1
|
Xiao M, Lv S, Zhu C. Bacterial Patterning: A Promising Biofabrication Technique. ACS APPLIED BIO MATERIALS 2024; 7:8008-8018. [PMID: 38408887 DOI: 10.1021/acsabm.4c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Bacterial patterning has emerged as a pivotal biofabrication technique in the biomedical field. In the past 2 decades, a diverse array of bacterial patterning approaches have been developed to enable the precise manipulation of the spatial distribution of bacterial patterns for various applications. Despite the significance of these advancements, there is a deficiency of review articles providing an overview of bacterial patterning technologies. In this mini-review, we systematically summarize the progress of bacterial patterning over the past 2 decades. This review commences with an elucidation of the definition and fundamental principles of bacterial patterning. Subsequently, we introduce the established bacterial patterning strategies, accompanied by discussions about the advantages and limitations of each approach. Furthermore, we showcase the biomedical applications of these strategies, highlighting their efficacy in spatial control of biofilms, biosensing, and biointervention. Finally, this mini-review is concluded with a summary and an outlook on future challenges and opportunities. It is anticipated that this mini-review can serve as a concise guide for those who are interested in this exciting and rapidly evolving research area.
Collapse
Affiliation(s)
- Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Functional Polymer Materials, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Wang J, Zhao S, Yi J, Sun Y, Agrawal M, Oelze ML, Li K, Moore JS, Chen YS. Injectable Mechanophore Nanoparticles for Deep-Tissue Mechanochemical Dynamic Therapy. ACS NANO 2024. [PMID: 39250826 DOI: 10.1021/acsnano.4c04090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Photodynamic therapy (PDT) and sonodynamic therapy (SDT), using nonionizing light and ultrasound to generate reactive oxygen species, offer promising localized treatments for cancers. However, the effectiveness of PDT is hampered by inadequate tissue penetration, and SDT largely relies on pyrolysis and sonoluminescence, which may cause tissue injury and imprecise targeting. To address these issues, we have proposed a mechanochemical dynamic therapy (MDT) that uses free radicals generated from mechanophore-embedded polymers under mechanical stress to produce reactive oxygen species for cancer treatment. Yet, their application in vivo is constrained by the bulk form of the polymer and the need for high ultrasound intensities for activation. In this study, we developed injectable, nanoscale mechanophore particles with enhanced ultrasound sensitivity by leveraging a core-shell structure comprising silica nanoparticles (NPs) whose interfaces are linked to polymer brushes by an azo mechanophore moiety. Upon focused ultrasound (FUS) treatment, this injectable NP generates reactive oxygen species (ROS), demonstrating promising results in both an in vitro 4T1 cell model and an in vivo mouse model of orthotopic breast cancers. This research offers an alternative therapy technique, integrating force-responsive azo mechanophores and FUS under biocompatible conditions.
Collapse
Affiliation(s)
- Jian Wang
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Shensheng Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Junxi Yi
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yunyan Sun
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Megha Agrawal
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael L Oelze
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - King Li
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yun-Sheng Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Fan D, Wang D, Zhang J, Fu X, Yan X, Wang D, Qin A, Han T, Tang BZ. Cobalt-Catalyzed Cascade C-H Activation/Annulation Polymerizations toward Diversified and Multifunctional Sulfur-Containing Fused Heterocyclic Polymers. J Am Chem Soc 2024; 146:17270-17284. [PMID: 38863213 DOI: 10.1021/jacs.4c03889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Transition-metal-catalyzed C-H activation has greatly benefited the synthesis and development of functional polymer materials, and the construction of multifunctional fused (hetero)cyclic polymers via novel C-H activation-based polyannulations has emerged as a charming but challenging area in recent years. Herein, we report the first cobalt(III)-catalyzed cascade C-H activation/annulation polymerization (CAAP) approach that can efficiently transform readily available aryl thioamides and internal diynes into multifunctional sulfur-containing fused heterocyclic (SFH) polymers. Within merely 3 h, a series of SFH polymers bearing complex and multisubstituted S,N-doped polycyclic units are facilely and efficiently produced with high molecular weights (absolute Mn up to 220400) in excellent yields (up to 99%), which are hard to achieve by traditional methods. The intermediate-terminated SFH polymer can be used as a reactive macromonomer to controllably extend or modify polymer main chains. The structural diversity can be further enriched through facile S-oxidation and N-methylation reactions of the SFH polymers. Benefiting from the unique structures, the obtained polymers exhibit excellent solution processability, high thermal and morphological stability, efficient and readily tunable aggregate-state fluorescence, stimuli-responsive properties, and high and UV-modulatable refractive indices of up to 1.8464 at 632.8 nm. These properties allow the SFH polymers to be potentially applied in diverse fields, including metal ion detection, photodynamic killing of cancer cells, fluorescent photopatterning, and gradient-index optical materials.
