1
|
Flakina AM, Nazarov DI, Faraonov MA, Yakushev IA, Kuzmin AV, Khasanov SS, Zverev VN, Otsuka A, Yamochi H, Kitagawa H, Konarev DV. Single-Ion Magnetism of the [Dy III(hfac) 4] - Anions in the Crystalline Semiconductor {TSeT 1.5} ●+[Dy III(hfac) 4] - Containing Weakly Dimerized Stacks of Tetraselenatetracene. Int J Mol Sci 2024; 25:8068. [PMID: 39125638 PMCID: PMC11311655 DOI: 10.3390/ijms25158068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The oxidation of tetraselenatetracene (TSeT) by tetracyanoquinodimethane in the presence of dysprosium(III) tris(hexafluoroacetylacetonate), DyIII(hfac)3, produces black crystals of {TSeT1.5}●+[DyIII(hfac)4]- (1) salt, which combines conducting and magnetic sublattices. It contains one-dimensional stacks composed of partially oxidized TSeT molecules (formal averaged charge is +2/3). Dimers and monomers can be outlined within these stacks with charge and spin density redistribution. The spin triplet state of the dimers is populated above 128 K with an estimated singlet-triplet energy gap of 542 K, whereas spins localized on the monomers show paramagnetic behavior. A semiconducting behavior is observed for 1 with the activation energy of 91 meV (measured by the four-probe technique for an oriented single crystal). The DyIII ions coordinate four hfac- anions in [DyIII(hfac)4]-, providing D2d symmetry. Slow magnetic relaxation is observed for DyIII under an applied static magnetic field of 1000 Oe, and 1 is a single-ion magnet (SIM) with spin reversal barrier Ueff = 40.2 K and magnetic hysteresis at 2 K. Contributions from DyIII and TSeT●+ paramagnetic species are seen in EPR. The DyIII ion rarely manifests EPR signals, but such signal is observed in 1. It appears due to narrowing below 30 K and has g4 = 6.1871 and g5 = 2.1778 at 5.4 K.
Collapse
Affiliation(s)
- Alexandra M. Flakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Dmitry I. Nazarov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Maxim A. Faraonov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| | - Ilya A. Yakushev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey V. Kuzmin
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Salavat S. Khasanov
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Vladimir N. Zverev
- Institute of Solid State Physics RAS, Chernogolovka 142432, Russia; (A.V.K.); (S.S.K.)
| | - Akihiro Otsuka
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideki Yamochi
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Dmitri V. Konarev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry RAS, Chernogolovka 142432, Russia (M.A.F.)
| |
Collapse
|
2
|
Kobayashi K, Suzuki M, Sato T, Horii Y, Yoshida T, Breedlove BK, Yamashita M, Katoh K. Spin dynamics phenomena of a cerium(III) double-decker complex induced by intramolecular electron transfer. Dalton Trans 2024; 53:11664-11677. [PMID: 38651377 DOI: 10.1039/d4dt00436a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Switchable spin dynamic properties in single-molecule magnets (SMMs) via an applied stimulus have applications in single-molecule devices. Many SMMs containing heavy lanthanoid ions with strong uniaxial magnetic anisotropy have been reported to exhibit SMM characteristics in the absence of an external magnetic field. On the other hand, SMMs containing light lanthanoid cerium(III) (Ce3+) ions exhibit field-induced slow magnetic relaxation. We investigated the chemical conversion of a diamagnetic Ce4+ ion (4f0) to a paramagnetic Ce3+ ion (4f1) in Ce-phthalocyaninato double-decker complexes (TBA+[Ce(obPc)2]- (1) and TBA+[Ce(Pc)2]- (2)) which exhibit field-induced SMM behaviour due to a 4f1 system. The phthalocyaninato ligands with electron-donating substituents (obPc2- = 2,3,9,10,16,17,23,24-octabutoxyphthalocyaninato) in 1 have a significant effect on the valence state of the Ce ion, which is reflected in its magnetic properties due to the mixed valence state of the Ce ion. Given that Ce double-decker complexes with π-conjugated ligands undergo intramolecular electron transfer (IET) to the Ce ion mixed valence state, characterised by a mixture of 4f0 and 4f1 configurations, we examined the dynamic disorder inherent in IET influencing magnetic relaxation.
