Rational Design and Facile Synthesis of Dual-State Emission Fluorophores: Expanding Functionality for the Sensitive Detection of Nitroaromatic Compounds. Chemistry 2021; 28:e202103478. [PMID: 34735034 DOI: 10.1002/chem.202103478] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/26/2022]
Abstract
Six novel benzimidazole-based D-π-A compounds 4 a-4 f were concisely synthesized by attaching different donor/acceptor units to the skeleton of 1,3-bis(1H-benzimidazol-2-yl)benzene on its 5-position through an ethynyl link. Due to the twisted conformation and effective conjugation structure, these dual-state emission (DSE) molecules show intense and multifarious photoluminescence, and their fluorescence quantum yields in solution and solid state can be up to 96.16 and 69.82 %, respectively. Especially, for excellent photostability, obvious solvatofluorochromic and extraordinary wide range of solvent compatibility, DSE molecule 4 a is a multifunctional fluorescent probe for the visual detection of nitroaromatic compounds (NACs) with the limit of detection as low as 10-7 M. The quenching mechanism has been proved as the results of photoinduced electron transfer and fluorescence resonance energy transfer processes. Importantly, probe 4 a can sensitively detect NACs not only in real water samples, but also on 4 a-coated strips and 4 a@PBAT thin films.
Collapse
Affiliation(s)
- Si-Hong Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, P. R. China
| | - Shi-He Luo
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, P. R. China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Long-Jiang Xing
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yan-Ping Huo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Qi Chen
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, P. R. China
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, Guangzhou, 510006, P. R. China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
34
|
Tao S, Xu H, Xu Q, Hijikata Y, Jiang Q, Irle S, Jiang D. Hydroxide Anion Transport in Covalent Organic Frameworks. J Am Chem Soc 2021; 143:8970-8975. [PMID: 34110806 DOI: 10.1021/jacs.1c03268] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hydroxide anion transport is essential for alkaline fuel cells, but hydroxide anion has an inherently low conductivity owing to its small diffusion coefficient and high mass. Ordered open channels found in covalent organic frameworks are promising as pathways to enable hydroxide anion transport, but this remains to be explored. Here we report designed synthesis of anionic covalent organic frameworks that promote hydroxide anion transport across the one-dimensional channels. Engineering cationic chains with imidazolium termini onto the pore walls self-assembles a supramolecular interface of single-file hydroxide anion chains in the channels. The frameworks facilitate hydroxide anion transport to achieve an exceptional conductivity of 1.53 × 10-2 S cm-1 at 80 °C, which is 2-6 orders of magnitude higher than those of linear polymers and other porous frameworks. Impedance spectroscopy at different temperatures and studies on deuterated samples reveal that hydroxide anions transport via a proton-exchange hopping mechanism. These results open a way to design framework materials for energy conversions via engineering an anionic interface.
Collapse
Affiliation(s)
- Shanshan Tao
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Hong Xu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 10084, China
| | - Qing Xu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yuh Hijikata
- WPI-ICReDD, Hokkaido University, Nishi 10-chome, Kita 21-jo, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Qiuhong Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Stephan Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| |
Collapse
|