1
|
Basavarajappa A, Wang X, Miljanić OŠ. Cycloglycolurils: Hybrid Glycoluril-Cyclobenzil Macrocycles. Org Lett 2024. [PMID: 38626464 DOI: 10.1021/acs.orglett.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Two novel glycoluril macrocycles have been synthesized from cyclotetrabenzil and cyclotribenzoin precursors using solvent-free condensations with urea. The crystal structure of the cyclotetra(p-phenylene)glycoluril macrocycle shows a twisted ring conformation, while that of the cyclotri(m-phenylene)glycoluril hybrid exhibits a distinct tubular supramolecular packing. These structures establish a potentially broad new class of macrocycles with intriguing guest binding properties owing to their available N-H motifs.
Collapse
Affiliation(s)
| | - Xiqu Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Ognjen Š Miljanić
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City 71408, Vietnam
| |
Collapse
|
2
|
Huang J, Li Y, Zhang H, Yuan Z, Xiang S, Chen B, Zhang Z. A Microporous Hydrogen-Bonded Organic Framework Based on Hydrogen-Bonding Tetramers for Efficient Xe/Kr Separation. Angew Chem Int Ed Engl 2023; 62:e202315987. [PMID: 37961032 DOI: 10.1002/anie.202315987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/15/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) have been emerging as a new type of very promising microporous materials for gas separation and purification, but few HOFs structures constructed through hydrogen-bonding tetramers have been explored in this field. Herein, we report the first microporous HOF (termed as HOF-FJU-46) afforded by hydrogen-bonding tetramers with 4-fold interpenetrated diamond networks, which shows excellent chemical and thermal stability. What's more, activated HOF-FJU-46 exhibits the highest xenon (Xe) uptake of 2.51 mmol g-1 and xenon/krypton (Kr) selectivity of 19.9 at the ambient condition among the reported HOFs up to date. Dynamic breakthrough tests confirmed the excellent Xe/Kr separation of HOF-FJU-46a, showing high Kr productivity (110 mL g-1 ) and Xe uptake (1.29 mmol g-1 ), as well as good recyclability. The single crystal X-ray diffraction and the molecular simulations revealed that the abundant accessible aromatic and pyrazole rings in the pore channels of HOF-FJU-46a can provide the multiple strong C-H⋅⋅⋅Xe interactions with Xe atoms.
Collapse
Affiliation(s)
- Jiali Huang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
3
|
Chakraborty D, Chatterjee R, Mondal S, Das SK, Amoli V, Cho M, Bhaumik A. Construction of N-Rich Aminal-Linked Porous Organic Polymers for Outstanding Precombustion CO 2 Capture and H 2 Purification: A Combined Experimental and Theoretical Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48326-48335. [PMID: 37788172 DOI: 10.1021/acsami.3c11732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A large number of scientific investigations are needed for developing a sustainable solid sorbent material for precombustion CO2 capture in the integrated gasification combined cycle (IGCC) that is accountable for the industrial coproduction of hydrogen and electricity. Keeping in mind the industrially relevant conditions (high pressure, high temperature, and humidity) as well as good CO2/H2 selectivity, we explored a series of sorbent materials. An all-rounder player in this game is the porous organic polymers (POPs) that are thermally and chemically stable, easily scalable, and precisely tunable. In the present investigation, we successfully synthesized two nitrogen-rich POPs by extended Schiff-base condensation reactions. Among these two porous polymers, TBAL-POP-2 exhibits high CO2 uptake capacity at 30 bar pressure (57.2, 18.7, and 15.9 mmol g-1 at 273, 298, and 313 K temperatures, respectively). CO2/H2 selectivities of TBAL-POP-1 and 2 at 25 °C are 434.35 and 477.93, respectively. On the other hand, at 313 K the CO2/H2 selectivities of TBAL-POP-1 and 2 are 296.92 and 421.58, respectively. Another important feature to win the race in the search of good sorbents is CO2 capture capacity at room temperature, which is very high for TBAL-POP-2 (15.61 mmol g-1 at 298 K for 30 to 1 bar pressure swing). High BET surface area and good mesopore volume along with a large nitrogen content in the framework make TBAL-POP-2 an excellent sorbent material for precombustion CO2 capture and H2 purification.
