1
|
Clausen KU, Meng X, Reisig K, Näther C, Strunskus T, Berndt R, Tuczek F. Monolayers of a thiacalix[3]pyridine-supported molybdenum(0) tricarbonyl complex on Au(111): characterisation with surface spectroscopy and scanning tunneling microscopy. Dalton Trans 2024. [PMID: 39450532 DOI: 10.1039/d4dt02521k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Deposition of dome-shaped metal-organic complexes on metallic surfaces to produce well-defined single site catalysts is a novel approach combining aspects of homogeneous and heterogeneous catalysis. In order to investigate the bonding of small molecules to such systems, a molybdenum(0) tricarbonyl complex supported by a thiacalix[3]pyridine is synthesized and deposited on Au(111) and Ag(111) surfaces by vacuum evaporation. The resulting mono- and submonolayers are investigated with surface spectroscopy and STM. All of these methods indicate a parallel orientation of the molybdenum complex with respect to the surface. The vibrational properties and frequency shifts of the adsorbed complexes with respect to the bulk are evaluated with the help of conventional IR and IRRA spectroscopy, coupled to DFT calculations. Compared to a similar Mo(0) tricarbonyl complex supported by an azacalixpyridine ligand, the title complex exhibits a higher stability in the bulk and adsorbed to surfaces which goes along with a lower reactivity towards oxygen.
Collapse
Affiliation(s)
- Kai Uwe Clausen
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| | - Xiangzhi Meng
- Institute of Experimental and Applied Physics, Christian-Albrechts-University of Kiel, Leibnizstraße 11-19, 24118 Kiel, Germany
| | - Katrin Reisig
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| | - Christian Näther
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| | - Thomas Strunskus
- Department of Material Science, Christian-Albrechts-University of Kiel, Kaiserstraße 1, 24118 Kiel, Germany
| | - Richard Berndt
- Institute of Experimental and Applied Physics, Christian-Albrechts-University of Kiel, Leibnizstraße 11-19, 24118 Kiel, Germany
| | - Felix Tuczek
- Institute of Inorganic Chemistry, Christian-Albrechts-University of Kiel, Max-Eyth-Straße 2, 24118 Kiel, Germany.
| |
Collapse
|
2
|
Wu X, Steinmann SN, Michel C. Gaussian attractive potential for carboxylate/cobalt surface interactions. J Chem Phys 2023; 159:164115. [PMID: 37902224 DOI: 10.1063/5.0173351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
Ligand-decorated metal surfaces play a pivotal role in various areas of chemistry, particularly in selective catalysis. Molecular dynamics simulations at the molecular mechanics level of theory are best adapted to gain complementary insights to experiments regarding the structure and dynamics of such organic films. However, standard force fields tend to capture only weak physisorption interactions. This is inadequate for ligands that are strongly adsorbed such as carboxylates on metal surfaces. To address this limitation, we employ the Gaussian Lennard-Jones (GLJ) potential, which incorporates an attractive Gaussian potential between the surface and ligand atoms. Here, we develop this approach for the interaction between cobalt surfaces and carboxylate ligands. The accuracy of the GLJ approach is validated through the analysis of the interaction of oxygen with two distinct cobalt surfaces. The accuracy of this method reaches a root mean square deviation (RMSD) of about 3 kcal/mol across all probed configurations, which corresponds to a percentage error of roughly 4%. Application of the GLJ force field to the dynamics of the organic layer on these surfaces reveals how the ligand concentration influences the film order, and highlights differing mobility in the x and y directions, attributable to surface corrugation on Co(112̄0). GLJ is versatile, suitable for a broad range of metal/ligand systems, and can, subsequently, be utilized to study the organic film on the adsorption/desorption of reactants and products during a catalytic process.
