1
|
Wang L, Wang Y, Chu C, Hu J, Wu S, Ma Y. Chirality Determination of Nanocrystals by Electron Crystallography. J Phys Chem Lett 2024; 15:6896-6908. [PMID: 38935349 DOI: 10.1021/acs.jpclett.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Chirality is a common phenomenon in nature and plays an important role in the properties of matter. The rational synthesis of chiral compounds and exploration of their applications in various fields require an unambiguous determination of their handedness. However, in many cases, determinations of the chiral crystal structure and chiral morphology have been a challenging task due to the lack of proper characterization methods, especially for nanosized crystals. Therefore, it is crucial to develop novel and efficient characterization methods. Owing to the strong interactions between matter and electrons, electron crystallography has become a powerful tool for structural analysis of nanomaterials. In recent years, methods based on electron crystallography, such as high-resolution electron microscopy imaging and electron diffraction, have been developed to unravel the chirality of nanomaterials. This brings new opportunities to the design, synthesis, and applications of versatile chiral nanomaterials. In this perspective, we summarize the recent methodology developments and ongoing research of electron crystallography for chiral structure and morphology determination of nanocrystals, including inorganic and organic materials, as well as highlight the potential and further improvement of these methods in the future.
Collapse
Affiliation(s)
- Lijin Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yao Wang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Chaoyang Chu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Junyi Hu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Shitao Wu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yanhang Ma
- School of Physical Science and Technology & Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| |
Collapse
|
2
|
Bai Q, Guan YM, Wu T, Liu Y, Zhai Z, Long Q, Jiang Z, Su P, Xie TZ, Wang P, Zhang Z. Anion-Regulated Hierarchical Self-Assembly and Chiral Induction of Metallo-Tetrahedra. Angew Chem Int Ed Engl 2023; 62:e202309027. [PMID: 37552154 DOI: 10.1002/anie.202309027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 08/09/2023]
Abstract
The precise control over hierarchical self-assembly of superstructures relying on the elaboration of multiple noncovalent interactions between basic building blocks is both elusive and highly desirable. We herein report a terpyridine-based metallo-cage T with a tetrahedral motif and utilized it as an efficient building block for the controlled hierarchical self-assembly of superstructures in response to different halide ions. Initially, the hierarchical superstructure of metallo-cage T adopted a hexagonal close-packed structure. By adding Cl- /Br- or I- , drastically different hierarchical superstructures with highly-tight hexagonal packing or graphite-like packing arrangements, respectively, have been achieved. These unusual halide-ion-triggered hierarchical structural changes resulted in quite distinct intermolecular channels, which provided new insights into the mechanism of three-dimensional supramolecular aggregation and crystal growth based on macromolecular construction. In addition, the chiral induction of the metallo-cage T can be realized with the addition of chiral anions, which stereoselectively generated either PPPP- or MMMM-type enantiomers.
Collapse
Affiliation(s)
- Qixia Bai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Yu-Ming Guan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Tun Wu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ying Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Zirui Zhai
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Qingwu Long
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528333, China
| | - Zhiyuan Jiang
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Ting-Zheng Xie
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhe Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
3
|
Liu X, Liu C, Song X, Ding X, Wang H, Yu B, Liu H, Han B, Li X, Jiang J. Cofacial porphyrin organic cages. Metals regulating excitation electron transfer and CO 2 reduction electrocatalytic properties. Chem Sci 2023; 14:9086-9094. [PMID: 37655043 PMCID: PMC10466316 DOI: 10.1039/d3sc01816d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023] Open
Abstract
Herein, we introduce a comprehensive study of the photophysical behaviors and CO2 reduction electrocatalytic properties of a series of cofacial porphyrin organic cages (CPOC-M, M = H2, Co(ii), Ni(ii), Cu(ii), Zn(ii)), which are constructed by the covalent-bonded self-assembly of 5,10,15,20-tetrakis(4-formylphenyl)porphyrin (TFPP) and chiral (2-aminocyclohexyl)-1,4,5,8-naphthalenetetraformyl diimide (ANDI), followed by post-synthetic metalation. Electronic coupling between the TFPP donor and naphthalene-1,4 : 5,8-bis(dicarboximide) (NDI) acceptor in the metal-free cage is revealed to be very weak by UV-vis spectroscopic, electrochemical, and theoretical investigations. Photoexcitation of CPOC-H2, as well as its post-synthetic Zn and Co counterparts, leads to fast energy transfer from the triplet state porphyrin to the NDI unit according to the femtosecond transient absorption spectroscopic results. In addition, CPOC-Co enables much better electrocatalytic activity for CO2 reduction reaction than the other metallic CPOC-M (M = Ni(ii), Cu(ii), Zn(ii)) and monomeric porphyrin cobalt compartment, supplying a partial current density of 18.0 mA cm-2 at -0.90 V with 90% faradaic efficiency of CO.