Collapse
Affiliation(s)
- Dongyang Fan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jie Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xinyao Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Xueke Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
4
|
Wang J, Tian T, Zhang R, Li M, Chen J, Qin A, Tang BZ. Efficient Conversion of Inert Nitriles to Multifunctional Poly(5-amino-1,2,3-triazole)s via Regioselective Click Polymerization with Azide Monomers under Ambient Conditions. J Am Chem Soc 2024; 146:6652-6664. [PMID: 38419303 DOI: 10.1021/jacs.3c12588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Nitrile compounds are abundant, stable, cheap, and readily available natural and chemical industrial sources. However, the efficient conversion of nitrile monomers to functional polymers is mostly limited due to their inert reactivity, and developing efficient polymerizations based on nitrile monomers under very mild conditions is still a big challenge. In this work, a facile and powerful base-catalyzed acetonitrile-azide click polymerization was successfully established under ambient conditions. This polymerization also enjoys the merits of short reaction time (15 min), 100% atom economy, transition-metal-free catalyst system, and regioselectivity. A series of poly(5-amino-1,2,3-triazole)s (PATAs) with high weight-average molecular weights (Mw, up to 204,000) were produced in excellent yields (up to 99%). The PATAs containing tetraphenylethene (TPE) moieties exhibit unique aggregation-induced emission (AIE) characteristics, which could be used to sensitively detect Fe(III) ions with a low limit of detection (1.205 × 10-7 M) and to specifically image lysosomes of living cells. Notably, PATAs could be facilely post-modified due to their containing primary amino groups in the polymer chains even through a one-pot tandem reaction. Thus, this work not only establishes a new powerful click polymerization to convert stable nitriles but also generates a series of PATAs with versatile properties for diverse applications.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Tian Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Rongyuan Zhang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK), Shenzhen, Guangdong 518172, China
| | - Mingzhao Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jie Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong (CUHK), Shenzhen, Guangdong 518172, China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| |
Collapse
|
5
|
Huang B, Wang K, Zhang J, Yan H, Zhao H, Han L, Han T, Tang BZ. Targeted and Long-Term Fluorescence Imaging of Plant Cytomembranes Using Main-Chain Charged Polyelectrolytes with Aggregation-Induced Emission. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38349972 DOI: 10.1021/acsami.3c16257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Fluorescent polyelectrolytes have attracted tremendous attention due to their unique properties and wide applications. However, current research objects of fluorescent polyelectrolytes mainly focus on side-chain charged polyelectrolytes, and the applications of polyelectrolytes in plant cytomembrane imaging with long time and high specificity still remain challenging. Herein, long-time and targeted fluorescence imaging of plant cytomembranes was achieved for the first time using main-chain charged polyelectrolytes (MCCPs) with aggregation-induced emission (AIE). A series of MCCPs were designed and synthesized, among which the red-emissive and AIE-active MCCP with a triphenylamine linker and a cyano group around the cationic ring-fused heterocyclic core showed the best fluorescence imaging performance of plant cells. Unlike other MCCPs and its neutral form of polymer, this cyano-substituted conjugated polyelectrolyte can specifically target the cytomembrane of plant cells within a short staining time with many advantages, including wash-free staining, high photostability and imaging integrity, excellent durability (at least 12 h), and low biotoxicity. In addition to onion epidermal cells, this AIE fluorescence probe also shows good imaging capabilities for other kinds of plant cells such as Glycine max and Vigna radiata. Such an AIE-active MCCP-based imaging system provides an effective design strategy to develop fluorescence probes with high specificity and long-term imaging ability toward plant plasma membranes.
