1
|
Grover A, Conger MA, Liptak MD. Stabilization of the Ferryl═Oxoheme Form of Staphylococcus aureus IsdG by Electron Transfer from a Second-Sphere Tryptophan. J Am Chem Soc 2025; 147:10598-10611. [PMID: 40091640 PMCID: PMC11980046 DOI: 10.1021/jacs.5c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The ferryl heme forms of Staphylococcus aureus IsdG and IsdI have novel UV/vis absorption spectra that are distinct from those of the three forms of ferryl heme typically found in biological systems: compound I, compound II, and compound ES. In this work, the ferryl heme form of IsdG was characterized because it is an analogue for the immediate product of enzyme-catalyzed heme hydroxylation. The ferryl heme form of IsdG generated following the addition of meta-chloroperoxybenzoic acid to the ferric heme form of IsdG has a half-life of 4.0 ± 0.2 min, which is more than 100 times longer than the half-life for the ferryl heme form of human heme oxygenase (hHO). Magnetic circular dichroism characterization of the IsdG species yielded spectral data and zero-field splitting parameters consistent with either a compound II- or compound ES-like ferryl heme. Further characterization of isotopically enriched samples with electron paramagnetic resonance spectroscopy revealed the presence of a protein-based organic radical, as would be expected for compound ES. Finally, multiscale quantum mechanics/molecular mechanics and time-dependent density functional theory strongly suggest that the ferryl heme form of IsdG has a ruffled porphyrin ligand and an oxo ligand. Thus, the ferryl heme form of IsdG is assigned to a compound ES-like species with a Trp67-based radical. Electron transfer from Trp67 to porphyrin will stabilize the immediate product of heme hydroxylation and provide a thermodynamic driving force for the reaction. Furthermore, the ability to transfer an electron between Trp67 and the substrate may explain the differential reactivity of meso-hydroxyheme in IsdG and hHO.
Collapse
Affiliation(s)
| | | | - Matthew D. Liptak
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, United States
| |
Collapse
|
2
|
Nagao S, Kuwano W, Tosha T, Yamashita K, Stanfield JK, Kasai C, Ariyasu S, Hirata K, Ueno G, Murakami H, Ago H, Yamamoto M, Shoji O, Sugimoto H, Kubo M. XFEL crystallography reveals catalytic cycle dynamics during non-native substrate oxidation by cytochrome P450BM3. Commun Chem 2025; 8:63. [PMID: 40075209 PMCID: PMC11903658 DOI: 10.1038/s42004-025-01440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025] Open
Abstract
Cytochrome P450s are haem-containing enzymes, catalysing the regio- and stereospecific oxidation of non-activated hydrocarbons. Among these, the bacterial P450BM3 is a promising biocatalyst due to its high enzymatic activity. Given the significant conformational flexibility of this enzyme, understanding protein-substrate interactions and associated structural dynamics are crucial for designing P450BM3-based biocatalysts. Herein, employing an X-ray free electron laser in combination with freeze-trap crystallography and spectroscopy techniques, we captured the intact structures of engineered P450BM3s in the initial stages of catalysis during styrene epoxidation, in the presence of a decoy molecule. We found that the iron reduction significantly altered the active-site orientation of styrene, driven by structural changes in surrounding helices and hydrogen-bonding networks. Oxygen binding to iron further stabilised its productive orientation, providing a molecular basis for the experimentally observed enzyme kinetics and enantioselectivities. This study reveals the substrate dynamics of a P450 enzyme, showcasing how changes in haem chemistry affect enzyme structure and substrate orientation.
Collapse
Affiliation(s)
- Satoshi Nagao
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
- Scattering and Imaging Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
| | - Wako Kuwano
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | | - Chie Kasai
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Shinya Ariyasu
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | | | - Go Ueno
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo, Japan
| | - Hideo Ago
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan
| | | | - Osami Shoji
- Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
- Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Center, Sayo-gun, Hyogo, Japan.
- Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo, Japan.
| | - Minoru Kubo
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo, Japan.
- Japan Science and Technology Agency, CREST, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
3
|
Zagrean-Tuza C, Padurean L, Lehene M, Branzanic AMV, Silaghi-Dumitrescu R. Globin ferryl species: what is the nature of the protonation event at pH < 5? J Biol Inorg Chem 2025; 30:61-70. [PMID: 39699649 PMCID: PMC11914356 DOI: 10.1007/s00775-024-02089-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
The ferryl state in globins has previously been reported to undergo a protonation event below pH 5, as assessed using pH jump experiments with stopped-flow UV-Vis spectroscopy. This protonation entails hypsochromic shifts in the α and β bands (~ 20 to 40 nm) and an ~ 10 nm reduction in the energy difference between these two bands. We now report that in Mb this event is also characterized by a hypsochromic shift in the Soret band (~ 5 nm). No similar shifts in Soret, α, and β bands are seen upon the denaturation of ferryl Mb with guanidine-suggesting that the spectroscopic changes in ferryl Mb at pH < 5 are not caused by changes in the solvent exposure or in hydrogen bonding around the ferryl unit. Under the same denaturing conditions (pH jump below pH 5, and/or guanidine), ferric-aqua and ferrous-oxy Mb show no spectral changes of the order seen in the ferryl pH jump experiments. Together, these observations suggest that the protonation event is localized on the iron-bound oxygen atom, as opposed to somewhere on a hydrogen-bonding partner. Time-dependent density functional theory (TD-DFT) calculations were not able to systematically predict the UV-Vis spectra of the heme to the level of detail needed to interpret the experimental findings in this study.
Collapse
Affiliation(s)
- Cezara Zagrean-Tuza
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania
| | - Lavinia Padurean
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania
| | - Maria Lehene
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania
| | - Adrian M V Branzanic
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania
| | - Radu Silaghi-Dumitrescu
- Department of Chemistry, Babes-Bolyai University, 11 Arany Janos Str., 400028, Cluj-Napoca, Romania.
| |
Collapse
|
4
|
Ansari M, Bhattacharjee S, Pantazis DA. Correlating Structure with Spectroscopy in Ascorbate Peroxidase Compound II. J Am Chem Soc 2024; 146:9640-9656. [PMID: 38530124 PMCID: PMC11009960 DOI: 10.1021/jacs.3c13169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
Structural and spectroscopic investigations of compound II in ascorbate peroxidase (APX) have yielded conflicting conclusions regarding the protonation state of the crucial Fe(IV) intermediate. Neutron diffraction and crystallographic data support an iron(IV)-hydroxo formulation, whereas Mössbauer, X-ray absorption (XAS), and nuclear resonance vibrational spectroscopy (NRVS) studies appear consistent with an iron(IV)-oxo species. Here we examine APX with spectroscopy-oriented QM/MM calculations and extensive exploration of the conformational space for both possible formulations of compound II. We establish that irrespective of variations in the orientation of a vicinal arginine residue and potential reorganization of proximal water molecules and hydrogen bonding, the Fe-O distances for the oxo and hydroxo forms consistently fall within distinct, narrow, and nonoverlapping ranges. The accuracy of geometric parameters is validated by coupled-cluster calculations with the domain-based local pair natural orbital approach, DLPNO-CCSD(T). QM/MM calculations of spectroscopic properties are conducted for all structural variants, encompassing Mössbauer, optical, X-ray absorption, and X-ray emission spectroscopies and NRVS. All spectroscopic observations can be assigned uniquely to an Fe(IV)═O form. A terminal hydroxy group cannot be reconciled with the spectroscopic data. Under no conditions can the Fe(IV)═O distance be sufficiently elongated to approach the crystallographically reported Fe-O distance. The latter is consistent only with a hydroxo species, either Fe(IV) or Fe(III). Our findings strongly support the Fe(IV)═O formulation of APX-II and highlight unresolved discrepancies in the nature of samples used across different experimental studies.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Sinjini Bhattacharjee
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für
Kohlenforschung, Kaiser-Wilhelm-Platz
1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
5
|
Takaba K, Maki-Yonekura S, Inoue I, Tono K, Hamaguchi T, Kawakami K, Naitow H, Ishikawa T, Yabashi M, Yonekura K. Structural resolution of a small organic molecule by serial X-ray free-electron laser and electron crystallography. Nat Chem 2023; 15:491-497. [PMID: 36941396 PMCID: PMC10719108 DOI: 10.1038/s41557-023-01162-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023]
