1
|
Long Y, Wu Q, Jiang C, Zhang G, Liang F. Anisotropic Multitentacle Janus Particles Synthesized by Selective Asymmetric Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307203. [PMID: 37939294 DOI: 10.1002/smll.202307203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/22/2023] [Indexed: 11/10/2023]
Abstract
Anisotropic colloidal particles with asymmetric morphology possess functionally rich heterogeneous structures, thus offering potential for intricate superstructures or nanodevices. However, it is a challenge to achieve controlled asymmetric surface partitioned growth. In this work, an innovative strategy is developed based on the selective adsorption and growth of emulsion droplets onto different regions of object which is controlled by wettability. It is found that the emulsion droplets can selectively adsorb on the hydrophilic surface but not the hydrophobic one, and further form asymmetric tentacle by the interfacial sol-gel process along its trajectory. Janus particles with an anisotropic shape and multitentacle structure are achieved via integration of emulsion droplet (soft) and seed (hard) templates. The size and number of tentacles exhibit tunability mediated by soft and hard templates, respectively. This general strategy can be expanded to a variety of planar substrates or curved particles, further confirming the correlation between tentacle growth and Brownian motion. Most interestingly, it can be employed to selectively modify one region of surface partitioned particles to achieve an ABC three-component Janus structure.
Collapse
Affiliation(s)
- Yingchun Long
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiuhua Wu
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Chao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Guolin Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, P. R. China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
2
|
Xia H, Zhou W, Li D, Peng F, Yu L, Sang Y, Liu H, Hao A, Qiu J. Generation of a Hydrophobic Protrusion on Nanoparticles to Improve the Membrane-Anchoring Ability and Cellular Internalization. Angew Chem Int Ed Engl 2024; 63:e202312755. [PMID: 38195886 DOI: 10.1002/anie.202312755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/12/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Controlling the nanoparticle-cell membrane interaction to achieve easy and fast membrane anchoring and cellular internalization is of great importance in a variety of biomedical applications. Here we report a simple and versatile strategy to maneuver the nanoparticle-cell membrane interaction by creating a tunable hydrophobic protrusion on Janus particles through swelling-induced symmetry breaking. When the Janus particle contacts cell membrane, the protrusion will induce membrane wrapping, leading the particles to docking to the membrane, followed by drawing the whole particles into the cell. The efficiencies of both membrane anchoring and cellular internalization can be promoted by optimizing the size of the protrusion. In vitro, the Janus particles can quickly anchor to the cell membrane in 1 h and be internalized within 24 h, regardless of the types of cells involved. In vivo, the Janus particles can effectively anchor to the brain and skin tissues to provide a high retention in these tissues after intracerebroventricular, intrahippocampal, or subcutaneous injection. This strategy involving the creation of a hydrophobic protrusion on Janus particles to tune the cell-membrane interaction holds great potential in nanoparticle-based biomedical applications.
Collapse
Affiliation(s)
- He Xia
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Wenjuan Zhou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250100, P. R. China
| | - Dezheng Li
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Fan Peng
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250100, P. R. China
| | - Liyang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Aijun Hao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Mental Disorders, School of Basic Medical Sciences, Shandong University, Jinan, 250100, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
3
|
Chen C, Zhang L, Wang N, Sun D, Yang Z. Janus Composite Particles and Interfacial Catalysis Thereby. Macromol Rapid Commun 2023; 44:e2300280. [PMID: 37335979 DOI: 10.1002/marc.202300280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Indexed: 06/21/2023]
Abstract
Janus composite particles (JPs) with distinct compartmentalization of varied components thus performances and anisotropic shape display a variety of properties and have demonstrated great potentials in diversify practical applications. Especially, the catalytic JPs are advantageous for multi-phase catalysis with much easier separation of products and recycling the catalysts. In the first section of this review, typical methods to synthesize the JPs with varied morphologies are briefly surveyed in the category of polymeric, inorganic and polymer/inorganic composite. In the main section, recent progresses of the JPs in emulsion interfacial catalysis are summarized covering organic synthesis, hydrogenation, dye degradation, and environmental chemistry. The review will end by calling more efforts toward precision synthesis of catalytic JPs at large scale to meet the stringent requirements in practical applications such as catalytic diagnosis and therapy by the functional JPs.