Collapse
Affiliation(s)
- Kana Kobayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Michiyuki Suzuki
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Tetsu Sato
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoya Higashimachi, Nara 630-8506, Japan
| | - Takefumi Yoshida
- Cluster of Nanomaterials, Graduate School of Systems Engineering, Wakayama University, 930 Sakae-Dani, Wakayama, 640-8510, Japan
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Josai University, 1-1, Keyakidai, Sakaddo, Saitama 350-0295, Japan.
| |
Collapse
|
3
|
Zakrzewski J, Liberka M, Wang J, Chorazy S, Ohkoshi SI. Optical Phenomena in Molecule-Based Magnetic Materials. Chem Rev 2024; 124:5930-6050. [PMID: 38687182 PMCID: PMC11082909 DOI: 10.1021/acs.chemrev.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Since the last century, we have witnessed the development of molecular magnetism which deals with magnetic materials based on molecular species, i.e., organic radicals and metal complexes. Among them, the broadest attention was devoted to molecule-based ferro-/ferrimagnets, spin transition materials, including those exploring electron transfer, molecular nanomagnets, such as single-molecule magnets (SMMs), molecular qubits, and stimuli-responsive magnetic materials. Their physical properties open the application horizons in sensors, data storage, spintronics, and quantum computation. It was found that various optical phenomena, such as thermochromism, photoswitching of magnetic and optical characteristics, luminescence, nonlinear optical and chiroptical effects, as well as optical responsivity to external stimuli, can be implemented into molecule-based magnetic materials. Moreover, the fruitful interactions of these optical effects with magnetism in molecule-based materials can provide new physical cross-effects and multifunctionality, enriching the applications in optical, electronic, and magnetic devices. This Review aims to show the scope of optical phenomena generated in molecule-based magnetic materials, including the recent advances in such areas as high-temperature photomagnetism, optical thermometry utilizing SMMs, optical addressability of molecular qubits, magneto-chiral dichroism, and opto-magneto-electric multifunctionality. These findings are discussed in the context of the types of optical phenomena accessible for various classes of molecule-based magnetic materials.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Michal Liberka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Lojasiewicza
11, 30-348 Krakow, Poland
| | - Junhao Wang
- Department
of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tonnodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Zhu SD, Zhou YL, Liu F, Lei Y, Liu SJ, Wen HR, Shi B, Zhang SY, Liu CM, Lu YB. A Pair of Multifunctional Cu(II)-Dy(III) Enantiomers with Zero-Field Single-Molecule Magnet Behaviors, Proton Conduction Properties and Magneto-Optical Faraday Effects. Molecules 2023; 28:7506. [PMID: 38005227 PMCID: PMC10673516 DOI: 10.3390/molecules28227506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Multifunctional materials with a coexistence of proton conduction properties, single-molecule magnet (SMM) behaviors and magneto-optical Faraday effects have rarely been reported. Herein, a new pair of Cu(II)-Dy(III) enantiomers, [DyCu2(RR/SS-H2L)2(H2O)4(NO3)2]·(NO3)·(H2O) (R-1 and S-1) (H4L = [RR/SS] -N,N'-bis [3-hydroxysalicylidene] -1,2-cyclohexanediamine), has been designed and prepared using homochiral Schiff-base ligands. R-1 and S-1 contain linear Cu(II)-Dy(III)-Cu(II) trinuclear units and possess 1D stacking channels within their supramolecular networks. R-1 and S-1 display chiral optical activity and strong magneto-optical Faraday effects. Moreover, R-1 shows a zero-field SMM behavior. In addition, R-1 demonstrates humidity- and temperature-dependent proton conductivity with optimal values of 1.34 × 10-4 S·cm-1 under 50 °C and 98% relative humidity (RH), which is related to a 1D extended H-bonded chain constructed by water molecules, nitrate and phenol groups of the RR-H2L ligand.
Collapse
Affiliation(s)
- Shui-Dong Zhu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu-Lin Zhou
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Yu Lei
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Bin Shi
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Shi-Yong Zhang
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Chinese Academy of Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ying-Bing Lu
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China; (S.-D.Z.); (F.L.); (Y.L.); (S.-Y.Z.)