Collapse
Affiliation(s)
- Baojian Huang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jinchuan Zhang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hewei Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hui Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
6
|
Li B, Feng B, Wang J, Qin Y. Recent progress on polymerization-induced emission. LUMINESCENCE 2023. [PMID: 38013245 DOI: 10.1002/bio.4630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023]
Abstract
The aggregate luminescence behaviors of polymeric luminescent materials have been attracting great attention. However, the importance of the polymerization process on luminescence, namely, polymerization-induced emission (PIE), has rarely been overviewed. In this review, recent advances in polymerization with PIE effects are summarized, including PIE with aromatic rings based on one-/two-/multi-component polymerizations, and PIE without aromatic rings according to disparate mechanisms of polymerizations. Typical examples are selected to elaborate the basic design principles, as well as the properties and potential applications of the luminous polymers. Moreover, the challenges and perspectives in this area are also discussed.
Collapse
Affiliation(s)
- Baixue Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Bingwen Feng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| | - Jia Wang
- Songshan Lake Materials Laboratory, Dongguan, China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, China
| |
Collapse
|
7
|
Chen J, Zhang Y. Hyperbranched Polymers: Recent Advances in Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:2222. [PMID: 37765191 PMCID: PMC10536223 DOI: 10.3390/pharmaceutics15092222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Hyperbranched polymers are a class of three-dimensional dendritic polymers with highly branched architectures. Their unique structural features endow them with promising physical and chemical properties, such as abundant surface functional groups, intramolecular cavities, and low viscosity. Therefore, hyperbranched-polymer-constructed cargo delivery carriers have drawn increasing interest and are being utilized in many biomedical applications. When applied for photodynamic therapy, photosensitizers are encapsulated in or covalently incorporated into hyperbranched polymers to improve their solubility, stability, and targeting efficiency and promote the therapeutic efficacy. This review will focus on the state-of-the-art studies concerning recent progress in hyperbranched-polymer-fabricated phototherapeutic nanomaterials with emphases on the building-block structures, synthetic strategies, and their combination with the codelivered diagnostics and synergistic therapeutics. We expect to bring our demonstration to the field to increase the understanding of the structure-property relationships and promote the further development of advanced photodynamic-therapy nanosystems.
Collapse
Affiliation(s)
| | - Yichuan Zhang
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
8
|
Li Y, Qi R, Wang X, Yuan H. Recent Strategies to Develop Conjugated Polymers for Detection and Therapeutics. Polymers (Basel) 2023; 15:3570. [PMID: 37688196 PMCID: PMC10490465 DOI: 10.3390/polym15173570] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The infectious diseases resulting from pathogenic microbes are highly contagious and the source of infection is difficult to control, which seriously endangers life and public health safety. Although the emergence of antibiotics has a good therapeutic effect in the early stage, the massive abuse of antibiotics has brought about the evolution of pathogens with drug resistance, which has gradually weakened the lethality and availability of antibiotics. Cancer is a more serious disease than pathogenic bacteria infection, which also threatens human life and health. Traditional treatment methods have limitations such as easy recurrence, poor prognosis, many side effects, and high toxicity. These two issues have led to the exploration and development of novel therapeutic agents (such as conjugated polymers) and therapeutic strategies (such as phototherapy) to avoid the increase of drug resistance and toxic side effects. As a class of organic polymer biological functional materials with excellent photoelectric properties, Conjugated polymers (CPs) have been extensively investigated in biomedical fields, such as the detection and treatment of pathogens and tumors due to their advantages of easy modification and functionalization, good biocompatibility and low cost. A rare comprehensive overview of CPs-based detection and treatment applications has been reported. This paper reviews the design strategies and research status of CPs used in biomedicine in recent years, introduces and discusses the latest progress of their application in the detection and treatment of pathogenic microorganisms and tumors according to different detection or treatment methods, as well as the limitations and potential challenges in prospective exploration.