Collapse
Affiliation(s)
- Chen Chen
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Linlin Zhang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Na Wang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Wang C, Ma S, Wei Y, Ou J. Facile Fabrication of Monodisperse Micron-Sized Dual Janus Silica Particles with Asymmetric Morphology and Chemical Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208194. [PMID: 36707410 DOI: 10.1002/smll.202208194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Indexed: 06/18/2023]
Abstract
Janus particles are a kind of materials with asymmetric morphology or surface chemical environment. But so far, the preparation of particles with dual asymmetry is still a challenging problem. Hence the cation surfactant hexadecyl trimethyl ammonium bromide and co-surfactant octadecylamine are applied to improve the Pickering emulsion stability, and the micron-sized silica particles are arranged in a single layer at the toluene-water interface through electrostatic interaction. Furthermore, organosilane reagents are added in the preparation process, resulting in the construction of asymmetric hydrophilic or hydrophobic mesoporous precisely onto the micron-sized silica particles surface. The cation surfactant-assisted Pickering emulsion method is simple, effective, and convenience, which can be applied in the synthesis of various dual Janus silica particles for specific applications.
Collapse
Affiliation(s)
- Chenyang Wang
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Shujuan Ma
- State Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Yinmao Wei
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Junjie Ou
- State Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
- State Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
5
|
Tuff WJ, Hughes RA, Golze SD, Neretina S. Ion Beam Milling as a Symmetry-Breaking Control in the Synthesis of Periodic Arrays of Identically Aligned Bimetallic Janus Nanocrystals. ACS NANO 2023; 17:4050-4061. [PMID: 36799807 DOI: 10.1021/acsnano.3c00149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bimetallic Janus nanostructures represent a highly functional class of nanomaterials due to important physicochemical properties stemming from the union of two chemically distinct metal segments where each maintains a partially exposed surface. Essential to their synthesis is the incorporation of a symmetry-breaking control that is able to induce the regioselective deposition of a secondary metal onto a preexisting nanostructure even though such depositions are, more often than not, in opposition to the innate tendencies of heterogeneous growth modes. Numerous symmetry-breaking controls have been forwarded but the ensuing Janus structure syntheses have not yet achieved anywhere near the same level of control over nanostructure size, shape, and composition as their core-shell and single-element counterparts. Herein, a collimated ion beam is demonstrated as a symmetry-breaking control that allows for the selective removal of a passivating oxide shell from one side of a metal nanostructure to create a configuration that is transformable into a substrate-bound Au-Ag Janus nanostructure. Two different modalities are demonstrated for achieving Janus structures where in one case the oxide dissolves in the growth solution while in the other it remains affixed to form a three-component system. The devised procedures distinguish themselves in their ability to realize complex Janus architectures arranged in periodic arrays where each structure has the same alignment relative to the underlying substrate. The work, hence, provides an avenue for forming precisely tailored Janus structures and, in a broader sense, advances the use of oxides as an effective means for directing nanometal syntheses.
Collapse
Affiliation(s)
- Walker J Tuff
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Robert A Hughes
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Spencer D Golze
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Svetlana Neretina
- College of Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
6
|
Chen C, Chu G, He W, Liu Y, Dai K, Valdez J, Moores A, Huang P, Wang Z, Jin J, Guan M, Jiang W, Mai Y, Ma D, Wang Y, Zhou Y. A Janus Au-Polymersome Heterostructure with Near-Field Enhancement Effect for Implant-Associated Infection Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207950. [PMID: 36300600 DOI: 10.1002/adma.202207950] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Polymer-inorganic hybrid Janus nanoparticles (PI-JNPs) have attracted extensive attention due to their special structures and functions. However, achieving the synergistic enhancement of photochemical activity between polymer and inorganic moieties in PI-JNPs remains challenging. Herein, the construction of a novel Janus Au-porphyrin polymersome (J-AuPPS) heterostructure by a facile one-step photocatalytic synthesis is reported. The near-field enhancement (NFE) effect between porphyrin polymersome (PPS) and Au nanoparticles in J-AuPPS is achieved to enhance its near-infrared (NIR) light absorption and electric/thermal field intensity at their interface, which improves the energy transfer and energetic charge-carrier generation. Therefore, J-AuPPS shows a higher NIR-activated photothermal conversion efficiency (48.4%) and generates more singlet oxygen compared with non-Janus core-particle Au-PPS nanostructure (28.4%). As a result, J-AuPPS exhibits excellent dual-mode (photothermal/photodynamic) antibacterial and anti-biofilm performance, thereby significantly enhancing the in vivo therapeutic effect in an implant-associated-infection rat model. This work is believed to motivate the rational design of advanced hybrid JNPs with desirable NFE effect and further extend their biological applications.