| |
Collapse
|
5
|
Wang J, Zakrzewski JJ, Zychowicz M, Xin Y, Tokoro H, Chorazy S, Ohkoshi SI. Desolvation-Induced Highly Symmetrical Terbium(III) Single-Molecule Magnet Exhibiting Luminescent Self-Monitoring of Temperature. Angew Chem Int Ed Engl 2023; 62:e202306372. [PMID: 37335298 DOI: 10.1002/anie.202306372] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
A conjunction of Single-Molecule Magnet (SMM) behavior and luminescence thermometry is an emerging research line aiming at contactless read-out of temperature in future SMM-based devices. The shared working range between slow magnetic relaxation and the thermometric response is typically narrow or absent. We report TbIII -based emissive SMMs formed in a cyanido-bridged framework whose properties are governed by the reversible structural transformation from [TbIII (H2 O)2 ][CoIII (CN)6 ] ⋅ 2.7H2 O (1) to its dehydrated phase, TbIII [CoIII (CN)6 ] (2). The 8-coordinated complexes in 1 show the moderate SMM effect but it is enhanced for trigonal-prismatic TbIII complexes in 2, showing the SMM features up to 42 K. They are governed by the combination of QTM, Raman, and Orbach relaxation with the energy barrier of 594(18) cm-1 (854(26) K), one of the highest among the TbIII -based molecular nanomagnets. Both systems exhibit emission related to the f-f electronic transitions, with the temperature variations resulting in the optical thermometry below 100 K. The dehydration leads to a wide temperature overlap between the SMM behavior and thermometry, from 6 K to 42 K. These functionalities are further enriched after the magnetic dilution. The role of post-synthetic formation of high-symmetry TbIII complexes in achieving the SMM effect and hot-bands-based optical thermometry is discussed.
Collapse
Affiliation(s)
- Junhao Wang
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2, 30-387, Krakow, Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2, 30-387, Krakow, Poland
| | - Yue Xin
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2, 30-387, Krakow, Poland
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Wan Q, Wakizaka M, Funakoshi N, Shen Y, Che CM, Yamashita M. Step-by-Step Electrocrystallization Processes to Make Multiblock Magnetic Molecular Heterostructures. J Am Chem Soc 2023. [PMID: 37196226 DOI: 10.1021/jacs.3c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Assembling conductive or magnetic heterostructures by bulk inorganic materials is important for making functional electronic or spintronic devices, such as semiconductive p-doped and n-doped silicon for P-N junction diodes, alternating ferromagnetic and nonmagnetic conductive layers used in giant magnetoresistance (GMR). Nonetheless, there have been few demonstrations of conductive or magnetic heterostructures made by discrete molecules. It is of fundamental interest to prepare and investigate heterostructures based on molecular conductors or molecular magnets, such as single-molecule magnets (SMMs). Herein, we demonstrate the fabrication of a series of molecular heterostructures composed of (TTF)2M(pdms)2 (TTF = tetrathiafulvalene, M = Co(II), Zn(II), Ni(II), H2pdms = 1,2-bis(methanesulfonamido)benzene) multiple building blocks through a well-controlled step-by-step electrocrystallization growth process, where the Co(pdms)2, Ni(pdms)2, and Zn(pdms)2 anionic complex is a SMM, paramagnetic, and diamagnetic molecule, respectively. Magnetic and SMM properties of the heterostructures were characterized and compared to the parentage (TTF)2Co(pdms)2 complex. This study presents the first methodology for creating molecule-based magnetic heterostructural systems by electrocrystallization.
Collapse
Affiliation(s)
- Qingyun Wan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Masanori Wakizaka
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Nobuto Funakoshi
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yongbing Shen
- Frontier Institute of Science and Technology (FIST), State Key Laboratory for Mechanical Behavior of Materials, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, Shaanxi, China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Li WQ, Ma MX, Ni QL, Li SM, Gui LC, Wang XJ. Synthesis, structures and magnetic properties of four dysprosium-based complexes with a multidentate ligand with steric constraint. CrystEngComm 2023. [DOI: 10.1039/d2ce01201d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Four dysprosium-based complexes with a multidentate ligand with steric constraint were constructed. Their structures and magnetic properties were studied.
