1
|
Li H, Zhou Y, Chen C, Li Y, Liu Z, Wu M, Hong M. A Stable Layered Microporous MOF Assembled with Y-O Chains for Separation of MTO Products. Inorg Chem 2024. [PMID: 39463097 DOI: 10.1021/acs.inorgchem.4c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Benefiting from highly tunable pore environments, some metal-organic frameworks (MOFs) have recently shown promising prospects in the separation of methanol-to-olefin (MTO) products (mainly C3H6 and C2H4). However, the "trade-off" between gas storage capacity and selectivity always results in inefficient separation. In addition, poor stability of MOFs also limits practical separation applications. Herein, we have successfully assembled a layered Y-MOF (FJI-W9) with bent diisophthalate ligands (H4L), Y-O chains, and 2-fluorobenzoic acids. As expected, FJI-W9 not only exhibits good chemical stability but also shows significant potential for C3H6/C2H4 separation. For FJI-W9, the C3H6 uptake at 298 K and 10 kPa is 63 cm3/g, and the IAST selectivity of FJI-W9 for C3H6/C2H4 (V/V = 50/50) is calculated to be 20.5. To the best of our knowledge, both C3H6 uptake and selectivity of FJI-W9 surpass most porous materials. GCMC simulation indicates that the special supramolecular binding sites in FJI-W9 have much stronger interactions with C3H6 than C2H4 molecules. More importantly, practical breakthrough experiments demonstrate that FJI-W9 can effectively separate C3H6/C2H4 (50/50) mixtures, thus obtaining high-purity C2H4 and C3H6, respectively.
Collapse
Affiliation(s)
- Hengbo Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yunzhe Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yashuang Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maochun Hong
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
2
|
Han CQ, Wang L, Si J, Zhou K, Liu XY. Reticular Chemistry Directed "One-Pot" Strategy to in situ Construct Organic Linkers and Zirconium-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402263. [PMID: 38716785 DOI: 10.1002/smll.202402263] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Indexed: 10/04/2024]
Abstract
Zirconium-based metal-organic frameworks (Zr-MOFs) have emerged as one of the most studied MOFs due to the unlimited numbers of organic linkers and the varying Zr-oxo clusters. However, the synthesis of carboxylic acids, especially multitopic carboxylic acids, is always a great challenge for the discovery of new Zr-MOFs. As an alternative approach, the in situ "one-pot" strategy can address this limitation, where the generation of organic linkers from the corresponding precursors and the sequential construction of MOFs are integrated into one solvothermal condition. Herein, inspired by benzimidazole-contained compounds synthesized via reaction of aldehyde and o-phenylenediamine, tri-, tetra-, penta- and hexa-topic carboxylic acids and a series of corresponding Zr-MOFs can be prepared via the in situ "one-pot" method under the same solvothermal conditions. This strategy can be utilized not only to prepare reported Zr-MOFs constructed using benzimidazole-contained linkers, but also to rationally design, construct and realize functionalities of zirconium-pentacarboxylate frameworks guided by reticular chemistry. More importantly, in situ "one-pot" method can facilitate the discovery of new Zr-MOFs, such as zirconium-hexacarboxylate frameworks. The present study demonstrates the promising potential of benzimidazole-inspired in situ "one-pot" approach in the crystal engineering of structure- and property-specific Zr-MOFs, especially with the guidance of reticular chemistry.