Collapse
Affiliation(s)
- Yutong Li
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Ruilian Qi
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaoyu Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huanxiang Yuan
- Department of Chemistry, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
9
|
Lv S, Wang C, Xue K, Wang J, Xiao M, Sun Z, Han L, Shi L, Zhu C. Activated alkyne-enabled turn-on click bioconjugation with cascade signal amplification for ultrafast and high-throughput antibiotic screening. Proc Natl Acad Sci U S A 2023; 120:e2302367120. [PMID: 37364107 PMCID: PMC10318996 DOI: 10.1073/pnas.2302367120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Antimicrobial susceptibility testing plays a pivotal role in the discovery of new antibiotics. However, the development of simple, sensitive, and rapid assessment approaches remains challenging. Herein, we report an activated alkyne-based cascade signal amplification strategy for ultrafast and high-throughput antibiotic screening. First of all, a novel water-soluble aggregation-induced emission (AIE) luminogen is synthesized, which contains an activated alkyne group to enable fluorescence turn-on and metal-free click bioconjugation under physiological conditions. Taking advantage of the in-house established method for bacterial lysis, a number of clickable biological substances (i.e., bacterial solutes and debris) are released from the bacterial bodies, which remarkably increases the quantity of analytes. By means of the activated alkyne-mediated turn-on click bioconjugation, the system fluorescence signal is significantly amplified due to the increased labeling sites as well as the AIE effect. Such a cascade signal amplification strategy efficiently improves the detection sensitivity and thus enables ultrafast antimicrobial susceptibility assessment. By integration with a microplate reader, this approach is further applied to high-throughput antibiotic screening.
Collapse
Affiliation(s)
- Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, Shandong266109, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin300071, China
| |
Collapse
|
10
|
Fu H, Xue K, Zhang Y, Xiao M, Wu K, Shi L, Zhu C. Thermoresponsive Hydrogel-Enabled Thermostatic Photothermal Therapy for Enhanced Healing of Bacteria-Infected Wounds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206865. [PMID: 36775864 PMCID: PMC10104658 DOI: 10.1002/advs.202206865] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Photothermal therapy (PTT) has emerged as an attractive technique for the treatment of bacterial infections. However, the uncontrolled heat generation in conventional PTT inevitably causes thermal damages to healthy tissues and/or organs. It is thus essential to develop a smart and universal strategy to regulate the photothermal equilibrium temperature to a preset safe threshold. Herein, a thermoresponsive hydrogel-enabled thermostatic PTT system for enhanced healing of bacteria-infected wounds is reported. In this system, the near-infrared (NIR)-triggered heat generation by photothermal nanomaterials is spontaneously transferred to a thermoresponsive hydrogel with a lower critical solution temperature (LCST), leading to its rapid phase transition by forming considerable light-scattering centers to block NIR penetration. Such a dynamic and reversible process automatically regulates the photothermal equilibrium temperature to the phase-transition point of the LCST-type hydrogel. In contrast to temperature-uncontrolled conventional PTT with severe thermal damages, the thermoresponsive hydrogel-enabled thermostatic PTT provides effective protection on healthy tissues and/or organs, which remarkably accelerates wound healing by efficient bacterial eradication. This study establishes a smart, simple and universal PTT platform, holding great promise in the safe and efficient treatment of bacterial skin infections.