Collapse
Affiliation(s)
- Xiaojing Wu
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, F-69364 Lyon, France
| | - Stephan N Steinmann
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, F-69364 Lyon, France
| | - Carine Michel
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Chimie UMR 5182, 46 allée d'Italie, F-69364 Lyon, France
| |
Collapse
|
3
|
Li H, Yatabe T, Takayama S, Yamaguchi K. Heterogeneously Catalyzed Selective Acceptorless Dehydrogenative Aromatization to Primary Anilines from Ammonia via Concerted Catalysis and Adsorption Control. JACS AU 2023; 3:1376-1384. [PMID: 37234130 PMCID: PMC10207093 DOI: 10.1021/jacsau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Although catalytic dehydrogenative aromatization from cyclohexanones and NH3 is an attractive synthetic method for primary anilines, using a hydrogen acceptor was indispensable to achieve satisfactory levels of selectivity in liquid-phase organic synthetic systems without photoirradiation. In this study, we developed a highly selective synthesis of primary anilines from cyclohexanones and NH3 via efficient acceptorless dehydrogenative aromatization heterogeneously catalyzed by an Mg(OH)2-supported Pd nanoparticle catalyst in which Mg(OH)2 species are also deposited on the Pd surface. The basic sites of the Mg(OH)2 support effectively accelerate the acceptorless dehydrogenative aromatization via concerted catalysis, suppressing the formation of secondary amine byproducts. In addition, the deposition of Mg(OH)2 species inhibits the adsorption of cyclohexanones on the Pd nanoparticles to suppress phenol formation, achieving the desired primary anilines with high selectivity.
Collapse
Affiliation(s)
- Hui Li
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Yatabe
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science
and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takayama
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Wulfes J, Baumann AK, Melchert T, Schröder C, Schauermann S. Adsorption and keto-enol-tautomerisation of butanal on Pd(111). Phys Chem Chem Phys 2022; 24:29480-29494. [PMID: 36448609 DOI: 10.1039/d2cp04398j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Microscopic-level understanding of the interaction of hydrocarbons with transition metal surfaces is an important prerequisite for rational design of new materials with improved catalytic properties. In this report, we present a mechanistic study on the keto-enol tautomerisation of butanal on Pd(111), which was theoretically predicted to play a crucial role in low-barrier hydrogenation of carbonyl compounds. These processes were addressed by a combination of reflection-absorption infrared spectroscopy, molecular beam techniques and theoretical calculations at the density functional theory level. Spectroscopic information obtained on Pd(111) suggests that butanal forms three different aldehyde species, which we indicate as A1-A3 as well as their enol counterpart E1. The electronically strongest perturbed and strongest binding species A1 is most likely related to the η2(C,O) adsorption configuration, in which both C and O atoms are involved in the bonding with the underlying metal. The species A2 weakly binds and is less electronically perturbed and can be associated with the η1(O) adsorption configuration. The third type of aldehyde species A3, which is nearly unperturbed and is found only at low temperatures, results from the formation of the butanal multilayer. Importantly, the enol form of butanal was observed on the surface, which gives rise to a new characteristic band at 1104 cm-1 related to the stretching vibration of the C-O single bond (ν(C-O)). With increasing temperature, the multi-layer related species A3 disappears from the surface above 136 K. The population of aldehyde species A1 and the enol species E1 noticeably increases with increasing temperature, while the band related to the aldehyde species A2 becomes strongly attenuated and finally completely disappears above 120 K. These observations suggest that species E1 and A1 are formed in an activated process and - in view of the strongly anti-correlated population of the species E1 and A2 - it can be concluded that enol species E1 is most likely formed from the weakly bound aldehyde species A2 (η1(O)). Finally, we discuss the possible routes to enol stabilization via intermolecular bonding and provide the possible structure of the enol-containing stabilized complex, which is compatible with all spectroscopic observations. The obtained results provide important insights into the process of keto-enol tautomerisation of simple carbonyl compounds.