Collapse
Affiliation(s)
- Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Yang N, Li HX, Ritter L, Du GT, Guo XA, Space B, Xue DX. A Propeller-Like Ligand-Directed Construction of a Tetranuclear Cerium-Organic Framework for Single-Step Ethylene Purification from Ternary C 2 Mixtures. Inorg Chem 2024; 63:14755-14760. [PMID: 39042421 DOI: 10.1021/acs.inorgchem.4c02473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The efficient single-step purification of ethylene from ternary C2 mixtures containing ethane and acetylene is challenging and demanding. Herein, we introduce a novel cerium-based metal-organic framework (MOF) of Ce-NTB-rtk synthesized via a ligand-conformer strategy. The Ce-NTB-rtk features a rare tetranuclear cerium cluster and 2D kgd layers pillared by a 3D rtl framework concomitant with an extraordinary (3,3,12)-c network. The compound encompasses microporous cavities replete with a nonpolar microenvironment. Gas sorption and breakthrough experiments demonstrate its superior affinity for C2H6 and C2H2 over C2H4, enabling effective single-step ethylene purification. Computational simulations reveal that preferential adsorptions are facilitated by different interaction strengths of C-H···O hydrogen bonds. The performance of Ce-NTB-rtk in separation selectivity and regeneration capacity makes it a promising candidate for sustainable and cost-effective ethylene purification, showcasing the potential of MOFs in advanced gas separation applications.
Collapse
Affiliation(s)
- Ning Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Hong-Xin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
- Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Logan Ritter
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Guo-Tong Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xin-Ai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Brian Space
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
4
|
Fang H, Liu XY, Ding HJ, Mulcair M, Space B, Huang H, Li XW, Zhang SM, Yu MH, Chang Z, Bu XH. Stimulus-Induced Dynamic Behavior Regulation of Flexible Crystals through the Tuning of Module Rigidity. J Am Chem Soc 2024; 146:14357-14367. [PMID: 38726589 DOI: 10.1021/jacs.4c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Introducing dynamic behavior into periodic frameworks has borne fruit in the form of flexible porous crystals. The detailed molecular design of frameworks in order to control their collective dynamics is of particular interest, for example, to achieve stimulus-induced behavior. Herein, by varying the degree of rigidity of ditopic pillar linkers, two isostructural flexible metal-organic frameworks (MOFs) with common rigid supermolecular building bilayers were constructed. The subtle substitution of single (in bibenzyl-4,4'-dicarboxylic acid; H2BBDC) with double (in 4,4'-stilbenedicarboxylic acid; H2SDC) C-C bonds in pillared linkers led to markedly different flexible behavior of these two MOFs. Upon the removal of guest molecules, both frameworks clearly show reversible single-crystal-to-single-crystal transformations involving the cis-trans conformation change and a resulting swing of the corresponding pillar linkers, which gives rise to Flex-Cd-MOF-1a and Flex-Cd-MOF-2a, respectively. Strikingly, a more favorable gas-induced dynamic behavior in Flex-Cd-MOF-2a was verified in detail by stepwise C3H6/C3H8 sorption isotherms and the corresponding in situ powder X-ray diffraction experiments. These insights are strongly supported by molecular modeling studies on the sorption mechanism that explores the sorption landscape. Furthermore, a consistency between the macroscopic elasticity and microscopic flexibility of Flex-Cd-MOF-2 was observed. This work fuels a growing interest in developing MOFs with desired chemomechanical functions and presents detailed insights into the origins of flexible MOFs.
Collapse
Affiliation(s)
- Han Fang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Xiao-Yi Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hao-Jing Ding
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meagan Mulcair
- Department of Chemistry, North Carolina State University, 2700 Stinson Drive, Cox Hall 506, Raleigh, North Carolina 27607, United States
| | - Brian Space
- Department of Chemistry, North Carolina State University, 2700 Stinson Drive, Cox Hall 506, Raleigh, North Carolina 27607, United States
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Xing-Wang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Shu-Ming Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Ze Chang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Liu H, Wang S, Huang M, Bian Q, Zhang Y, Yang K, Li B, Yao W, Zhou Y, Xie S, Tang BZ, Zeng Z. A Photoelectromagnetic 3D Metal-Organic Framework from Flexible Tetraarylethylene-Backboned Ligand and Dynamic Copper-Based Coordination Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306956. [PMID: 38100256 DOI: 10.1002/smll.202306956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/21/2023] [Indexed: 12/17/2023]
Abstract
Porous frameworks that display dynamic responsiveness are of interest in the fields of smart materials, information technology, etc. In this work, a novel copper-based dynamic metal-organic framework [Cu3TTBPE6(H2O)2] (H4TTBPE = 1,1,2,2-tetrakis(4″-(1H-tetrazol-5-yl)-[1,1″-biphenyl]-4-yl)ethane), denoted as HNU-1, is reported which exhibits modulable photoelectromagnetic properties. Due to the synergetic effect of flexible tetraarylethylene-backboned ligands and diverse copper-tetrazole coordination chemistries, a complex 3D tunneling network is established in this MOF by the layer-by-layer staggered assembly of triplicate monolayers, showing a porosity of 59%. These features further make it possible to achieve dynamic transitions, in which the aggregate-state MOF can be transferred to different structural states by changing the chemical environment or upon heating while displaying sensitive responsiveness in terms of light absorption, photoluminescence, and magnetic properties.