Collapse
Affiliation(s)
- Hao Fu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Yongxin Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Kaiyu Wu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of EducationState Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for New Organic MatterCollege of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
11
|
Zhu S, Zhao M, Zhou H, Wen Y, Wang Y, Liao Y, Zhou X, Xie X. One-pot synthesis of hyperbranched polymers via visible light regulated switchable catalysis. Nat Commun 2023; 14:1622. [PMID: 36959264 PMCID: PMC10036521 DOI: 10.1038/s41467-023-37334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/14/2023] [Indexed: 03/25/2023] Open
Abstract
Switchable catalysis promises exceptional efficiency in synthesizing polymers with ever-increasing structural complexity. However, current achievements in such attempts are limited to constructing linear block copolymers. Here we report a visible light regulated switchable catalytic system capable of synthesizing hyperbranched polymers in a one-pot/two-stage procedure with commercial glycidyl acrylate (GA) as a heterofunctional monomer. Using (salen)CoIIICl (1) as the catalyst, the ring-opening reaction under a carbon monoxide atmosphere occurs with high regioselectivity (>99% at the methylene position), providing an alkoxycarbonyl cobalt acrylate intermediate (2a) during the first stage. Upon exposure to light, the reaction enters the second stage, wherein 2a serves as a polymerizable initiator for organometallic-mediated radical self-condensing vinyl polymerization (OMR-SCVP). Given the organocobalt chain-end functionality of the resulting hyperbranched poly(glycidyl acrylate) (hb-PGA), a further chain extension process gives access to a core-shell copolymer with brush-on-hyperbranched arm architecture. Notably, the post-modification with 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) affords a metal-free hb-PGA that simultaneously improves the toughness and glass transition temperature of epoxy thermosets, while maintaining their storage modulus.
Collapse
Affiliation(s)
- Shuaishuai Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Maoji Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Hongru Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yingfeng Wen
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yong Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Yonggui Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xingping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Xiaolin Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| |
Collapse
|
12
|
Yao Y, Ding P, Yan C, Tao Y, Peng B, Liu W, Wang J, Cohen Stuart MA, Guo Z. Fluorescent Probes Based on AIEgen-Mediated Polyelectrolyte Assemblies for Manipulating Intramolecular Motion and Magnetic Relaxivity. Angew Chem Int Ed Engl 2023; 62:e202218983. [PMID: 36700414 DOI: 10.1002/anie.202218983] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Uniting photothermal therapy (PTT) with magnetic resonance imaging (MRI) holds great potential in nanotheranostics. However, the extensively utilized hydrophobicity-driven assembling strategy not only restricts the intramolecular motion-induced PTT, but also blocks the interactions between MR agents and water. Herein, we report an aggregation-induced emission luminogen (AIEgen)-mediated polyelectrolyte nanoassemblies (APN) strategy, which bestows a unique "soft" inner microenvironment with good water permeability. Femtosecond transient spectra verify that APN well activates intramolecular motion from the twisted intramolecular charge transfer process. This de novo APN strategy uniting synergistically three factors (rotational motion, local motion, and hydration number) brings out high MR relaxivity. For the first time, APN strategy has successfully modulated both intramolecular motion and magnetic relaxivity, achieving fluorescence lifetime imaging of tumor spheroids and spatio-temporal MRI-guided high-efficient PTT.
Collapse
Affiliation(s)
- Yongkang Yao
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Ding
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yining Tao
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Peng
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 200237, China
| | - Weimin Liu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 200237, China
| | - Junyou Wang
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Martien A Cohen Stuart
- State Key Laboratory of Chemical Engineering and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiqian Guo
- Department Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
13
|
Zhao M, Zhu S, Zhang G, Wang Y, Liao Y, Xu J, Zhou X, Xie X. One-Step Synthesis of Linear and Hyperbranched CO 2-Based Block Copolymers via Organocatalytic Switchable Polymerization. Macromolecules 2023. [DOI: 10.1021/acs.macromol.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Maoji Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Shuaishuai Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Guochao Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yong Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Yonggui Liao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Jing Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, People’s Republic of China
| | - Xingping Zhou
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| | - Xiaolin Xie
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
| |
Collapse
|
14
|