Abstract
Structure analysis of small crystals is important in areas ranging from synthetic organic chemistry to pharmaceutical and material sciences, as many compounds do not yield large crystals. Here we present the detailed characterization of the structure of an organic molecule, rhodamine-6G, determined at a resolution of 0.82 Å by an X-ray free-electron laser (XFEL). Direct comparison of this structure with that obtained by electron crystallography from the same sample batch of microcrystals shows that both methods can accurately distinguish the position of some of the hydrogen atoms, depending on the type of chemical bond in which they are involved. Variations in the distances measured by XFEL and electron diffraction reflect the expected differences in X-ray and electron scatterings. The reliability for atomic coordinates was found to be better with XFEL, but the electron beam showed a higher sensitivity to charges.
Collapse
Affiliation(s)
| | | | | | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Tasuku Hamaguchi
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Aoba-ku, Japan
| | | | | | | | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, Japan
| | - Koji Yonekura
- RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, Sayo, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Aoba-ku, Japan.
| |
Collapse
|
6
|
Zhao FZ, Wang ZJ, Xiao QJ, Yu L, Sun B, Hou Q, Chen LL, Liang H, Wu H, Guo WH, He JH, Wang QS, Yin DC. Microfluidic rotating-target device capable of three-degrees-of-freedom motion for efficient in situ serial synchrotron crystallography. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:347-358. [PMID: 36891848 PMCID: PMC10000801 DOI: 10.1107/s1600577523000462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
There is an increasing demand for simple and efficient sample delivery technology to match the rapid development of serial crystallography and its wide application in analyzing the structural dynamics of biological macromolecules. Here, a microfluidic rotating-target device is presented, capable of three-degrees-of-freedom motion, including two rotational degrees of freedom and one translational degree of freedom, for sample delivery. Lysozyme crystals were used as a test model with this device to collect serial synchrotron crystallography data and the device was found to be convenient and useful. This device enables in situ diffraction from crystals in a microfluidic channel without the need for crystal harvesting. The circular motion ensures that the delivery speed can be adjusted over a wide range, showing its good compatibility with different light sources. Moreover, the three-degrees-of-freedom motion guarantees the full utilization of crystals. Hence, sample consumption is greatly reduced, and only 0.1 mg of protein is consumed in collecting a complete dataset.
Collapse
Affiliation(s)
- Feng-Zhu Zhao
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
- School of NCO, Army Medical University, Shijiazhuang 050081, People’s Republic of China
| | - Zhi-Jun Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Qing-Jie Xiao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Li Yu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Qian Hou
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Liang-Liang Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Huan Liang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Hai Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Wei-Hong Guo
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Jian-Hua He
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Qi-Sheng Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201800, People’s Republic of China
| | - Da-Chuan Yin
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| |
Collapse
|
7
|
Worrall JAR, Hough MA. Serial femtosecond crystallography approaches to understanding catalysis in iron enzymes. Curr Opin Struct Biol 2022; 77:102486. [PMID: 36274419 DOI: 10.1016/j.sbi.2022.102486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 12/14/2022]
Abstract
Enzymes with iron-containing active sites play crucial roles in catalysing a myriad of oxidative reactions essential to aerobic life. Defining the three-dimensional structures of iron enzymes in resting, oxy-bound intermediate and substrate-bound states is particularly challenging, not least because of the extreme susceptibility of the Fe(III) and Fe(IV) redox states to radiation-induced chemistry caused by intense X-ray or electron beams. The availability of novel sources such as X-ray free electron lasers has enabled structures that are effectively free of the effects of radiation-induced chemistry and allows time-resolved structures to be determined. Important to both applications is the ability to obtain in crystallo spectroscopic data to identify the redox state of the iron in any particular structure or timepoint.