Collapse
Affiliation(s)
- Haohao Liu
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Shuodong Wang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengfan Huang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qilong Bian
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Zhang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kun Yang
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Li
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Wenhuan Yao
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Yizhao Zhou
- Department of Orthopedics, Hunan Provincial People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, 410005, China
| | - Sheng Xie
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
- AIE Institute, Guangzhou Development District, Huangpu, 510530, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan, University, Nanshan District, Shenzhen, 518000, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
6
|
Liang ZL, Zhang ZH, Jiao YE, Xu H, Hu HS, Zhao B. Highly Stable 72-Nuclearity Nanocages for Efficient Synthesis of Aryl Nitriles via Ni/Cu Synergistic Catalysis. J Am Chem Soc 2024; 146:10776-10784. [PMID: 38578219 DOI: 10.1021/jacs.4c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Seeking noble-metal-free catalysts for efficient synthesis of aryl nitriles under mild conditions poses a significant challenge due to the use of hypertoxic cyanides or high-pressure/temperature NH3/O2 in conventional synthesis processes. Herein, we developed a novel framework 1 assembled by [Ni72] nanocages with excellent solvents/pH stability. To investigate the structure-activity relationship of catalytic performance, several isostructural MOFs with different molar ratios of Ni/Cu by doping Cu2+ into framework 1 (Ni0.59Cu0.41 (2), Ni0.81Cu0.19 (3), Ni0.88Cu0.12 (4), and Ni0.92Cu0.08 (5)) were prepared. Catalytic studies revealed that catalyst 3 exhibited remarkable performance in the synthesis of aryl nitriles, utilizing a formamide alternative to hypertoxic NaCN/KCN. Notably, catalyst 3 achieved an excellent TOF value of 9.8 h-1. Furthermore, catalyst 3 demonstrated its applicability in a gram-scale experiment and maintained its catalytic performance even after six recycling cycles, owing to its high stability resulting from significant electrostatic and orbital interactions between the Ni center and ligands as well as a large SOMO-LUMO energy gap supported by DFT calculations. Control experiments and DFT calculations further revealed that the excellent catalytic performance of catalyst 3 originated from the synergistic effect of Ni/Cu. Importantly, this work not only provides a highly feasible method to construct highly stable MOFs containing multinuclear nanocages with exceptional catalytic performance but also represents the first example of a heterogeneous catalyst for the synthesis of aryl nitriles using formamide as the cyanide source.
