1
|
Bhardwaj A, Mondal B. Unraveling the Geometry-Driven C═C Epoxidation and C-H Hydroxylation Reactivity of Tetra-Coordinated Nonheme Iron(IV)-Oxo Complexes. Inorg Chem 2024; 63:14468-14481. [PMID: 39030661 DOI: 10.1021/acs.inorgchem.4c01708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The electronic structure and reactivity of tetra-coordinated nonheme iron(IV)-oxo complexes have remained unexplored for years. The recent synthesis of a closed-shell iron(IV)-oxo complex [(quinisox)FeIV(O)]+ (1) has set up a platform to understand how such complexes compare with the celebrated open-shell iron-oxo chemistry. Herein, using density functional theory and ab initio calculations, we present an in-depth electronic structure investigation of the C═C epoxidation [oxygen atom transfer (OAT)] and C-H hydroxylation [hydrogen atom transfer (HAT)] reactivity of 1. Using a solvent-coordinated geometry of 1 (1') and other potential tetra-coordinated iron(IV)-oxo complexes bearing rigid ligands (2 and 3), we established the geometric origin of spin-state energetics and reactivity of 1. Complex 1 featuring a strong Fe-O bond exhibits OAT and HAT reactivity in its quintet state. The lowest quintet OAT pathway has a lower barrier by ∼4 kcal/mol than the quintet HAT pathway, corroborating the experimentally observed gas-phase OAT reactivity preference. A conventional HAT reactivity preference for 2 and a comparable OAT and HAT reactivity for 3 are observed. This further supports the geometry-driven reactivity preference for 1. Noncovalent interaction analyses reveal a pronounced π-π interaction between the substrate and ligand in the OAT transition state, rationalizing the origin of the observed reactivity preference for 1.
Collapse
Affiliation(s)
- Akhil Bhardwaj
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
2
|
Gao Y, Guo L, Liu X, Chen N, Yang X, Zhang Q. Advances in the synthesis and applications of macrocyclic polyamines. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231979. [PMID: 39092147 PMCID: PMC11293801 DOI: 10.1098/rsos.231979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/03/2024] [Accepted: 04/10/2024] [Indexed: 08/04/2024]
Abstract
Macrocyclic polyamines constitute a significant class of macrocyclic compounds that play a pivotal role in the realm of supramolecular chemistry. They find extensive applications across diverse domains including industrial and agricultural production, clinical diagnostics, environmental protection and other multidisciplinary fields. Macrocyclic polyamines possess a distinctive cavity structure with varying sizes, depths, electron-richness degrees and flexibilities. This unique feature enables them to form specific supramolecular structures through complexation with diverse objects, thereby attracting considerable attention from chemists, biologists and materials scientists alike. However, there is currently a lack of comprehensive summaries on the synthesis methods for macrocyclic polyamines. In this review article, we provide an in-depth introduction to the synthesis of macrocyclic polyamines while analysing their respective advantages and disadvantages. Furthermore, we also present an overview of the recent 5-year advancements in using macrocyclic polyamines as non-viral gene vectors, fluorescent probes, diagnostic and therapeutic reagents as well as catalysts. Looking ahead to future research directions on the synthesis and application of macrocyclic polyamines across various fields will hopefully inspire new ideas for their synthesis and use.
Collapse
Affiliation(s)
- Yongguang Gao
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Lina Guo
- Tangshan First Vocational Secondary Specialized School, Tangshan 063000, People’s Republic of China
| | - Xinhua Liu
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Na Chen
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Xiaochun Yang
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| | - Qing Zhang
- Department of Chemistry, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Hebei Key Laboratory of Degradable Polymers, Tangshan Normal University, Tangshan063000, People’s Republic of China
- Tangshan Silicone Key Laboratory, Tangshan Normal University, Tangshan063000, People’s Republic of China
| |
Collapse
|
3
|
Chandra B, Ahsan F, Sheng Y, Swart M, Que L. A tale of two topological isomers: Uptuning [Fe IV(O)(Me 4cyclam)] 2+ for olefin epoxidation. Proc Natl Acad Sci U S A 2024; 121:e2319799121. [PMID: 38478690 PMCID: PMC10962992 DOI: 10.1073/pnas.2319799121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
TMC-anti and TMC-syn, the two topological isomers of [FeIV(O)(TMC)(CH3CN)]2+ (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane, or Me4cyclam), differ in the orientations of their FeIV=O units relative to the four methyl groups of the TMC ligand framework. The FeIV=O unit of TMC-anti points away from the four methyl groups, while that of TMC-syn is surrounded by the methyl groups, resulting in differences in their oxidative reactivities. TMC-syn reacts with HAT (hydrogen atom transfer) substrates at 1.3- to 3-fold faster rates than TMC-anti, but the reactivity difference increases dramatically in oxygen-atom transfer reactions. R2S substrates are oxidized into R2S=O products at rates 2-to-3 orders of magnitude faster by TMC-syn than TMC-anti. Even more remarkably, TMC-syn epoxidizes all the olefin substrates in this study, while TMC-anti reacts only with cis-cyclooctene but at a 100-fold slower rate. Comprehensive quantum chemical calculations have uncovered the key factors governing such reactivity differences found between these two topological isomers.