Collapse
Affiliation(s)
- Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK; Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, UK.
| |
Collapse
|
8
|
Lučić M, Wilson MT, Tosha T, Sugimoto H, Shilova A, Axford D, Owen RL, Hough MA, Worrall JAR. Serial Femtosecond Crystallography Reveals the Role of Water in the One- or Two-Electron Redox Chemistry of Compound I in the Catalytic Cycle of the B-Type Dye-Decolorizing Peroxidase DtpB. ACS Catal 2022; 12:13349-13359. [PMID: 36366763 PMCID: PMC9638988 DOI: 10.1021/acscatal.2c03754] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/05/2022] [Indexed: 11/30/2022]
Abstract
![]()
Controlling the reactivity
of high-valent Fe(IV)–O
catalytic
intermediates, Compounds I and II, generated in heme enzymes upon
reaction with dioxygen or hydrogen peroxide, is important for function.
It has been hypothesized that the presence (wet) or absence (dry)
of distal heme pocket water molecules can influence whether Compound
I undergoes sequential one-electron additions or a concerted two-electron
reduction. To test this hypothesis, we investigate the role of water
in the heme distal pocket of a dye-decolorizing peroxidase utilizing
a combination of serial femtosecond crystallography and rapid kinetic
studies. In a dry distal heme site, Compound I reduction proceeds
through a mechanism in which Compound II concentration is low. This
reaction shows a strong deuterium isotope effect, indicating that
reduction is coupled to proton uptake. The resulting protonated Compound
II (Fe(IV)–OH) rapidly reduces to the ferric state, giving
the appearance of a two-electron transfer process. In a wet site,
reduction of Compound I is faster, has no deuterium effect, and yields
highly populated Compound II, which is subsequently reduced to the
ferric form. This work provides a definitive experimental test of
the hypothesis advanced in the literature that relates sequential
or concerted electron transfer to Compound I in wet or dry distal
heme sites.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life Sciences, University of Essex, Wivenhoe Park,
Essex, ColchesterCO4 3SQ, U.K
| | - Michael T. Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park,
Essex, ColchesterCO4 3SQ, U.K
| | - Takehiko Tosha
- RIKEN, Spring-8 Center, 1-1-1 Kouto, Sayo, Hyogo679-5148Japan
| | | | - Anastasya Shilova
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, DidcotOX11 0DE, U.K
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, DidcotOX11 0DE, U.K
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, DidcotOX11 0DE, U.K
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park,
Essex, ColchesterCO4 3SQ, U.K
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, DidcotOX11 0DE, U.K
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park,
Essex, ColchesterCO4 3SQ, U.K
| |
Collapse
|
9
|
Moreno-Chicano T, Carey LM, Axford D, Beale JH, Doak RB, Duyvesteyn HME, Ebrahim A, Henning RW, Monteiro DCF, Myles DA, Owada S, Sherrell DA, Straw ML, Šrajer V, Sugimoto H, Tono K, Tosha T, Tews I, Trebbin M, Strange RW, Weiss KL, Worrall JAR, Meilleur F, Owen RL, Ghiladi RA, Hough MA. Complementarity of neutron, XFEL and synchrotron crystallography for defining the structures of metalloenzymes at room temperature. IUCRJ 2022; 9:610-624. [PMID: 36071813 PMCID: PMC9438502 DOI: 10.1107/s2052252522006418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Room-temperature macromolecular crystallography allows protein structures to be determined under close-to-physiological conditions, permits dynamic freedom in protein motions and enables time-resolved studies. In the case of metalloenzymes that are highly sensitive to radiation damage, such room-temperature experiments can present challenges, including increased rates of X-ray reduction of metal centres and site-specific radiation-damage artefacts, as well as in devising appropriate sample-delivery and data-collection methods. It can also be problematic to compare structures measured using different crystal sizes and light sources. In this study, structures of a multifunctional globin, dehaloperoxidase B (DHP-B), obtained using several methods of room-temperature crystallographic structure determination are described and compared. Here, data were measured from large single crystals and multiple microcrystals using neutrons, X-ray free-electron laser pulses, monochromatic synchrotron radiation and polychromatic (Laue) radiation light sources. These approaches span a range of 18 orders of magnitude in measurement time per diffraction pattern and four orders of magnitude in crystal volume. The first room-temperature neutron structures of DHP-B are also presented, allowing the explicit identification of the hydrogen positions. The neutron data proved to be complementary to the serial femtosecond crystallography data, with both methods providing structures free of the effects of X-ray radiation damage when compared with standard cryo-crystallography. Comparison of these room-temperature methods demonstrated the large differences in sample requirements, data-collection time and the potential for radiation damage between them. With regard to the structure and function of DHP-B, despite the results being partly limited by differences in the underlying structures, new information was gained on the protonation states of active-site residues which may guide future studies of DHP-B.