Collapse
Affiliation(s)
- Ze-Long Liang
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zi-He Zhang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Yue-E Jiao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Han-Shi Hu
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education), and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Guo F, Ma H, Yang BB, Wang Z, Meng XG, Bu JH, Zhang C. Rigidity with Flexibility: Porous Triptycene Networks for Enhancing Methane Storage. Polymers (Basel) 2024; 16:156. [PMID: 38201822 PMCID: PMC10780442 DOI: 10.3390/polym16010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
In the pursuit of advancing materials for methane storage, a critical consideration arises given the prominence of natural gas (NG) as a clean transportation fuel, which holds substantial potential for alleviating the strain on both energy resources and the environment in the forthcoming decade. In this context, a novel approach is undertaken, employing the rigid triptycene as a foundational building block. This strategy is coupled with the incorporation of dichloromethane and 1,3-dichloropropane, serving as rigid and flexible linkers, respectively. This combination not only enables cost-effective fabrication but also expedites the creation of two distinct triptycene-based hypercrosslinked polymers (HCPs), identified as PTN-70 and PTN-71. Surprisingly, despite PTN-71 manifesting an inferior Brunauer-Emmett-Teller (BET) surface area when compared to the rigidly linked PTN-70, it showcases remarkably enhanced methane adsorption capabilities, particularly under high-pressure conditions. At a temperature of 275 K and a pressure of 95 bars, PTN-71 demonstrates an impressive methane adsorption capacity of 329 cm3 g-1. This exceptional performance is attributed to the unique flexible network structure of PTN-71, which exhibits a pronounced swelling response when subjected to elevated pressure conditions, thus elucidating its superior methane adsorption characteristics. The development of these advanced materials not only signifies a significant stride in the realm of methane storage but also underscores the importance of tailoring the structural attributes of hypercrosslinked polymers for optimized gas adsorption performance.
Collapse
Affiliation(s)
- Fei Guo
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan 430200, China;
| | - Hui Ma
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| | - Bin-Bin Yang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| | - Zhen Wang
- National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan 430200, China;
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| | - Xiang-Gao Meng
- School of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Jian-Hua Bu
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China;
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China; (H.M.); (B.-B.Y.); (C.Z.)
| |
Collapse
|
8
|
Zhang YF, Zhang ZH, Fang H, Guo XA, Ma YN, Zhang YZ, Xue DX. Highly Stable Amide-Functionalized Zirconium-Organic Frameworks: Synthesis, Structure, and Methane Storage Capacity. Inorg Chem 2023. [PMID: 38008909 DOI: 10.1021/acs.inorgchem.3c03712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
With the development of crystalline porous materials toward methane storage, the stability issue of metal-organic framework (MOF) materials has caused great concern despite high working capacity. Considering the high stability of zirconium-based MOFs and effective functions of amide groups toward gas adsorption, herein, a series of UiO-66 type of Zr-MOFs, namely, Zr-fcu-H/F/CH3/OH, were successfully designed and synthesized by virtue of amide-functionalized dicarboxylate ligands bearing distinct side groups (i.e., -H, -F, -CH3, and -OH) and ZrCl4 in the presence of trifluoroacetic acid as the modulator. Single-crystal X-ray diffraction and topology analyses reveal that these compounds are archetypal fcu MOFs encompassing octahedral and tetrahedral cages, respectively. The N2 sorption isotherms and acid-base stability tests demonstrate that the materials possess not only relatively high surface areas, pore volumes, and appropriate pore sizes but also great hydrolytic stabilities ranging pH = 3-11. Furthermore, the volumetric methane storage working capacities of Zr-fcu-H, Zr-fcu-F, Zr-fcu-CH3, and Zr-fcu-OH at 298/273 K and 80 bar are 187/217, 175/193, 167/187, and 154/171 cm3 (STP) cm-3, respectively, which indicate that the zirconium-based crystalline porous materials are capable of storing relatively high amounts of methane.