Collapse
Affiliation(s)
- Jessica Wulfes
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Ann-Katrin Baumann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Tobias Melchert
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Carsten Schröder
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Swetlana Schauermann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| |
Collapse
|
5
|
Yang Y, Si W, Peng Y, Wang Y, Liu H, Su Z, Li J. Defect Engineering on CuMn 2O 4 Spinel Surface: A New Path to High-Performance Oxidation Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16249-16258. [PMID: 36305714 DOI: 10.1021/acs.est.2c04858] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Catalytic combustion is an efficient method to eliminate CO and volatile organic compound (VOC) pollutants. CuMn2O4 spinel is a high-performance non-noble metal oxide catalyst for catalytic combustion and has the potential to replace noble metal catalysts. In order to further improve the catalytic activity of CuMn2O4 spinel, we propose a simple and low-cost approach to introduce numerous oxygen and metal vacancies simultaneously in situ on the CuMn2O4 spinel surface for the catalytic combustion of CO and VOCs. Alkali treatment was used to generate oxygen vacancies (VO), copper vacancies (VCu), and novel active sites (VO combines with Mn2O3 at the interface between Mn2O3(222) and CuMn2O4(311)) on the CuMn2O4 spinel surface. In the catalytic combustion of CO and VOCs, the vacancies and new active sites showed high activity and stability. The oxidation rate of CO increased by 4.13 times at 160 °C, and that of toluene increased by 11.63 times at 250 °C. Oxygen is easier to adsorb and dissociate on VO and novel sites, and the dissociated oxygen also more easily participates in the oxidation reaction. Furthermore, the lattice oxygen at VCu more readily participates in the oxidation reaction. This strategy is beneficial for the development of defect engineering on spinel surfaces and provides a new idea for improving the catalytic combustion activity of CuMn2O4 spinel.
Collapse
Affiliation(s)
- Yu Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hao Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ziang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Liu M, Han B, Dyson PJ. Simultaneous Generation of Methyl Esters and CO in Lignin Transformation. Angew Chem Int Ed Engl 2022; 61:e202209093. [PMID: 35979750 PMCID: PMC9826404 DOI: 10.1002/anie.202209093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
Lignin is an abundant renewable carbon source. Due to its complex structure, utilization of lignin is very challenging. Herein, we describe an efficient strategy for the simultaneous utilization of lignin, in which the methoxy groups in lignin react with carboxylic acids to generate methyl carboxylates and the other alkyl and phenyl carbons react with oxygen to predominantly form CO that can be used directly in carbonylation reactions. The method was applied to the methylation of various functionalized aryl and alkyl carboxylic acids, including natural compounds, to produce valuable chemicals, including pharmaceuticals. No solid or liquid residues remain after the reaction. Mechanistic studies demonstrate that a well-ordered C-C and C-O bond activation sequence takes place to realize total transformation of lignin. This work opens a way for transformation of the entire lignin polymer into valuable products, exemplified by the synthesis of the pharmaceutical, Ramipril, on a gram scale.