Collapse
Affiliation(s)
- Tadeo Moreno-Chicano
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Leiah M. Carey
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - John H. Beale
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - R. Bruce Doak
- Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Helen M. E. Duyvesteyn
- Division of Structural Biology (STRUBI), University of Oxford, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ali Ebrahim
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Robert W. Henning
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Diana C. F. Monteiro
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
| | - Dean A. Myles
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Darren A. Sherrell
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Megan L. Straw
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Vukica Šrajer
- BioCARS, University of Chicago, Building 434B, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | | | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Takehiko Tosha
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5198, Japan
| | - Ivo Tews
- Biological Sciences, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Martin Trebbin
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203-1102, USA
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard W. Strange
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Kevin L. Weiss
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Jonathan A. R. Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Flora Meilleur
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
- Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Robin L. Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA
| | - Michael A. Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom
| |
Collapse
|
10
|
Barends TR, Stauch B, Cherezov V, Schlichting I. Serial femtosecond crystallography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:59. [PMID: 36643971 PMCID: PMC9833121 DOI: 10.1038/s43586-022-00141-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.
Collapse
Affiliation(s)
- Thomas R.M. Barends
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Benjamin Stauch
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Vadim Cherezov
- Department of Chemistry, The Bridge Institute, University of Southern California, Los Angeles, CA, USA
| | - Ilme Schlichting
- Department for Biological Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany,
| |
Collapse
|
11
|
Tosha T. Visualization of Enzymatic Reaction by Time-resolved Structural Analysis with Photosensitive Caged Substrate. YAKUGAKU ZASSHI 2022; 142:487-494. [DOI: 10.1248/yakushi.21-00203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Yuasa HJ. Inhibitory effect of ascorbate on tryptophan 2,3-dioxygenase. J Biochem 2022; 171:653-661. [PMID: 35244712 DOI: 10.1093/jb/mvac024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) catalyze the same reaction, oxidative cleavage of L-tryptophan (L-Trp) to N-formyl-kynurenine. In both enzymes, the ferric (FeIII) form is inactive, and ascorbate (Asc) is frequently used as a reductant in in vitro assays to activate the enzymes by reducing the heme iron. Recently, it has been reported that Asc activates IDO2 by acting as a reductant, however, it is also a competitive inhibitor of the enzyme. Here, the effect of Asc on human TDO (hTDO) is investigated. Similar to its interaction with IDO2, Asc acts as both a reductant and a competitive inhibitor of hTDO in the absence of catalase, and its inhibitory effect was enhanced by the addition of H2O2. Interestingly, however, no inhibitory effect of Asc was observed in the presence of catalase. TDO is known to be activated by H2O2 and a ferryl-oxo (FeIV=O) intermediate (Compound II) is generated during the activation process. The observation that Asc acts as a competitive inhibitor of hTDO only in the absence of catalase can be explained by assuming that the target of Asc is Compound II. Asc seems to compete with L-Trp in an unusual manner.