Collapse
Affiliation(s)
- Wen-Qiang Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Meng-Xia Ma
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Qing-Ling Ni
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shi-Ming Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liu-Cheng Gui
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiu-Jian Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
8
|
Lu YB, Huang J, Liao YQ, Lin XL, Huang SY, Liu CM, Wen HR, Liu SJ, Wang FY, Zhu SD. Multifunctional Dinuclear Dy-Based Coordination Complex Showing Visible Photoluminescence, Single-Molecule Magnet Behavior, and Proton Conduction. Inorg Chem 2022; 61:18545-18553. [DOI: 10.1021/acs.inorgchem.2c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ying-Bing Lu
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Jing Huang
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Ya-Qing Liao
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Xue-Lian Lin
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Si-Yu Huang
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - He-Rui Wen
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 Jiangxi Province, PR China
| | - Sui-Jun Liu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000 Jiangxi Province, PR China
| | - Fei-Yang Wang
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| | - Shui-Dong Zhu
- Jiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, PR China
| |
Collapse
|
9
|
Skachkov D, Liu SL, Chen J, Christou G, Hebard AF, Zhang XG, Trickey SB, Cheng HP. Dipole Switching by Intramolecular Electron Transfer in Single-Molecule Magnetic Complex [Mn 12O 12(O 2CR) 16(H 2O) 4]. J Phys Chem A 2022; 126:5265-5272. [PMID: 35939333 DOI: 10.1021/acs.jpca.2c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study intramolecular electron transfer in the single-molecule magnetic complex [Mn12O12(O2CR)16 (H2O)4] for R = -H, -CH3, -CHCl2, -C6H5, and -C6H4F ligands as a mechanism for switching of the molecular dipole moment. Energetics is obtained using the density functional theory (DFT) with onsite Coulomb energy correction (DFT + U). Lattice distortions are found to be critical for localizing an extra electron on one of the easy sites on the outer ring in which localized states can be stabilized. We find that the lowest-energy path for charge transfer is for the electron to go through the center via superexchange-mediated tunneling. The energy barrier for such a path ranges from 0.4 to 54 meV depending on the ligands and the isomeric form of the complex. The electric field strength needed to move the charge from one end to the other, thus reversing the dipole moment, is 0.01-0.04 V/Å.
Collapse
Affiliation(s)
- Dmitry Skachkov
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Shuang-Long Liu
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Jia Chen
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - George Christou
- The M2QM Center, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Arthur F Hebard
- The M2QM Center, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Xiao-Guang Zhang
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Samuel B Trickey
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| | - Hai-Ping Cheng
- The M2QM Center and the Quantum Theory Project, Department of Physics, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Wu J, Wang GL, Zhu Z, Zhao C, Li XL, Zhang YQ, Tang J. Terminal-fluoride-coordinated air-stable chiral dysprosium single-molecule magnets. Chem Commun (Camb) 2022; 58:7638-7641. [PMID: 35723250 DOI: 10.1039/d2cc02570a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Terminal fluoride ligands generate strong magnetic anisotropy in air-stable chiral dysprosium enantiomers supported by a bulky equatorial macrocycle, exhibiting a typical zero-field single-molecule magnet behaviour.
Collapse
Affiliation(s)
- Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Guo-Lu Wang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
11
|
Martynov AG, Horii Y, Katoh K, Bian Y, Jiang J, Yamashita M, Gorbunova YG. Rare-earth based tetrapyrrolic sandwiches: chemistry, materials and applications. Chem Soc Rev 2022; 51:9262-9339. [DOI: 10.1039/d2cs00559j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review summarises advances in chemistry of tetrapyrrole sandwiches with rare earth elements and highlights the current state of their use in single-molecule magnetism, organic field-effect transistors, conducting materials and nonlinear optics.
Collapse
Affiliation(s)
- Alexander G. Martynov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
| | - Yoji Horii
- Department of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan
| | - Keiichi Katoh
- Department of Chemistry, Graduate School of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- Daxing Research Institute, and Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, China
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Yulia G. Gorbunova
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071, Leninskiy pr., 31, bldg.4, Moscow, Russia
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991, Leninskiy pr., 31, Moscow, Russia
| |
Collapse
|
12
|
Chen YC, Tong ML. Single-Molecule Magnets beyond a Single Lanthanide Ion: The Art of Coupling. Chem Sci 2022; 13:8716-8726. [PMID: 35975153 PMCID: PMC9350631 DOI: 10.1039/d2sc01532c] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
The promising future of storing and processing quantized information at the molecular level has been attracting the study of Single-Molecule Magnets (SMMs) for almost three decades. Although some recent breakthroughs are mainly about the SMMs containing only one lanthanide ion, we believe SMMs can tell a much deeper story than the single-ion anisotropy. Here in this Perspective, we will try to draw a unified picture of SMMs as a delicately coupled spin system between multiple spin centres. The hierarchical couplings will be presented step-by-step, from the intra-atomic hyperfine coupling, to the direct and indirect intra-molecular couplings with neighbouring spin centres, and all the way to the inter-molecular and spin–phonon couplings. Along with the discussions on their distinctive impacts on the energy level structures and thus magnetic behaviours, a promising big picture for further studies is proposed, encouraging the multifaceted developments of molecular magnetism and beyond. In this Perspective, we draw a unified picture for single-molecule magnets as delicately coupled spin systems, discuss the hierarchical couplings (from intra-atomic to inter-molecular) and their distinctive impacts on the magnetic behaviours.![]()