Collapse
Affiliation(s)
- Bittu Chandra
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| | - Faiza Ahsan
- Institut de Química Computacional i Catàlisi and Department of Chemistry, University of Girona, 17003Girona, Spain
| | - Yuan Sheng
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi and Department of Chemistry, University of Girona, 17003Girona, Spain
- ICREA, 08010Barcelona, Spain
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, MN55455
| |
Collapse
|
4
|
Hu H, Li Y, Li Y, Sun Y, Li Y. Carbamoyl Manganese Complexes for Epoxidation of Alkenes and Cycloaddition of Epoxides to Carbon Dioxide. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
5
|
Ansari M, Rajaraman G. Comparative oxidative ability of mononuclear and dinuclear high-valent iron-oxo species towards the activation of methane: does the axial/bridge atom modulate the reactivity? Dalton Trans 2023; 52:308-325. [PMID: 36504243 DOI: 10.1039/d2dt02559k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the years, mononuclear FeIVO species have been extensively studied, but the presence of dinuclear FeIVO species in soluble methane monooxygenase (sMMO) has inspired the development of biomimic models that could activate inert substrates such as methane. There are some successful attempts; particularly the [(Por)(m-CBA) FeIV(μ-N)FeIV(O)(Por˙+)]- species has been reported to activate methane and yield decent catalytic turnover numbers and therefore regarded as the closest to the sMMO enzyme functional model, as no mononuclear FeIVO analogues could achieve this feat. In this work, we have studied a series of mono and dinuclear models using DFT and ab initio DLPNO-CCSD(T) calculations to probe the importance of nuclearity in enhancing the reactivity. We have probed the catalytic activities of four complexes: [(HO)FeIV(O)(Por)]- (1), [(HO)FeIV(O)(Por˙+)] (2), μ-oxo dinuclear iron species [(Por)(m-CBA)FeIV(μ-O)FeIV(O) (Por˙+)]- (3) and N-bridged dinuclear iron species [(Por)(m-CBA)FeIV(μ-N)FeIV(O)(Por˙+)]- (4) towards the activation of methane. Additionally, calculations were performed on the mononuclear models [(X)FeIV(O)(Por˙+)]n {X = N 4a (n = -2), NH 4b (n = -1) and NH24c (n = 0)} to understand the role of nuclearity in the reactivity. DFT calculations performed on species 1-4 suggest an interesting variation among them, with species 1-3 possessing an intermediate spin (S = 1) as a ground state and species 4 possessing a high-spin (S = 2) as a ground state. Furthermore, the two FeIV centres in species 3 and 4 are antiferromagnetically coupled, yielding a singlet state with a distinct difference in their electronic structure. On the other hand, species 2 exhibits a ferromagnetic coupling between the FeIV and the Por˙+ moiety. Our calculations suggest that the higher barriers for the C-H bond activation of methane and the rebound step for species 1 and 3 are very high in energy, rendering them unreactive towards methane, while species 2 and 4 have lower barriers, suggesting their reactivity towards methane. Studies on the system reveal that model 4a has multiple FeN bonds facilitating greater reactivity, whereas the other two models have longer Fe-N bonds and less radical character with steeper barriers. Strong electronic cooperativity is found to be facilitated by the bridging nitride atom, and this cooperativity is suppressed by substituents such as oxygen, rendering them inactive. Thus, our study unravels that apart from enhancing the nuclearity, bridging atoms that facilitate strong cooperation between the metals are required to activate very inert substrates such as methane, and our results are broadly in agreement with earlier experimental findings.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
6
|
Sulfur ligated oxoiron(IV) centre in fenton-like reaction: Theoretical postulation and experimental verification. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
7
|
Yadav O, Kumar M, Mittal H, Yadav K, Seidel V, Ansari A. Theoretical exploration on structures, bonding aspects and molecular docking of α-aminophosphonate ligated copper complexes against SARS-CoV-2 proteases. Front Pharmacol 2022; 13:982484. [PMID: 36263127 PMCID: PMC9575937 DOI: 10.3389/fphar.2022.982484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Recent years have witnessed a growing interest in the biological activity of metal complexes of α-aminophosphonates. Here for the first time, a detailed DFT study on five α-aminophosphonate ligated mononuclear/dinuclear CuII complexes is reported using the dispersion corrected density functional (B3LYP-D2) method. The electronic structures spin densities, FMO analysis, energetic description of spin states, and theoretical reactivity behaviour using molecular electrostatic potential (MEP) maps of all five species are reported. All possible spin states of the dinuclear species were computed and their ground state S values were determined along with the computation of their magnetic coupling constants. NBO analysis was also performed to provide details on stabilization energies. A molecular docking study was performed for the five complexes against two SARS-CoV-2 coronavirus protein targets (PDB ID: 6LU7 and 7T9K). The docking results indicated that the mononuclear species had a higher binding affinity for the targets compared to the dinuclear species. Among the species investigated, species I showed the highest binding affinity with the SARS-CoV-2 Omicron protease. NPA charge analysis showed that the heteroatoms of model species III had a more nucleophilic nature. A comparative study was performed to observe any variations and/or correlations in properties among all species.