Collapse
Affiliation(s)
- Hajime Julie Yuasa
- Laboratory of Biochemistry, Department of Chemistry and Biotechnology, Faculty of Science and Technology, National University Corporation Kochi University, Kochi 780-8520, Japan
| |
Collapse
|
13
|
Wilson MA. Mapping Enzyme Landscapes by Time-Resolved Crystallography with Synchrotron and X-Ray Free Electron Laser Light. Annu Rev Biophys 2021; 51:79-98. [PMID: 34932909 PMCID: PMC9132212 DOI: 10.1146/annurev-biophys-100421-110959] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Directly observing enzyme catalysis in real time at the molecular level has been a long-standing goal of structural enzymology. Time-resolved serial crystallography methods at synchrotron and X-ray free electron laser (XFEL) sources have enabled researchers to follow enzyme catalysis and other nonequilibrium events at ambient conditions with unprecedented time resolution. X-ray crystallography provides detailed information about conformational heterogeneity and protein dynamics, which is enhanced when time-resolved approaches are used. This review outlines the ways in which information about the underlying energy landscape of a protein can be extracted from X-ray crystallographic data, with an emphasis on new developments in XFEL and synchrotron time-resolved crystallography. The emerging view of enzyme catalysis afforded by these techniques can be interpreted as enzymes moving on a time-dependent energy landscape. Some consequences of this view are discussed, including the proposal that irreversible enzymes or enzymes that use covalent catalytic mechanisms may commonly exhibit catalysis-activated motions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mark A Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, USA;
| |
Collapse
|
14
|
Schröder GC, Meilleur F. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr D Struct Biol 2021; 77:1251-1269. [PMID: 34605429 PMCID: PMC8489226 DOI: 10.1107/s2059798321009025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Metalloproteins catalyze a range of reactions, with enhanced chemical functionality due to their metal cofactor. The reaction mechanisms of metalloproteins have been experimentally characterized by spectroscopy, macromolecular crystallography and cryo-electron microscopy. An important caveat in structural studies of metalloproteins remains the artefacts that can be introduced by radiation damage. Photoreduction, radiolysis and ionization deriving from the electromagnetic beam used to probe the structure complicate structural and mechanistic interpretation. Neutron protein diffraction remains the only structural probe that leaves protein samples devoid of radiation damage, even when data are collected at room temperature. Additionally, neutron protein crystallography provides information on the positions of light atoms such as hydrogen and deuterium, allowing the characterization of protonation states and hydrogen-bonding networks. Neutron protein crystallography has further been used in conjunction with experimental and computational techniques to gain insight into the structures and reaction mechanisms of several transition-state metal oxidoreductases with iron, copper and manganese cofactors. Here, the contribution of neutron protein crystallography towards elucidating the reaction mechanism of metalloproteins is reviewed.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
15
|
Lee JL, Ross DL, Barman SK, Ziller JW, Borovik AS. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg Chem 2021; 60:13759-13783. [PMID: 34491738 DOI: 10.1021/acs.inorgchem.1c01754] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functionalization of C-H bonds is one of the most challenging transformations in synthetic chemistry. In biology, these processes are well-known and are achieved with a variety of metalloenzymes, many of which contain a single metal center within their active sites. The most well studied are those with Fe centers, and the emerging experimental data show that high-valent iron oxido species are the intermediates responsible for cleaving the C-H bond. This Forum Article describes the state of this field with an emphasis on nonheme Fe enzymes and current experimental results that provide insights into the properties that make these species capable of C-H bond cleavage. These parameters are also briefly considered in regard to manganese oxido complexes and Cu-containing metalloenzymes. Synthetic iron oxido complexes are discussed to highlight their utility as spectroscopic and mechanistic probes and reagents for C-H bond functionalization. Avenues for future research are also examined.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Dolores L Ross