Collapse
Affiliation(s)
- Debabrata Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Rupak Chatterjee
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Saptarsi Mondal
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sabuj Kanti Das
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Vipin Amoli
- Department of Sciences & Humanities, Rajiv Gandhi Institute of Petroleum Technology, Amethi, Uttar Pradesh 229304, India
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS), Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Li Y, Wang X, Zhang H, He L, Huang J, Wei W, Yuan Z, Xiong Z, Chen H, Xiang S, Chen B, Zhang Z. A Microporous Hydrogen Bonded Organic Framework for Highly Selective Separation of Carbon Dioxide over Acetylene. Angew Chem Int Ed Engl 2023; 62:e202311419. [PMID: 37563095 DOI: 10.1002/anie.202311419] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
The separation of acetylene (C2 H2 ) from carbon dioxide (CO2 ) is a very important but challenging task due to their similar molecular dimensions and physical properties. In terms of porous adsorbents for this separation, the CO2 -selective porous materials are superior to the C2 H2 -selective ones because of the cost- and energy-efficiency but have been rarely achieved. Herein we report our unexpected discovery of the first hydrogen bonded organic framework (HOF) constructed from a simple organic linker 2,4,6-tri(1H-pyrazol-4-yl)pyridine (PYTPZ) (termed as HOF-FJU-88) as the highly CO2 -selective porous material. HOF-FJU-88 is a two-dimensional HOFs with a pore pocket of about 7.6 Å. The activated HOF-FJU-88 takes up a high amount of CO2 (59.6 cm3 g-1 ) at ambient conditions with the record IAST selectivity of 1894. Its high performance for the CO2 /C2 H2 separation has been further confirmed through breakthrough experiments, in situ diffuse reflectance infrared spectroscopy and molecular simulations.
Collapse
Affiliation(s)
- Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Xue Wang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hao Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Lei He
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Jiali Huang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Wuji Wei
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhile Xiong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Huadan Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
5
|
Ashirov T, Puangsamlee T, Robles A, Fritz PW, Piech K, Miljanić OŠ, Coskun A. Eutectic Molten Salt Synthesis of Highly Microporous Macrocyclic Porous Organic Polymers for CO 2 Capture. Helv Chim Acta 2023; 106. [DOI: https:/doi.org/10.1002/hlca.202300072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 06/20/2023] [Indexed: 07/03/2024]
Abstract
AbstractThe development of porous materials is of great interest for the capture of CO2 from various emission sources, which is essential to mitigate its detrimental environmental impact. In this direction, porous organic polymers (POPs) have emerged as prime candidates owing to their structural tunability, physiochemical stability and high surface areas. In an effort to transfer an intrinsic property of a cyclotetrabenzoin‐derived macrocycle – its high CO2 affinity – into porous networks, herein we report the synthesis of three‐dimensional (3D) macrocycle‐based POPs through the polycondensation of an octaketone macrocycle with phenazine‐2,3,7,8‐tetraamine hydrochloride. This polycondensation was performed under ionothermal conditions, using a eutectic salt mixture in the temperature range of 200 to 300 °C. The resulting polymers, named 3D‐mmPOPs, showed reaction temperature‐dependent surface areas and gas uptake properties. 3D‐mmPOP‐250 synthesized at 250 °C exhibited a surface area of 752 m2 g−1 and high microporosity originating from the macrocyclic units, thus resulting in an excellent CO2 binding enthalpy of 40.6 kJ mol−1 and CO2 uptake capacity of 3.51 mmol g−1 at 273 K, 1.1 bar.
Collapse
Affiliation(s)
- Timur Ashirov
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Thamon Puangsamlee
- Department of Chemistry University of Houston 3585 Cullen Boulevard #112 Houston, TX 77204-5003 United States
| | - Alexandra Robles
- Department of Chemistry University of Houston 3585 Cullen Boulevard #112 Houston, TX 77204-5003 United States
| | - Patrick W. Fritz
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Krzysztof Piech
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| | - Ognjen Š. Miljanić
- Department of Chemistry University of Houston 3585 Cullen Boulevard #112 Houston, TX 77204-5003 United States
| | - Ali Coskun
- Department of Chemistry University of Fribourg, Chemin du Musée 9 CH-1700 Fribourg Switzerland
| |
Collapse
|
6
|
Tian J, Ding X, Wang Q, Yang Y, Ma S, Hou Y, Huang Z, Liu L. Spontaneous Formation of Nitrogen - Doped Hierarchical Porous Microcrystalline Nanosheets with Improved CO2 Capture at Low and Medium Pressures. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Fluorinated covalent triazine frameworks for effective CH4 separation and iodine vapor uptake. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Tominaga M, Hyodo T, Mizuno K, Kawahata M, Yamaguchi K. Water adsorption in porous organic crystals of adamantane-bearing macrocycles. CrystEngComm 2022. [DOI: 10.1039/d2ce01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adamantane-based macrocycles with pyrazine or tetrazine units afforded porous crystals with distinct surface properties of 1D pores, which captured multiple water molecules from the air or liquid water in a single-crystal-to-single-crystal fashion.
Collapse
Affiliation(s)
- Masahide Tominaga
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | - Kosuke Mizuno
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| | | | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
9
|
|
10
|
Kunde T, Pausch T, Schmidt BM. Porous Organic Compounds – Small Pores on the Rise. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Tom Kunde
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Tobias Pausch
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| | - Bernd M. Schmidt
- Institut für Organische Chemie und Makromolekulare Chemie Heinrich-Heine-Universität Düsseldorf Universitätsstraße 1 40225 Düsseldorf Germany
| |
Collapse
|