Collapse
Affiliation(s)
- Yu-Feng Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030012, China
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Zong-Hui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Han Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Xin-Ai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Ya-Nan Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yue-Zhong Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030012, China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
9
|
Wang GD, Li YZ, Shi WJ, Hou L, Wang YY, Zhu Z. Active Sites Decorated Nonpolar Pore-Based MOF for One-step Acquisition of C 2 H 4 and Recovery of C 3 H 6. Angew Chem Int Ed Engl 2023; 62:e202311654. [PMID: 37679304 DOI: 10.1002/anie.202311654] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023]
Abstract
Herein, a 2-fold interpenetrated metal-organic framework (MOF) Zn-BPZ-TATB with accessible N/O active sites in nonpolar pore surfaces was reported for one-step C2 H4 purification from C2 H6 or C3 H6 mixtures as well as recovery of C3 H6 from C2 H6 /C3 H6 /C2 H4 mixtures. The MOF exhibits the favorable C2 H6 and C3 H6 uptakes (>100 cm3 g-1 at 298 K under 100 kPa) as well as selective adsorption of C2 H6 and C3 H6 over C2 H4 . The C3 H6 - and C2 H6 -selective feature were investigated detailedly by experimental tests as well as sorption kinetic studyies. Molecular modelling revealed the multiple interactions between C3 H6 or C2 H6 molecules and methyl groups as well as triazine rings in pores. Zn-BPZ-TATB not only can directly generate 323.4 L kg-1 and 15.4 L kg-1 of high-purity (≥99.9 %) C2 H4 from C3 H6 /C2 H4 and C2 H6 /C2 H4 mixtures, but also provide a large high-purity (≥99.5 %) C3 H6 recovery capacity of 60.1 L kg-1 from C3 H6 /C2 H4 mixtures. More importantly, the high-purity C3 H6 (≥99.5 %) and C2 H4 (≥99.9 %) with the productivities of 38.2 and 12.7 L kg-1 can be simultaneously obtained from C2 H6 /C3 H6 /C2 H4 mixtures through a single adsorption/desorption cycle.
Collapse
Affiliation(s)
- Gang-Ding Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yong-Zhi Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Wen-Juan Shi
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Lei Hou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
10
|
Yu X, Gu J, Liu X, Chang Z, Liu Y. Exploring the Effect of Different Secondary Building Units as Lewis Acid Sites in MOF Materials for the CO 2 Cycloaddition Reaction. Inorg Chem 2023; 62:11518-11527. [PMID: 37437191 DOI: 10.1021/acs.inorgchem.3c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
In order to explore the catalytic effect of different Lewis acid sites (LASs) in the CO2 cycloaddition reaction, different secondary building units and N-rich organic ligand 4,4',4″-s-triazine-1,3,5-triyltri-p-aminobenzoate were assembled to construct six reported MOF materials: [Cu3(tatab)2(H2O)3]·8DMF·9H2O (1), [Cu3(tatab)2(H2O)3]·7.5H2O (2), [Zn4O(tatab)2]·3H2O·17DMF (3), [In3O(tatab)2(H2O)3](NO3)·15DMA (4), [Zr6O4(OH)7(tatab)(Htatab)3(H2O)3]·xGuest (5), and [Zr6O4(OH)4(tatab)4(H2O)3]·xGuest (6) (DMF = N,N-dimethylformamide, and DMA = N,N-dimethylacetamide). Large pore sizes of compound 2 enhance the concentration of substrates, and the multi-active sites inside its framework synergistically promote the process of the CO2 cycloaddition reaction. Such advantages endow compound 2 with the best catalytic performance among the six compounds and surpass many of the reported MOF-based catalysts. Meanwhile, the comparison of the catalytic efficiency indicated that Cu-paddlewheel and Zn4O display better catalytic performances than In3O and Zr6 cluster. The experiments investigate the catalytic effects of LAS types and prove that it is feasible to improve CO2 fixation property by introducing multi-active sites into MOFs.