Collapse
Affiliation(s)
- Chuanshuang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Guangyu Chu
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wanting He
- Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Yannan Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01069, Dresden, Germany
| | - Kai Dai
- Department of Materials, School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Jesus Valdez
- Facility for Electron Microscopy Research (FEMR), McGill University, Montréal, QC, H3A 037, Canada
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| | - Audrey Moores
- Facility for Electron Microscopy Research (FEMR), McGill University, Montréal, QC, H3A 037, Canada
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| | - Pei Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhaohong Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiale Jin
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Ming Guan
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Wenfeng Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dongling Ma
- Énergie Materiaux et Telécommunications, Institut National de la Recherche Scientifique (INRS), 1650 Boulevard Lionel-Boulet, Varennes, QC, J3X 1P7, Canada
| | - Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
7
|
Tang L, Yi W, Qin F, Fan Q. Switchable Nanostructures Triggered by Noyori-Type Organometallics. Inorg Chem 2022; 61:19668-19672. [PMID: 36454590 DOI: 10.1021/acs.inorgchem.2c03567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Janus particles (JPs) self-assembled by a typical small organic gemini surfactant in water were reported by us. After the addition of a small amount Noyori-type organometallics to an organic solvent, these gourd-shaped JPs became new nanostructures, such as nanotubes (NTs), nanoribbons (NRs), and new types of JPs. Significant changes in specific rotation occurred on the solution-like samples, triggered by chiral organometallics in 20 μL of ethyl acetate. Almost all of these organometallics-triggered nanostructures can be conveniently detached and reversed within 5 min due to the easy-phase separation of ethyl acetate from the emulsion and the chemical-selective unstable binding between the organometallics and carbonate group on the surfactant.
Collapse
Affiliation(s)
- Lei Tang
- Laboratory of Anaestheisa and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenhao Yi
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Qin
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qin Fan
- West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Qiao M, Xing Y, Xie L, Kong B, Kleitz F, Li X, Du X. Temperature-Regulated Core Swelling and Asymmetric Shrinkage for Tunable Yolk@Shell Polydopamine@Mesoporous Silica Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205576. [PMID: 36399632 DOI: 10.1002/smll.202205576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Facile and controllable synthesis of functional yolk@shell structured nanospheres with a tunable inner core ('yolk') and mesoporous shell is highly desirable, yet it remains a great challenge. Herein, xx developed a strategy based on temperature-regulated swelling and restricted asymmetric shrinkage of polydopamine (PDA) nanospheres, combined with heterogeneous interface self-assembly growth. This method allows a simple and versatile preparation of PDA@mesoporous silica (MS) nanospheres exhibiting tunable yolk@shell architectures and shell pore sizes. Through reaction temperature-regulated swelling degree and confined shrinkage of PDA nanospheres, the volume ratio of the hollow cavity that the PDA core occupies can easily be tuned from ca. 2/3 to ca. 1/2, then to ca. 2/5, finally to ca. 1/3. Owing to the presence of PDA with excellent photothermal conversion capacity, the PDA@MS nanocomposites with asymmetric yolk distributions can become a colloidal nanomotor propelled by near-infrared (NIR) light. Noteworthily, the PDA@MS with half PDA yolk and microcracks in silica shell reaches 2.18 µm2 s-1 of effective diffusion coefficient (De) in the presence of 1.0 W cm-2 NIR light. This temperature-controlled swelling approach may provide new insight into the design and facile preparation of functional PDA-based yolk@shell structured nanocomposites for wide applications in biology and medicine.