Fan D, Zhang F, Cui J, Wang D, Han T, Tang BZ. Synthesis of fluorescent multisubstituted polyquinolines by cascade C-H activation-based polyannulations of isonicotinamides and diynes. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1528-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Wang K, Liu J, Liu P, Wang D, Han T, Tang BZ. Multifunctional Fluorescent Main-Chain Charged Polyelectrolytes Synthesized by Cascade C-H Activation/Annulation Polymerizations. J Am Chem Soc 2023; 145:4208-4220. [PMID: 36763076 DOI: 10.1021/jacs.2c12654] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Fluorescent polyelectrolytes have attracted enormous attention as functional polymer materials. In contrast with the widely studied conjugated polyelectrolytes with ionic groups in side chains, fluorescent main-chain charged polyelectrolytes (MCCPs) have rarely been explored due to the large synthetic difficulty. Herein, we develop a facile and atom-economical N-heterocyclic carbene-directed cascade C-H activation/annulation polymerization strategy that can transform readily available imidazolium substrates and internal diynes into multifunctional fluorescent MCCPs with complex structures and high molecular weights (absolute Mn up to 135 600) in nearly quantitative yields. The presence of multisubstituted polycyclic N-heteroaromatic cations in polymer backbones endow the obtained MCCPs with excellent solution processability, high thermal stability, and dual-state efficient fluorescence in both solution and aggregate states. Benefiting from the strong electron-withdrawing capability of the cationic heterocycles in main chains, multicolored aggregate-state fluorescence can be readily achieved by modifying the substituents around the cationic ring-fused core. Taking advantage of the good photosensitivity of the fluorescent MCCP thin films, multiscale and high-resolution fluorescent photopatterns with different colors can be facilely prepared with potential applications in optical display devices and anticounterfeiting systems. Moreover, the strong electrostatic interactions of these cationic MCCPs with anionic polyelectrolytes enable them to form multicolored fluorescent interfacial polyelectrolyte complexation microfibers with directly visualized internal structures. Such flexible microfibers can be further made into diversified forms of fiber-based macroscopic patterns or painting.
Collapse
Affiliation(s)
- Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Peiying Liu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
16
|
Wang K, Yan S, Han T, Wu Q, Yan N, Kang M, Ge J, Wang D, Tang BZ. Cascade C-H-Activated Polyannulations toward Ring-Fused Heteroaromatic Polymers for Intracellular pH Mapping and Cancer Cell Killing. J Am Chem Soc 2022; 144:11788-11801. [PMID: 35736562 DOI: 10.1021/jacs.2c04032] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of straightforward and efficient synthetic methods toward ring-fused heteroaromatic polymers with attractive functionalities has great significance in both chemistry and materials science. Herein, we develop a facile cascade C-H-activated polyannulation route that can in situ generate multiple ring-fused aza-heteroaromatic polymers from readily available monomers in an atom-economical manner. A series of complex polybenzimidazole derivatives with high absolute molecular weights of up to 24 000 are efficiently produced in high yields within 2 h. Benefiting from their unique imidazole-containing ring-fused structures with multiple aryl pendants, the obtained polymers show excellent thermal and morphological stability, good solution processability, high refractive index, small chromic dispersion, as well as remarkable acid-base-responsive fluorescence. Taking advantage of the ratiometric fluorescence response of the triphenylamine-substituted heteroaromatic polymer to pH variations, we successfully apply it as a sensitive fluorescence probe for the mapping and quantitative analysis of intracellular pH in live cells. Furthermore, through the simple N-methylation reaction of the ring-fused polybenzimidazoles, diverse azonia-containing polyelectrolytes are readily produced, which can efficiently kill cancer cells via the synergistic effects of dark toxicity and phototoxicity.
Collapse
Affiliation(s)
- Kang Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Saisai Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Neng Yan
- Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Miaomiao Kang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinyin Ge
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China.,Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
17
|
Wang C, Wang J, Xue K, Xiao M, Sun Z, Zhu C. A receptor-targeting AIE photosensitizer for selective bacterial killing and real-time monitoring of photodynamic therapy outcome. Chem Commun (Camb) 2022; 58:7058-7061. [PMID: 35648071 DOI: 10.1039/d2cc02230c] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A receptor-targeting AIE photosensitizer (CE-TPA) is synthesized by conjugating cephalothin with a cationic D-A type AIE photosensitizer for selective killing of Gram-positive bacteria over Gram-negative bacteria and normal mammalian cells. By virtue of the strong photosensitization capability, CE-TPA exhibits efficient killing against Gram-positive methicillin-resistant Staphylococcus aureus. More importantly, the photodynamic bactericidal outcome can be conveniently reflected in a real-time fashion by the polarity-sensitive property of CE-TPA.