Collapse
Affiliation(s)
- Xueyue Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jiaming Gu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xinyao Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhiyong Chang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, P. R. China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, P. R. China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
11
|
Liu XY, Lin QY, Fang H, Li XW, Zhang SM, Yu MH, Chang Z. Highly Tunable MOF Luminophores Featuring Anthracene Directed Assembly and Fluorescence Regulation. Inorg Chem 2023; 62:6751-6758. [PMID: 37083265 DOI: 10.1021/acs.inorgchem.3c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Metal-organic frameworks (MOFs) have been recognized as a potential platform for the development of tunable luminophores owing to their highly modulable structures and components. Herein, two MOF luminophores based on Cd(II) ions, 1,3,5-tri(4-pyridinyl)benzene (TPB), and 1,4-dicarboxybenzene (H2BDC) were constructed. The directed assembly of the metal ions and organic linkers results in [Cd2(BDC)2(TPB)(H2O)]·x(solvent) (MOF-1) featuring TPB-based blue fluorescence centered at 425 nm. By introducing anthracene as the structure directing agent (SDA) for assembly regulation, [Cd2(BDC)(TPB)2(NO3)2]·x(solvent) (MOF-2) was obtained, which reveals anthracene feeding-dependent high tunable emission in the 517-650 nm range. Detailed components, photophysical properties, and structural characteristics investigations of MOF-2 indicate the TPB and NO3- interactions as the origin of its redshifted emission compared with that of MOF-1. Furthermore, the fluorescence of MOF-2 was found to be regulatable by the anthracene feeding based on the SDA-determined crystallinity of the crystalline sample. All these results provided a unique example of the structural and fluorescence regulation of MOF luminophores.
Collapse
Affiliation(s)
- Xiao-Yi Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Qiu-Ying Lin
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Han Fang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Xing-Wang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Shu-Ming Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Ze Chang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
Lu X, Tang Y, Yang G, Wang YY. Porous functional metal–organic frameworks (MOFs) constructed from different N-heterocyclic carboxylic ligands for gas adsorption/separation. CrystEngComm 2023. [DOI: 10.1039/d2ce01667b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review mainly summarizes the recent progress of MOFs composed of N-heterocyclic carboxylate ligands in gas sorption/separation. This work may help to understand the relationship between the structures of MOFs and gas sorption/separation.
Collapse
Affiliation(s)
- Xiangmei Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Guoping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
13
|
Li Q, Li D, Wu ZQ, Shi K, Liu TH, Yin HY, Cai XB, Fan ZL, Zhu W, Xue DX. RhB-Embedded Zirconium-Biquinoline-Based MOF Composite for Highly Sensitive Probing Cr(VI) and Photochemical Removal of CrO 42-, Cr 2O 72-, and MO. Inorg Chem 2022; 61:15213-15224. [PMID: 36083838 DOI: 10.1021/acs.inorgchem.2c02459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
How to accurately detect and efficiently sweep Cr(VI) from contaminated water has come into focus. Zirconium-based metal-organic frameworks (MOFs) play vital roles in water environmental chemistry due to excellent hydrolysis-resistant stability. However, as photochemical probes and photocatalysts, poor performances in detection sensitivity, selectivity, and photosensitiveness limit sole Zr-MOFs' applications. So, it is urgent to quest valid strategies to break through the dilemmas. Embedding luminous dyes into MOFs has been considered one of the most feasible avenues. Herein, a dual-emissive RhB@Zr-MOF with orange-yellow fluorescence has been assembled by in situ-encapsulating rhodamine B (RhB) into a zirconium-biquinoline-based MOF. Actually, within RhB@Zr-MOF, the aggregation fluorescence quenching (ACQ) effect of RhB molecules was effectively avoided. Notably, RhB@Zr-MOF exhibits a rapid fluorescence quenching response toward Cr(VI) ions with high selectivity, sensitivity, and anti-interference abilities. More interestingly, unlike the most widely reported fluorescence resonance energy transfer (FRET) between MOFs and encapsulated guest modules, photoinduced electron transfer from RhB to Zr-MOF has been confirmed by modeling the ground state and excited states of RhB@Zr-MOF using density functional theory (DFT) and time-dependent DFT (TD-DFT). The effective electron transfer makes RhB@Zr-MOF more sensitive in probing Cr2O72- and CrO42- ions with ultralow detection limit (DL) values of 6.27 and 5.26 ppb, respectively. Prominently, the detection sensitivity based on DL values has been increased about 6 and 9 times, respectively, compared with pristine Zr-MOF. Moreover, rather negative CB and positive VB potentials make RhB@Zr-MOF have excellent photochemical scavenging ability toward Cr(VI) and MO.