Collapse
Affiliation(s)
- Minghang Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Xiaoyu Li
- National Engineering Research Center of green recycling for Strategic Metal Resources, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, University of Chinese Academic of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| |
Collapse
|
9
|
Jia S, Wang H, Tang R, Ma S, Gong B, Ou J. Fast fabrication of micron-sized Janus particles with controlled morphology via seed-swelling photoinitiated polymerization and their application in Cu (II) ion removal. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Cheng Q, Chen J, Wan C, Song Y, Huang C. Preparation of Janus Droplets and Hydrogels with Controllable Morphologies by an Aqueous Two-Phase System on the Superamphiphobic Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50434-50443. [PMID: 36300357 DOI: 10.1021/acsami.2c16704] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Janus particles, having the property integration of each component, have attracted increasing attention due to their considerable potential in the field of material engineering applications. However, organic solvents or sophisticated equipment during the fabrication processes is generally inevitable. Here, we report a facile route to prepare Janus droplets and hydrogels via aqueous two-phase systems (ATPS). Simply merging two polymers, i.e., polyethylene glycol (PEG) and dextran (DEX), as aqueous droplets on a superamphiphobic surface leads to phase separation, provided that their concentrations exceed the threshold in the mixed aqueous droplets, thus generating a Janus structure. Various morphologies of such Janus droplets can be well controlled by manipulating the locations of these two polymers' concentration on the phase diagram, and the evolution of the mixed droplets are deterministic on the basis of the kinetics of their phase separation and the degree of hydrophobicity of the substrate. Introducing monomers and/or nanoparticles, further, into a certain phase of the ATPS droplet followed by photopolymerizing enables Janus hydrogel particles with diverse functionalities to be obtained. The ease and green techniques with which the Janus balance and curvature between two phases of the Janus droplet can be finely tuned point to new directions in designing Janus particles and hold great promises in biological engineering.
Collapse
Affiliation(s)
- Quanyong Cheng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Jingyi Chen
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Chuchu Wan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Yuhang Song
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| | - Caili Huang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China
| |
Collapse
|
11
|
Qiu J, Shang Y, Xu J, Xia Y. Template-Directed Synthesis of Colloidal Hollow Particles: Mind the Material Used for the Template. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204278. [PMID: 36071024 DOI: 10.1002/smll.202204278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The dissolution of a polymeric solid typically starts with the absorption of solvent molecules, followed by swelling and volume expansion. Only when the extent of swelling reaches a threshold can the polymer chains be disentangled and then dissolved into the solvent. When the polymeric solid is encapsulated in a rigid shell, the swelling process will be impeded. Despite the widespread use of this process, it is rarely discussed in the literature how the polymeric solid is dissolved from the core for the generation of colloidal hollow particles. Recent studies have started to shed light on the mechanistic details involved in the formation of hollow particles through a template-directed process. Depending on the nature of the material used for the template, the removal of the template may involve different mechanisms and pathways, leading to the formation of distinct products. Here, a number of examples are used to illustrate this important phenomenon that is largely neglected in the literature. This article also discusses how the swelling of a polymeric template encapsulated in a rigid shell can be leveraged to fabricate new types of functional colloidal particles.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, China
| | - Yuxin Shang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianchang Xu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
12
|
Minin OV, Zhou S, Liu CY, Kong JAN, Minin IV. Magnetic Concentric Hot-Circle Generation at Optical Frequencies in All-Dielectric Mesoscale Janus Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3428. [PMID: 36234556 PMCID: PMC9565704 DOI: 10.3390/nano12193428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The development of all-dielectric structures with high magnetic response at optical frequencies has become a matter of intense study in past years. However, magnetic effects are weak at optical frequencies due to the small value of the magnetic permeability of natural materials. To this end, natural dielectric materials are unemployable for practical “magnetic” applications in optics. We have shown for the first time that it is possible to induce intense magnetic concentric subwavelength “hot circles” in a dielectric mesoscale Janus particle. The basis of the Janus particle is a combination of the effects of a photonic jet, whispering-gallery waves, and the concept of solid immersion. Simulations show an (H/H0)2/(E/E0)2 contrast of more than 10, and maximal magnetic field intensity enhancement is more than 1000 for a wavelength-scaled particle with a refractive index n < 2 and a size parameter in the order of 30. This work may provide a new way to realize precise magnetic devices for integrated photonic circuits and light−matter interaction.