Collapse
Affiliation(s)
- Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510006 P. R. China
| |
Collapse
|
13
|
Zakrzewski J, Kumar K, Zychowicz M, Jankowski R, Wyczesany M, Sieklucka B, Ohkoshi SI, Chorazy S. Combined Experimental and Ab Initio Methods for Rationalization of Magneto-Luminescent Properties of Yb III Nanomagnets Embedded in Cyanido/Thiocyanidometallate-Based Crystals. J Phys Chem Lett 2021; 12:10558-10566. [PMID: 34694818 PMCID: PMC8573772 DOI: 10.1021/acs.jpclett.1c02942] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The ab initio calculations were correlated with magnetic and emission characteristics to understand the modulation of properties of NIR-emissive [YbIII(2,2'-bipyridine-1,1'-dioxide)4]3+ single-molecule magnets by cyanido/thiocyanidometallate counterions, [AgI(CN)2]- (1), [AuI(SCN)2]- (2), [CdII(CN)4]2-/[CdII2(CN)7]3- (3), and [MIII(CN)6]3- [MIII = Co (4), Ir (5), Fe (6), Cr (7)]. Theoretical studies indicate easy-axis-type ground doublets for all YbIII centers. They differ in the magnetic axiality; however, transversal g-tensor components are always large enough to explain the lack of zero-dc-field relaxation. The excited doublets lie more than 120 cm-1 above the ground one for all YbIII centers. It was confirmed by high-resolution emission spectra reproduced from the ab initio calculations that give reliable insight into energies and oscillator strengths of optical transitions. These findings indicate the dominance of Raman relaxation with the power n varying from 2.93(4) to 6.9(2) in the 4-3-5-1-2 series. This trend partially follows the magnetic axiality, being deeper correlated with the phonon modes schemes of (thio)cyanido matrices.
Collapse
Affiliation(s)
- Jakub
J. Zakrzewski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kunal Kumar
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mikolaj Zychowicz
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Robert Jankowski
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Maciej Wyczesany
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Barbara Sieklucka
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Shin-ichi Ohkoshi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Szymon Chorazy
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
14
|
Abstract
Molecular magnets are a relatively new class of purely organic or metallo-organic materials, showing magnetism even without an external magnetic field. This interdisciplinary field between chemistry and physics has been gaining increased interest since the 1990s. While bulk molecular magnets are usually hard to build because of their molecular structures, low-dimensional molecular magnets are often easier to construct, down to dot-like (zero-dimensional) structures, which are investigated by different scanning probe technologies. On these scales, new effects such as superparamagnetic behavior or coherent switching during magnetization reversal can be recognized. Here, we give an overview of the recent advances in molecular nanomagnets, starting with single-molecule magnets (0D), typically based on Mn12, Fe8, or Mn4, going further to single-chain magnets (1D) and finally higher-dimensional molecular nanomagnets. This review does not aim to give a comprehensive overview of all research fields dealing with molecular nanomagnets, but instead aims at pointing out diverse possible materials and effects in order to stimulate new research in this broad field of nanomagnetism.
Collapse
|
15
|
Shen Y, Cosquer G, Zhang H, Breedlove BK, Cui M, Yamashita M. 4f-π Molecular Hybrid Exhibiting Rich Conductive Phases and Slow Relaxation of Magnetization. J Am Chem Soc 2021; 143:9543-9550. [PMID: 34156240 DOI: 10.1021/jacs.1c03748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cooperation between single-molecule magnets and electrical conductivity holds promise for preparing high-density magnetic devices; however, there are only a few reports so far. Here we report a 4f-π-based molecular hybrid, k-(ET)5Dy(NCS)7(KCl)0.5 (1) (ET = bis(ethylenedithio)tetrathiafulvalene, NCS- = thiocyanate), which undergoes slow relaxation of the magnetization and electrical conductivity. Unlike common ET-based conductive salts, K+ ions were intercalated into ET layers and coordinated with ET radicals. We found that the ET charges were sensitive to temperature, resulting in rich conductive phases at 75-300 K. In particular, the upturn in conductivity with a clear hysteresis loop was explained by the formation of partially oxidized states with charges close to 0.5+, which accounts for a metallic state. From the results of electronic structure calculations, the hole concentration increased to 125 K, which is consistent with a partially oxidized state upon cooling. The weak antiferromagnetic interactions accompanied by a dual magnetic relaxation process below 4 K are closely associated with the weak 4f-π interactions.
Collapse
Affiliation(s)
- Yongbing Shen
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Goulven Cosquer
- Research Group of Solid Material Chemistry, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 739-8526, Japan
| | - Haitao Zhang
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Brian K Breedlove
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Mengxing Cui
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan
| | - Masahiro Yamashita
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-Ku, Sendai 980-8578, Japan.,School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|