Collapse
Affiliation(s)
- Qing Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Dan Li
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Zhi-Qiang Wu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Ke Shi
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Tian-Hui Liu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Huan-Yu Yin
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Xin-Bin Cai
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Zeng-Lu Fan
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Wei Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, School of Environmental & Chemical Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, P. R. China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shanxi Normal University, Xi'an 710062, Shaanxi, P. R. China
| |
Collapse
|
14
|
Fan M, Zhao L, Jin X, Sun W, Qi W, Li Y. Efficient Tb3+-to-Eu3+ energy transfer for colorimetric luminescence sensing. Anal Chim Acta 2022; 1221:340026. [DOI: 10.1016/j.aca.2022.340026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/01/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
|
15
|
Chen JR, Luo YQ, He S, Zhou HL, Huang XC. Ligand Tailoring Strategy of a Metal-Organic Framework for Optimizing Methane Storage Working Capacities. Inorg Chem 2022; 61:10417-10424. [PMID: 35767723 DOI: 10.1021/acs.inorgchem.2c01130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Methane, as the main component of natural gas, shale gas, and marsh gas, is regarded as an ideal clean energy to replace traditional fossil fuels and reduce carbon emissions. Porous materials with superior methane storage capacities are the key to the wide application of adsorbed natural gas technology in vehicle transportation. In this work, we applied a ligand tailoring strategy to a metal-organic framework (NOTT-101) to fine-tune its pore geometry, which was well characterized by gas and dye sorption measurements. High-pressure methane sorption isotherms revealed that the methane storage performance of the modified NOTT-101 can be effectively improved by decreasing the unusable uptake at 5 bar and increasing the total uptake under high pressures, achieving a substantially high volumetric methane storage working capacity of 190 cm3 (STP) cm-3 at 298 K and 5-80 bar.
Collapse
Affiliation(s)
- Jian-Rui Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yan-Qi Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Shan He
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Hao-Long Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China.,Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
16
|
Zhu B, Zhu L, Hou T, Ren K, Kang K, Xiao C, Luo J. Cobalt Metal-Organic Frameworks with Aggregation-Induced Emission Characteristics for Fluorometric/Colorimetric Dual Channel Detection of Nitrogen-Rich Heterocyclic Compounds. Anal Chem 2022; 94:3744-3748. [PMID: 35213129 DOI: 10.1021/acs.analchem.1c05537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nitrogen-rich heterocyclic compounds (NRHCs) are an emerging type of explosive, and their quantification is important in national security inspection and environmental monitoring. Up until now, designing an efficient NRHCs sensing strategy was still in the early stages. Herein, a new metal-organic framework (MOF) with aggregation-induced emission (AIE) characteristics is synthesized with fluorometric/colorimetric responses for rapid and selective detection of NRHCs. The nonemissive probe is designed with tetraphenylethylene derivative as the linker and Co as the node, quencher, and color-changing agent. Cobalt AIE-MOF exhibits a turn-on emission enhancement due to the competitive coordination substitution between NRHCs and the scaffold as well as the following AIE process of the liberative linkers. Meanwhile, the color appearance of the probe changes from blue to yellow based on the dissociation of the original Co coordinating system. Using this dual-mode probe, single- and dual-ring NRHCs are successfully detected from 5 μM to 7.5 mM within 25 s. The cobalt AIE-MOF exhibits excellent selectivity of NRHCs against a variety of interferences, providing a promising tool for designing a multichannel detection strategy.
Collapse
Affiliation(s)
- Bin Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Longyi Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianjiao Hou
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kewei Ren
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kang Kang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
17
|
Wang X, Chang G, Liu C, Li R, Jin Y, Ding X, Liu X, Wang H, Wang T, Jiang J. Chemical conversion of metal–organic frameworks into hemi-covalent organic frameworks. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01234k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hemi-covalent organic framework, P-Ni3(TAA)3, with the different conversion efficiency (P) of 34–72% for bis(diimine) nickel units has been obtained. The 40%-Ni3(TAA)3 exhibits the improved chemical stability and significantly catalytic property.