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Suman K Barman
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
16
|
Lučić M, Wilson MT, Svistunenko DA, Owen RL, Hough MA, Worrall JAR. Aspartate or arginine? Validated redox state X-ray structures elucidate mechanistic subtleties of Fe IV = O formation in bacterial dye-decolorizing peroxidases. J Biol Inorg Chem 2021; 26:743-761. [PMID: 34477969 PMCID: PMC8463360 DOI: 10.1007/s00775-021-01896-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
Structure determination of proteins and enzymes by X-ray crystallography remains the most widely used approach to complement functional and mechanistic studies. Capturing the structures of intact redox states in metalloenzymes is critical for assigning the chemistry carried out by the metal in the catalytic cycle. Unfortunately, X-rays interact with protein crystals to generate solvated photoelectrons that can reduce redox active metals and hence change the coordination geometry and the coupled protein structure. Approaches to mitigate such site-specific radiation damage continue to be developed, but nevertheless application of such approaches to metalloenzymes in combination with mechanistic studies are often overlooked. In this review, we summarize our recent structural and kinetic studies on a set of three heme peroxidases found in the bacterium Streptomyces lividans that each belong to the dye decolourizing peroxidase (DyP) superfamily. Kinetically, each of these DyPs has a distinct reactivity with hydrogen peroxide. Through a combination of low dose synchrotron X-ray crystallography and zero dose serial femtosecond X-ray crystallography using an X-ray free electron laser (XFEL), high-resolution structures with unambiguous redox state assignment of the ferric and ferryl (FeIV = O) heme species have been obtained. Experiments using stopped-flow kinetics, solvent-isotope exchange and site-directed mutagenesis with this set of redox state validated DyP structures have provided the first comprehensive kinetic and structural framework for how DyPs can modulate their distal heme pocket Asp/Arg dyad to use either the Asp or the Arg to facilitate proton transfer and rate enhancement of peroxide heterolysis.
Collapse
Affiliation(s)
- Marina Lučić
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Michael T Wilson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Dimitri A Svistunenko
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, Oxfordshire, UK
| | - Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Jonathan A R Worrall
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
17
|
Garman EF, Weik M. Radiation damage to biological samples: still a pertinent issue. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1278-1283. [PMID: 34475277 PMCID: PMC8415327 DOI: 10.1107/s1600577521008845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An understanding of radiation damage effects suffered by biological samples during structural analysis using both X-rays and electrons is pivotal to obtain reliable molecular models of imaged molecules. This special issue on radiation damage contains six papers reporting analyses of damage from a range of biophysical imaging techniques. For X-ray diffraction, an in-depth study of multi-crystal small-wedge data collection single-wavelength anomalous dispersion phasing protocols is presented, concluding that an absorbed dose of 5 MGy per crystal was optimal to allow reliable phasing. For small-angle X-ray scattering, experiments are reported that evaluate the efficacy of three radical scavengers using a protein designed to give a clear signature of damage in the form of a large conformational change upon the breakage of a disulfide bond. The use of X-rays to induce OH radicals from the radiolysis of water for X-ray footprinting are covered in two papers. In the first, new developments and the data collection pipeline at the NSLS-II high-throughput dedicated synchrotron beamline are described, and, in the second, the X-ray induced changes in three different proteins under aerobic and low-oxygen conditions are investigated and correlated with the absorbed dose. Studies in XFEL science are represented by a report on simulations of ultrafast dynamics in protic ionic liquids, and, lastly, a broad coverage of possible methods for dose efficiency improvement in modalities using electrons is presented. These papers, as well as a brief synopsis of some other relevant literature published since the last Journal of Synchrotron Radiation Special Issue on Radiation Damage in 2019, are summarized below.