Collapse
Affiliation(s)
- Oleg V. Minin
- Nondestructive Testing School, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russia
| | - Song Zhou
- Jiangsu Key Laboratory of Advanced Manufacturing Technology, Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai’an 223003, China
| | - Cheng-Yang Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei City 11221, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei City 11221, Taiwan
| | | | - Igor V. Minin
- Nondestructive Testing School, Tomsk Polytechnic University, 30 Lenin Ave., Tomsk 634050, Russia
| |
Collapse
|
13
|
Affiliation(s)
- Yue Shao
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yilan Ye
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dayin Sun
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenzhong Yang
- Institute of Polymer Science and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Kinetics‐Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures. Angew Chem Int Ed Engl 2022; 61:e202200240. [DOI: 10.1002/anie.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 11/07/2022]
|
15
|
Chen SR, Bobrin VA, Jia Z, Monteiro MJ. Temperature‐Directed Formation of Anisotropic Kettlebell and Tadpole Nanostructures in the Absence of a Swelling‐Induced Solvent. Angew Chem Int Ed Engl 2022; 61:e202113974. [DOI: 10.1002/anie.202113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Sung‐Po R. Chen
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Valentin A. Bobrin
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
16
|
Chen SR, Bobrin VA, Jia Z, Monteiro MJ. Temperature‐Directed Formation of Anisotropic Kettlebell and Tadpole Nanostructures in the Absence of a Swelling‐Induced Solvent. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sung‐Po R. Chen
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Valentin A. Bobrin
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Zhongfan Jia
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
17
|
Xie L, Liu T, He Y, Zeng J, Zhang W, Liang Q, Huang Z, Tang J, Liang K, Jiang L, Terasaki O, Zhao D, Kong B. Kinetics‐Regulated Interfacial Selective Superassembly of Asymmetric Smart Nanovehicles with Tailored Topological Hollow Architectures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lei Xie
- Fudan University Department of Chemistry CHINA
| | - Tianyi Liu
- Fudan University Department of Chemistry CHINA
| | - Yanjun He
- Fudan University Department of Chemistry CHINA
| | - Jie Zeng
- Fudan University Department of Chemistry CHINA
| | - Wei Zhang
- Fudan University Department of Chemistry CHINA
| | - Qirui Liang
- Fudan University Department of Chemistry CHINA
| | - Zilin Huang
- Fudan University Department of Chemistry CHINA
| | | | - Kang Liang
- University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Lei Jiang
- Chinese Academy of Sciences Technical Institute of Physics and Chemistry CHINA
| | - Osamu Terasaki
- ShanghaiTech University Physical science and technology CHINA
| | | | - Biao Kong
- Fudan University Department of Chemistry Department of Chemistry, Fudan University, Shanghai 200433, P. R. China 200433 Shanghai CHINA
| |
Collapse
|
18
|
Li D, Liu N, Zeng M, Ji J, Chen X, Yuan J. Customizable nano-sized colloidal tetrahedrons by polymerization-induced particle self-assembly (PIPA). Polym Chem 2022. [DOI: 10.1039/d2py00407k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal molecules (CMs) are colloidal clusters with molecule-like symmetry and architecture, generated from the self-assembly of nanoparticles with attractive patches. However, large-scale preparation of patchy nanoparticles remains challenging. Here, we...
Collapse
|
19
|
Qiu J, Shi Y, Xia Y. Polydopamine Nanobottles with Photothermal Capability for Controlled Release and Related Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104729. [PMID: 34535918 DOI: 10.1002/adma.202104729] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Nanobottles refer to colloidal particles featuring a hollow body connected to a single opening on the surface. This unique feature makes them ideal carriers for the encapsulation and controlled release of various types of cargos. Here a facile route to the fabrication of uniform nanobottles made of polydopamine by leveraging swelling-induced pressure is reported. When polystyrene spheres are coated with polydopamine and then incubated with a toluene/water emulsion, the polystyrene will be swollen to automatically poke a single hole in the shell because of the pressure inside the shell. After quenching the swelling with ethanol and then removing all the polystyrene with tetrahydrofuran, polydopamine nanobottles are obtained. The dimensions of the hollow body are determined by the polystyrene template, while the size of the opening can be tuned by varying the shell thickness. Through the opening, different types of cargos, including small molecules and biomacromolecules, can be easily loaded with a thermoresponsive material into the cavity. The cargos can be released in a controllable manner through direct heating or polydopamine-enabled photothermal heating. In a proof-of-concept experiment, the polydopamine nanobottles are used for temperature-controlled release of thrombin to trigger the formation of fibrin gels in situ.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Yifeng Shi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|