Collapse
Affiliation(s)
- Xinxin Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ganggang Chang
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122, Luoshi Road, 430070, Wuhan, Hubei, China
| | - Chenxi Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ruidong Li
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122, Luoshi Road, 430070, Wuhan, Hubei, China
| | - Yucheng Jin
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xu Ding
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaolin Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hailong Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Tianyu Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
18
|
Liu H, Li B, Zhao Y, Kong C, Zhou C, Lin Y, Tian Z, Chen L. Investigation on a Zr-based metal-organic framework (MOF-801) for the high-performance separation of light alkanes. Chem Commun (Camb) 2021; 57:13008-13011. [PMID: 34806717 DOI: 10.1039/d1cc05306j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Zr-based metal-organic framework (MOF-801) with high thermal and chemical stability was prepared by the solvothermal synthesis method. Notably, MOF-801 exhibits a high separation selectivity for C3H8/CH4 and C2H6/CH4, making it a practical material for the storage and purification of light alkanes.
Collapse
Affiliation(s)
- Hao Liu
- Institute of New Energy Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Boran Li
- Institute of New Energy Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, P. R. China. .,Beijing University of Chemical Technology, Beijing 100010, P. R. China
| | - Yayun Zhao
- Institute of New Energy Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chunlong Kong
- Institute of New Energy Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, P. R. China.
| | - Chen Zhou
- Institute of New Energy Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, P. R. China.
| | - Yichao Lin
- Institute of New Energy Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ziqi Tian
- Institute of New Energy Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liang Chen
- Institute of New Energy Technology, Ningbo Institute of Materials Technology and Engineering, CAS, 1219 Zhongguan Road, Ningbo 315201, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
19
|
Zhang ZH, Fang H, Xue DX, Bai J. Tuning Open Metal Site-Free ncb Type of Metal-Organic Frameworks for Simultaneously High Gravimetric and Volumetric Methane Storage Working Capacities. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44956-44963. [PMID: 34498839 DOI: 10.1021/acsami.1c13757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design and synthesis of a single metal-organic framework (MOF) material with simultaneously high gravimetric and volumetric methane storage working capacities are still a great challenge. The open metal site (OMS) in MOFs is generally regarded as an advantage to enhance host-guest affinity. However, it is detrimental to the methane storage working capacity to some extent due to the resulting high low-pressure uptake. Moreover, the reported methane storage MOFs are predominately focusing on edge-transitive or low-connected mixed-linker networks. In contrast, high-connected mixed-linker MOFs have been less investigated for methane storage. Herein, three isoreticular nine-connected trinuclear iron-based Fe-ncb-MOFs without OMSs have been judiciously designed and successfully constructed by means of the mixed-linker approach associated with the fixing amide-functionalized pyridyl-carboxylate ligand LP (4-(pyridin-4-ylcarbamoyl)benzoate) and three differing sized dicarboxylate ligands. High-pressure methane adsorption measurements show that, with the isoreticular extension from BDC (1,4-benzenedicarboxylate) to BPDC (4,4'-biphenyldicarboxylate) and ABDC (azobenzene-4,4'-dicarboxylate), three Fe-ncb-MOFs exhibit gradually increasing not only gravimetric but also volumetric storage capacities because of their balancing gravimetric surface area and volumetric surface area, hierarchical pore system, and modest CH4 heats of adsorption. Among them, the Fe-ncb-ABDC demonstrates a rare combination of simultaneously high gravimetric and volumetric CH4 storage working capacities of 0.302/0.37 g g-1 and 196/240 cm3 (STP) cm-3 at 298/273 K and between 80 and 5 bar, respectively, which outperform the 8-c Fe-8T18-ABDC assembled from a shorter pyridyl-carboxylate ligand IN (isonicotinate) and ABDC, due to its limited pore volume, the presence of OMSs, and more confined pore spaces, and place Fe-ncb-ABDC among the best performing MOFs.
Collapse
Affiliation(s)
- Zong-Hui Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Han Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Dong-Xu Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Junfeng Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|