Collapse
Affiliation(s)
- Cheng Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhencheng Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Hao B, Wang J, Wang C, Xue K, Xiao M, Lv S, Zhu C. Bridging D-A type photosensitizers with the azo group to boost intersystem crossing for efficient photodynamic therapy. Chem Sci 2022; 13:4139-4149. [PMID: 35440990 PMCID: PMC8985587 DOI: 10.1039/d2sc00381c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022] Open
Abstract
Photodynamic therapy (PDT) has attracted much attention in disease treatments. However, the exploration of a novel method for the construction of outstanding photosensitizers (PSs) with stimuli-responsiveness remains challenging. In this study, we, for the first time, report a novel and effective strategy to boost reactive oxygen species (ROS) generation by bridging donor-acceptor (D-A) type PSs with the azo group. In contrast to the counterpart without azo-bridging, the azo-bridged PSs exhibit remarkably enhanced ROS generation via both type-I and type-II photochemical reactions. Theoretical calculations suggest that azo-bridging leads to a prominent reduction in ΔE ST, thereby enabling enhanced ROS generation via efficient intersystem crossing (ISC). The resulting azo-bridged PS (denoted as Azo-TPA-Th(+)) exhibits a particularly strong bactericidal effect against clinically relevant drug-resistant bacteria, with the killing efficiency up to 99.999999% upon white light irradiation. Since azo-bridging generates an azobenzene structure, Azo-TPA-Th(+) can undergo trans-to-cis isomerization upon UV irradiation to form emissive aggregates by shutting down the ISC channel. By virtue of the fluorescence turn-on property of unbound Azo-TPA-Th(+), we propose a straightforward method to directly discern the effective photodynamic bactericidal dose without performing the tedious plate-counting assay. This study opens a brand-new avenue for the design of advanced PSs with both strong ROS generation and stimuli-responsiveness, holding great potential in high-quality PDT with rapid prediction of the therapeutic outcome.
Collapse
Affiliation(s)
- Boyi Hao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
19
|
Wang C, Wang J, Xue K, Xiao M, Wu K, Lv S, Hao B, Zhu C. Polarity-Sensitive Fluorescent Probe for Reflecting the Packing Degree of Bacterial Membrane Lipids. Anal Chem 2022; 94:3303-3312. [PMID: 35133812 DOI: 10.1021/acs.analchem.1c05268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The maintenance of an intact membrane structure is of great importance for bacteria to execute various biological functions. However, chemical probes for monitoring the dynamic changes of bacterial membranes are barely reported. Herein, we, for the first time, report a novel polarity-sensitive probe for reflecting the packing degree of bacterial membrane lipids. Specifically, we synthesize a membrane-targeting fluorescent probe (TICT-lipid) that possesses both twist intramolecular charge transfer and aggregation-induced emission properties. TICT-lipid exhibits sensitive responses to the minute difference in the packing degree of membrane lipids, facilitating rapid differentiation of Gram-negative and Gram-positive bacteria. Interestingly, in the presence of membrane-disrupting antibiotics, the localization of TICT-lipid shifts from the outer membrane to the cell membrane by outputting blue-shifted and enhanced emission, making the mechanism of action of antibiotics clearly visible. TICT-lipid is a polarity-sensitive fluorescent probe, holding great promise in the study of membrane-related bacterial processes and antibiotic screening.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Minghui Xiao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kaiyu Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Boyi Hao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Liu X, Zhu C, Tang BZ. Bringing Inherent Charges into Aggregation-Induced Emission Research. Acc Chem Res 2022; 55:197-208. [PMID: 34985255 DOI: 10.1021/acs.accounts.1c00630] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged organic molecules, such as DNA, RNA, proteins, and polysaccharides, are ubiquitous and indispensable in natural living systems, which possess specific biological functions to interact with oppositely charged species via electrostatic attraction. The molecules with inherent charges typically differentiate themselves from the neutral ones with unique attributes (e.g., ionic interactions and high polarity), thereby playing a pivotal role in a broad spectrum of areas, including supramolecular chemistry, structural biology, and materials science. It is thus of great importance to explore and develop various charged