Collapse
Affiliation(s)
- Xiaolin Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Chenxi Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiaojuan Song
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Baoqiu Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Heyuan Liu
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Bin Han
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Xiyou Li
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
4
|
Zuo Y, Liu X, Fu E, Zhang S. A Pair of Interconverting Cages Formed from Achiral Precursors Spontaneously Resolve into Homochiral Conformers. Angew Chem Int Ed Engl 2023; 62:e202217225. [PMID: 36748582 DOI: 10.1002/anie.202217225] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
Without chiral induction the emergence of homochirality from achiral molecules is rather serendipitous, as the rationale is somewhat ambiguous. We herein provide a plausible solution. From achiral precursors are formed a pair of interconverting cage conformers that exhibit a C3 -axis as the only symmetry element. When their interconversion is impeded with intramolecular H-bonding, each conformer self-sorts into a homochiral crystal, which is driven by a helical network of multivalent intermolecular interactions during the self-assembly of homochiral cage conformers. As no chiral induction is involved throughout, we believe our study could enlighten the rational design for the emergence of homochirality with several criteria: 1) formation of a molecule without inversion center or mirror plane; 2) suppression of the enantiomeric interconversion, and introduction of multivalent interactions along the helical trajectory of screw symmetry within the resulting superstructure.
Collapse
Affiliation(s)
- Yong Zuo
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoning Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Enguang Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shaodong Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
5
|
Weh M, Shoyama K, Würthner F. Preferential molecular recognition of heterochiral guests within a cyclophane receptor. Nat Commun 2023; 14:243. [PMID: 36646685 PMCID: PMC9842753 DOI: 10.1038/s41467-023-35851-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
The discrimination of enantiomers by natural receptors is a well-established phenomenon. In contrast the number of synthetic receptors with the capability for enantioselective molecular recognition of chiral substrates is scarce and for chiral cyclophanes indicative for a preferential binding of homochiral guests. Here we introduce a cyclophane composed of two homochiral core-twisted perylene bisimide (PBI) units connected by p-xylylene spacers and demonstrate its preference for the complexation of [5]helicene of opposite helicity compared to the PBI units of the host. The pronounced enantio-differentiation of this molecular receptor for heterochiral guests can be utilized for the enrichment of the P-PBI-M-helicene-P-PBI epimeric bimolecular complex. Our experimental results are supported by DFT calculations, which reveal that the sterically demanding bay substituents attached to the PBI chromophores disturb the helical shape match of the perylene core and homochiral substrates and thereby enforce the formation of syndiotactic host-guest complex structures. Hence, the most efficient substrate binding is observed for those aromatic guests, e. g. perylene, [4]helicene, phenanthrene and biphenyl, that can easily adapt in non-planar axially chiral conformations due to their inherent conformational flexibility. In all cases the induced chirality for the guest is opposed to those of the embedding PBI units, leading to heterochiral host-guest structures.