Collapse
Affiliation(s)
- Mingyang Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- Institute of Chemical Sciences and EngineeringSwiss Federal Institute of Technology (EPFL)1015LausanneSwitzerland
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Colloid and Interface and ThermodynamicsCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Paul J. Dyson
- Institute of Chemical Sciences and EngineeringSwiss Federal Institute of Technology (EPFL)1015LausanneSwitzerland
| |
Collapse
|
7
|
Zeng Y, Lemay JC, Dong Y, Garcia J, Groves MN, McBreen PH. Ligand-Assisted Carbonyl Bond Activation in Single Diastereomeric Complexes on Platinum. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yang Zeng
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Jean-Christian Lemay
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Yi Dong
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| | - James Garcia
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Michael. N Groves
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Peter H. McBreen
- CCVC and Department of Chemistry, Université Laval, Québec, Québec G1V 0A6, Canada
| |
Collapse
|
8
|
Simultaneous Generation of Methyl Esters and CO in Lignin Transformation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Schröder C, Haugg PA, Baumann A, Schmidt MC, Smyczek J, Schauermann S. Competing Reaction Pathways in Heterogeneously Catalyzed Hydrogenation of Allyl Cyanide: The Chemical Nature of Surface Species. Chemistry 2021; 27:17240-17254. [PMID: 34608688 PMCID: PMC9297874 DOI: 10.1002/chem.202103238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 11/11/2022]
Abstract
We present a mechanistic study on the formation of an active ligand layer over Pd(111), turning the catalytic surface highly active and selective in partial hydrogenation of an α,β-unsaturated aldehyde acrolein. Specifically, we investigate the chemical composition of a ligand layer consisting of allyl cyanide deposited on Pd(111) and its dynamic changes under the hydrogenation conditions. On pristine surface, allyl cyanide largely retains its chemical structure and forms a layer of molecular species with the CN bond oriented nearly parallel to the underlying metal. In the presence of hydrogen, the chemical composition of allyl cyanide strongly changes. At 100 K, allyl cyanide transforms to unsaturated imine species, containing the C=C and C=N double bonds. At increasing temperatures, these species undergo two competing reaction pathways. First, the C=C bond become hydrogenated and the stable N-butylimine species are produced. In the competing pathway, the unsaturated imine reacts with hydrogen to fully hydrogenate the imine group and produce butylamine. The latter species are unstable under the hydrogenation reaction conditions and desorb from the surface, while the N-butylimine adsorbates formed in the first reaction pathway remain adsorbed and act as an active ligand layer in selective hydrogenation of acrolein.
Collapse
Affiliation(s)
- Carsten Schröder
- Institute of Physical ChemistryChristian-Albrechts-University KielMax-Eyth-Str. 224118KielGermany
| | - Philipp A. Haugg
- Institute of Physical ChemistryChristian-Albrechts-University KielMax-Eyth-Str. 224118KielGermany
| | - Ann‐Katrin Baumann
- Institute of Physical ChemistryChristian-Albrechts-University KielMax-Eyth-Str. 224118KielGermany
| | - Marvin C. Schmidt
- Institute of Physical ChemistryChristian-Albrechts-University KielMax-Eyth-Str. 224118KielGermany
| | - Jan Smyczek
- Institute of Physical ChemistryChristian-Albrechts-University KielMax-Eyth-Str. 224118KielGermany
| | - Swetlana Schauermann
- Institute of Physical ChemistryChristian-Albrechts-University KielMax-Eyth-Str. 224118KielGermany
| |
Collapse
|
10
|
Schröder C, Schmidt MC, Haugg PA, Baumann AK, Smyczek J, Schauermann S. Understanding Ligand-Directed Heterogeneous Catalysis: When the Dynamically Changing Nature of the Ligand Layer Controls the Hydrogenation Selectivity. Angew Chem Int Ed Engl 2021; 60:16349-16354. [PMID: 34008906 PMCID: PMC8362066 DOI: 10.1002/anie.202103960] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Indexed: 12/17/2022]
Abstract
We present a mechanistic study on the formation and dynamic changes of a ligand‐based heterogeneous Pd catalyst for chemoselective hydrogenation of α,β‐unsaturated aldehyde acrolein. Deposition of allyl cyanide as a precursor of a ligand layer renders Pd highly active and close to 100 % selective toward propenol formation by promoting acrolein adsorption in a desired configuration via the C=O end. Employing a combination of real‐space microscopic and in‐operando spectroscopic surface‐sensitive techniques, we show that an ordered active ligand layer is formed under operational conditions, consisting of stable N‐butylimine species. In a competing process, unstable amine species evolve on the surface, which desorb in the course of the reaction. Obtained atomistic‐level insights into the formation and dynamic evolution of the active ligand layer under operational conditions provide important input required for controlling chemoselectivity by purposeful surface functionalization.
Collapse
Affiliation(s)
- Carsten Schröder
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Marvin C Schmidt
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Philipp A Haugg
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Ann-Katrin Baumann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Jan Smyczek
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Swetlana Schauermann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| |
Collapse
|