Collapse
Affiliation(s)
- Oval Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Manjeet Kumar
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Himanshi Mittal
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Kiran Yadav
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| | - Veronique Seidel
- Natural Products Research Laboratory, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Azaj Ansari
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
8
|
Paik A, Paul S, Bhowmik S, Das R, Naveen T, Rana S. Recent Advances in First Row Transition Metal Mediated C‐H Halogenation of (Hetero)arenes and Alkanes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aniruddha Paik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabarni Paul
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabyasachi Bhowmik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Rahul Das
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Togati Naveen
- Sardar Vallabhbhai National Institute of Technology Department of Chemistry 395007 Surat INDIA
| | - Sujoy Rana
- University of North Bengal Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India, 734013 734013 Siliguri INDIA
| |
Collapse
|
9
|
Liu J, Ji X, Shi J, Wang L, Jian P, Yan X, Wang D. Experimental and theoretical investigation of the tuning of electronic structure in SnO2via Co doping for enhanced styrene epoxidation catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01982a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Co doping is an effective strategy for the tuning of electronic structure in SnO2, which leads to a huge boost in the styrene epoxidation reaction performance.
Collapse
Affiliation(s)
- Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xingyang Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jie Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lixia Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Panming Jian
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaodong Yan
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
10
|
Sheng Y, Abelson CS, Prakash J, Draksharapu A, Young VG, Que L. Unmasking Steps in Intramolecular Aromatic Hydroxylation by a Synthetic Nonheme Oxoiron(IV) Complex. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Sheng
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Chase S. Abelson
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Jai Prakash
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | | | - Victor G. Young
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| | - Lawrence Que
- Department of Chemistry University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
11
|
Sheng Y, Abelson CS, Prakash J, Draksharapu A, Young VG, Que L. Unmasking Steps in Intramolecular Aromatic Hydroxylation by a Synthetic Nonheme Oxoiron(IV) Complex. Angew Chem Int Ed Engl 2021; 60:20991-20998. [PMID: 34292639 PMCID: PMC8429247 DOI: 10.1002/anie.202108309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/09/2022]
Abstract
In this study, a methyl group on the classic tetramethylcyclam (TMC) ligand framework is replaced with a benzylic group to form the metastable [FeIV (Osyn )(Bn3MC)]2+ (2-syn; Bn3MC=1-benzyl-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) species at -40 °C. The decay of 2-syn with time at 25 °C allows the unprecedented monitoring of the steps involved in the intramolecular hydroxylation of the ligand phenyl ring to form the major FeIII -OAr product 3. At the same time, the FeII (Bn3MC)2+ (1) precursor to 2-syn is re-generated in a 1:2 molar ratio relative to 3, accounting for the first time for all the electrons involved and all the Fe species derived from 2-syn as shown in the following balanced equation: 3 [FeIV (O)(LPh )]2+ (2-syn)→2 [FeIII (LOAr )]2+ (3)+[FeII (LPh )]2+ (1)+H2 O. This system thus serves as a paradigm for aryl hydroxylation by FeIV =O oxidants described thus far. It is also observed that 2-syn can be intercepted by certain hydrocarbon substrates, thereby providing a means to assess the relative energetics of aliphatic and aromatic C-H hydroxylation in this system.
Collapse
Affiliation(s)
- Yuan Sheng
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chase S Abelson
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jai Prakash
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Apparao Draksharapu
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Victor G Young
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
12
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|