Collapse
Affiliation(s)
- Manuel Weh
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Kazutaka Shoyama
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
- Center for Nanosystems Chemistry & Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074, Würzburg, Germany.
| |
Collapse
|
6
|
Chen J, Yang Z, Zhu G, Fu E, Li P, Chen F, Yu C, Wang S, Zhang S. Heterochiral Diastereomer-Discriminative Diphanes That Form Hierarchical Superstructures with Nonlinear Optical Properties. JACS AU 2022; 2:1661-1668. [PMID: 35911451 PMCID: PMC9327085 DOI: 10.1021/jacsau.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In order to study the emergence of homochirality during complex molecular systems, most works mainly concentrated on the resolution of a pair of enantiomers. However, the preference of homochiral over heterochiral isomers has been overlooked, with very limited examples focusing only on noncovalent interactions. We herein report on diastereomeric discrimination of twin-cavity cages (denoted as diphanes) against heterochiral tris-(2-aminopropyl)amine (TRPN) bearing triple stereocenters. This diastereomeric selectivity results from distinct spatial orientation of reactive secondary amines on TRPN. Homochiral TRPNs with all reactive moieties rotating in the same way facilitate the formation of homochiral and achiral meso diphanes with low strain energy, while heterochiral TRPNs with uneven orientation of secondary amines preclude the formation of cage-like entity, since the virtual diphanes exhibit considerably high strain. Moreover, homochiral diphanes self-assemble into an acentric superstructure composed of single-handed helices, which exhibits interesting nonlinear optical behavior. Such a property is a unique occurrence for organic cages, which thus showcases their potential to spawn novel materials with interesting properties and functions.
Collapse
Affiliation(s)
- Jiaolong Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhenyu Yang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Gucheng Zhu
- Key
Laboratory of Artificial Structures and Quantum Control (Ministry
of Education), Shenyang National Laboratory for Materials Science,
School of Physics and Astronomy, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Enguang Fu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pan Li
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fangyi Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chunyang Yu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shiyong Wang
- Key
Laboratory of Artificial Structures and Quantum Control (Ministry
of Education), Shenyang National Laboratory for Materials Science,
School of Physics and Astronomy, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaodong Zhang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Liu C, Jin Y, Qi D, Ding X, Ren H, Wang H, Jiang J. Enantioselective assembly and recognition of heterochiral porous organic cages deduced from binary chiral components. Chem Sci 2022; 13:7014-7020. [PMID: 35774155 PMCID: PMC9200113 DOI: 10.1039/d2sc01876d] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022] Open
Abstract
Chiral recognition and discrimination is not only of significance in biological processes but also a powerful method to fabricate functional supramolecular materials. Herein, a pair of heterochiral porous organic cages (HPOC-1), out of four possible enantiomeric products, with mirror stereoisomeric crystal structures were cleanly prepared by condensation occurring in the exclusive combination of cyclohexanediamine and binaphthol-based tetraaldehyde enantiomers. Nuclear magnetic resonance and luminescence spectroscopy have been employed to monitor the assembly process of HPOC-1, revealing the clean formation of heterochiral organic cages due to the enantioselective recognition of (S,S)-binaphthol towards (R,R)-cyclohexanediamine derivatives and vice versa. Interestingly, HPOC-1 exhibits circularly polarized luminescence and enantioselective recognition of chiral substrates according to the circular dichroism spectral change. Theoretical simulations have been carried out, rationalizing both the enantioselective assembly and recognition of HPOC-1.
Collapse
Affiliation(s)
- Chao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Xu Ding
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Huimin Ren
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
8
|
Abstract
A variety of organic cages with different geometries have been developed during the last decade, most of them exhibiting a single cavity. In contrast, the number of organic cages featuring a pair of cavities remains scarce. These structures may pave the way towards novel porous materials with emergent properties and functions.We herein report on rational design of a three-dimensional hexaformyl precursor 1, which exhibits two types of conformers, i.e. Conformer-1 and -2, with different cleft positions and sizes. Aided by molecular dynamics simulations, we select two triamino conformation capturers (denoted CC). Small-sized CC-1 selectively capture Conformer-1 by matching its cleft size, while the large-sized CC-2 is able to match and capture both conformers. This strategy allows the formation of three compounds with twin cavities, which we coin diphane. The self-assembly of diphane units results in superstructures with tunable proton conductivity, which reaches up to 1.37×10-5 S cm-1. The preparation of nanocages with unprecedented architectures may lead to new functions. Here the authors report the self-assembly of organic cages featuring twin cavities; the geometry and pocket size determine the molecular packing and the proton conductivity performance.
Collapse
|