Collapse
Affiliation(s)
- Elspeth F. Garman
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, F-38044 Grenoble, France
| |
Collapse
|
18
|
Hough MA, Owen RL. Serial synchrotron and XFEL crystallography for studies of metalloprotein catalysis. Curr Opin Struct Biol 2021; 71:232-238. [PMID: 34455163 PMCID: PMC8667872 DOI: 10.1016/j.sbi.2021.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 11/24/2022]
Abstract
An estimated half of all proteins contain a metal, with these being essential for a tremendous variety of biological functions. X-ray crystallography is the major method for obtaining structures at high resolution of these metalloproteins, but there are considerable challenges to obtain intact structures due to the effects of radiation damage. Serial crystallography offers the prospect of determining low-dose synchrotron or effectively damage free XFEL structures at room temperature and enables time-resolved or dose-resolved approaches. Complementary spectroscopic data can validate redox and or ligand states within metalloprotein crystals. In this opinion, we discuss developments in the application of serial crystallographic approaches to metalloproteins and comment on future directions.
Collapse
Affiliation(s)
- Michael A Hough
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
19
|
Kwon H, Basran J, Pathak C, Hussain M, Freeman SL, Fielding AJ, Bailey AJ, Stefanou N, Sparkes HA, Tosha T, Yamashita K, Hirata K, Murakami H, Ueno G, Ago H, Tono K, Yamamoto M, Sawai H, Shiro Y, Sugimoto H, Raven EL, Moody PCE. XFEL Crystal Structures of Peroxidase Compound II. Angew Chem Int Ed Engl 2021; 60:14578-14585. [PMID: 33826799 PMCID: PMC8251747 DOI: 10.1002/anie.202103010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 01/07/2023]
Abstract
Oxygen activation in all heme enzymes requires the formation of high oxidation states of iron, usually referred to as ferryl heme. There are two known intermediates: Compound I and Compound II. The nature of the ferryl heme-and whether it is an FeIV =O or FeIV -OH species-is important for controlling reactivity across groups of heme enzymes. The most recent evidence for Compound I indicates that the ferryl heme is an unprotonated FeIV =O species. For Compound II, the nature of the ferryl heme is not unambiguously established. Here, we report 1.06 Å and 1.50 Å crystal structures for Compound II intermediates in cytochrome c peroxidase (CcP) and ascorbate peroxidase (APX), collected using the X-ray free electron laser at SACLA. The structures reveal differences between the two peroxidases. The iron-oxygen bond length in CcP (1.76 Å) is notably shorter than in APX (1.87 Å). The results indicate that the ferryl species is finely tuned across Compound I and Compound II species in closely related peroxidase enzymes. We propose that this fine-tuning is linked to the functional need for proton delivery to the heme.
Collapse
Affiliation(s)
- Hanna Kwon
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Jaswir Basran
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Chinar Pathak
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Mahdi Hussain
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| | - Samuel L. Freeman
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Alistair J. Fielding
- Centre for Natural Products Discovery, Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityJames Parsons Building, Byrom StreetLiverpoolL3 3AFUK
| | - Anna J. Bailey
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Natalia Stefanou
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Hazel A. Sparkes
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | | | - Keitaro Yamashita
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
- Present address: MRC Laboratory of Molecular BiologyFrancis Crick Avenue, Cambridge Biomedical CampusCambridgeCB1 0QHUK
| | - Kunio Hirata
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hironori Murakami
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | - Go Ueno
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Hideo Ago
- RIKEN SPring-8 Center1-1-1 KoutoSayoHyogo679-5148Japan
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute1-1-1 KoutoSayoHyogo679-5198Japan
| | | | - Hitomi Sawai
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | - Yoshitsugu Shiro
- Graduate School of Life ScienceUniversity of Hyogo3-2-1 Kouto, Kamigori-choAko-gunHyogo678-1297Japan
| | | | - Emma L. Raven
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Peter C. E. Moody
- Department of Molecular and Cell Biology and Leicester Institute of Structural and Chemical BiologyUniversity of LeicesterLancaster RoadLeicesterLE1 7RHUK
| |
Collapse
|