organic systems for biomimicry and the creation of functional materials. In 2001, our group reported a peculiar luminogen that exhibited weak emission in solution but had significantly enhanced emission in aggregates, and we, for the first time, coined this phenomenon as aggregation-induced emission (AIE). The AIE concept significantly changes the cognition of the scientific community toward classic photophysical phenomena. Since the discovery of this unusual luminescence phenomenon, AIE luminogens (AIEgens) have attracted extensive attention from researchers in a plethora of disciplines because of their high brightness in aggregates, large Stokes shift, excellent photostability, and good biocompatibility. In the past 10 years, our laboratory has expended a great amount of effort to bring inherent charges into AIE research and acquired fruitful achievements.In this Account, we summarize the progress of charged AIE systems primarily made by our laboratory. We start with a brief introduction to charged AIEgens and then discuss their design strategies from molecular and topological perspectives, respectively. Next, we review the unique properties of charged AIEgens, including D-A interactions, anion-π+ interactions, and intermolecular electrostatic interactions, with an emphasis on how they differentiate themselves from the neutral analogs. On the one hand, positively charged AIEgens exhibit unique photophysical properties by forming typical donor-acceptor structures to manipulate the emission wavelength or initiate ultralong persistent luminescence. On the other hand, positively charged AIEgens exhibit unique physiochemical properties, such as an adjustable targeting capability toward biological targets and a strong capability for the generation of reactive oxygen species. Furthermore, we showcase the applications of charged AIEgens in imaging and diagnosis, photodynamic therapy, gas separation, and solar desalination. Finally, we conclude this Account with a summary and some perspectives regarding the existing challenges and future directions. We hope that this Account can spark new ideas and inspire scientists from different disciplines to explore this nascent yet promising research area.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Shenzhen Institute of Molecular Aggregate Science and Engineering, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong 518172, China
| |
Collapse
|
21
|
Xue K, Wang C, Wang J, Lv S, Hao B, Zhu C, Tang BZ. A Sensitive and Reliable Organic Fluorescent Nanothermometer for Noninvasive Temperature Sensing. J Am Chem Soc 2021; 143:14147-14157. [PMID: 34288685 DOI: 10.1021/jacs.1c04597] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sensing temperature at the subcellular level is of great importance for the understanding of miscellaneous biological processes. However, the development of sensitive and reliable organic fluorescent nanothermometers remains challenging. In this study, we report the fabrication of a novel organic fluorescent nanothermometer and study its application in temperature sensing. First of all, we synthesize a dual-responsive organic luminogen that can respond to the molecular state of aggregation and environmental polarity. Next, natural saturated fatty acids with sharp melting points as well as reversible and rapid phase transition are employed as the encapsulation matrix to correlate external heat information with the fluorescence properties of the luminogen. To apply the composite materials for biological application, we formulate them into colloidally dispersed nanoparticles by a technique that combines in situ surface polymerization and nanoprecipitation. As anticipated, the resultant zwitterionic nanothermometer exhibits sensitive, reversible, reliable, and multiparametric responses to temperature variation within a narrow range around the physiological temperature (i.e., 37 °C). Taking spectral position, fluorescence intensity, and fluorescence lifetime as the correlation parameters, the maximum relative thermal sensitivities are determined to be 2.15% °C-1, 17.06% °C-1, and 17.72% °C-1, respectively, which are much higher than most fluorescent nanothermometers. Furthermore, we achieve the multimodal temperature sensing of bacterial biofilms using these three complementary fluorescence parameters. Besides, we also fabricate a cationic form of the nanothermometer to facilitate efficient cellular uptake, holding great promise for studying thermal behaviors in biological systems.
Collapse
Affiliation(s)
- Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jiaxin Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Boyi Hao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|