1
|
Gary S, Woolley J, Goia S, Bloom S. Unlocking flavin photoacid catalysis through electrophotochemistry. Chem Sci 2024; 15:11444-11454. [PMID: 39055006 PMCID: PMC11268482 DOI: 10.1039/d4sc03054k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Molecular flavins are one of the most versatile photocatalysts. They can coordinate single and multiple electron transfer processes, gift hydrogen atoms, form reversible covalent linkages that support group transfer mechanisms, and impart photonic energy to ground state molecules, priming them for downstream reactions. But one mechanism that has not featured extensively is the ability of flavins to act as photoacids. Herein, we disclose our proof-of-concept studies showing that electrophotochemistry can transform fully oxidized flavin quinones to super-oxidized flavinium photoacids that successfully guide proton-transfer and deliver acid-catalyzed products. We also show that these species can adopt a second mechanism wherein they react with water to release hydroxyl radicals that facilitate hydrogen-atom abstraction and sp3C-H functionalization protocols. Together, this unprecedented bimodal reactivity enables electro-generated flavinium salts to affect synthetic chemistries previously unknown to flavins, greatly expanding their versatility as catalysts.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas Lawrence 66045 USA
| | - Jack Woolley
- Department of Physics, University of Warwick Coventry CV4 7AL UK
| | - Sofia Goia
- Forensic Centre for Digital Scanning and 3D Printing, WMG, University of Warwick Coventry CV4 7AL UK
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas Lawrence 66045 USA
| |
Collapse
|
2
|
Sterling AJ, Ciccia NR, Guo Y, Hartwig JF, Head-Gordon M. Mechanistic Insights into the Origins of Selectivity in a Cu-Catalyzed C-H Amidation Reaction. J Am Chem Soc 2024; 146:6168-6177. [PMID: 38381006 DOI: 10.1021/jacs.3c13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/22/2024]
Abstract
The catalytic transformation of C-H to C-N bonds offers rapid access to fine chemicals and high-performance materials, but achieving high selectivity from undirected aminations of unactivated C(sp3)-H bonds remains an outstanding challenge. We report the origins of the reactivity and selectivity of a Cu-catalyzed C-H amidation of simple alkanes. Using a combination of experimental and computational mechanistic studies and energy decomposition techniques, we uncover a switch in mechanism from inner-sphere to outer-sphere coupling between alkyl radicals and the active Cu(II) catalyst with increasing substitution of the alkyl radical. The combination of computational predictions and detailed experimental validation shows that simultaneous minimization of both Cu-C covalency and alkyl radical size increases the rate of reductive elimination and that both strongly electron-donating and electron-withdrawing substituents on the catalyst accelerate the selectivity-determining C-N bond formation process as a result of a change in mechanism. These findings offer design principles for the development of improved catalyst scaffolds for radical C-H functionalization reactions.
Collapse
Affiliation(s)
- Alistair J Sterling
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Nicodemo R Ciccia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yifan Guo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Zhao Q, Yao QY, Zhang YJ, Xu T, Zhang J, Chen X. Selective Cyclopropanation/Aziridination of Olefins Catalyzed by Bis(pyrazolyl)borate Cu(I) Complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Jianshe Road 453007 Xinxiang CHINA
| | - Qiu-Yue Yao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Yan-Jiao Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Ting Xu
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Jie Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Xuenian Chen
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| |
Collapse
|
4
|
Wu H, Qu B, Nguyen T, Lorenz JC, Buono F, Haddad N. Recent Advances in Non-Precious Metal Catalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Wu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Bo Qu
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Thach Nguyen
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Jon C. Lorenz
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Frederic Buono
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Nizar Haddad
- Chemical Development US, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| |
Collapse
|
5
|
Muñoz-Molina JM, Bafaluy D, Funes-Ardoiz I, de Aguirre A, Maseras F, Belderrain TR, Pérez PJ, Muñiz K. Mechanistic Studies on the Synthesis of Pyrrolidines and Piperidines via Copper-Catalyzed Intramolecular C–H Amination. Organometallics 2022; 41:1099-1105. [PMID: 35572769 PMCID: PMC9092462 DOI: 10.1021/acs.organomet.2c00095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2022] [Indexed: 12/02/2022]
Abstract
![]()
We have recently
developed a method for the synthesis of pyrrolidines
and piperidines via intramolecular C–H amination of N-fluoride amides using [TpxCuL] complexes as precatalysts [Tpx =
tris(pyrazolyl)borate ligand and L = THF or CH3CN]. Herein,
we report mechanistic studies on this transformation, which includes
the isolation and structural characterization of a fluorinated copper(II)
complex, [(TpiPr2OH)CuF] [TpiPr = hydrotris(3,5-diisopropylpyrazolyl)borate],
pertinent to the mechanistic pathway. The effects of the nature of
the Tpx ligand in the copper catalyst
as well as of the halide in the N–X amides employed as reactants
have been investigated both from experimental and computational perspectives.
Collapse
Affiliation(s)
- José María Muñoz-Molina
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - Daniel Bafaluy
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Ignacio Funes-Ardoiz
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Adiran de Aguirre
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Tomás R. Belderrain
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - Kilian Muñiz
- Institute of Chemical Research of Catalonia, ICIQ, The Barcelona Institute of Science and Technology, Av. Països Catalans, 16, 43007 Tarragona, Spain
| |
Collapse
|
6
|
Pulcinella A, Mazzarella D, Noël T. Homogeneous catalytic C(sp 3)-H functionalization of gaseous alkanes. Chem Commun (Camb) 2021; 57:9956-9967. [PMID: 34495026 DOI: 10.1039/d1cc04073a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The conversion of light alkanes into bulk chemicals is becoming an important challenge as it effectively avoids the use of prefunctionalized alkylating reagents. The implementation of such processes is, however, hampered by their gaseous nature and low solubility, as well as the low reactivity of the C-H bonds. Efforts have been made to enable both polar and radical processes to activate these inert compounds. In addition, these methodologies also benefit significantly from the development of a suitable reactor technology that intensifies gas-liquid mass transfer. In this review, we critically highlight these developments, both from a conceptual and a practical point of view. The recent expansion of these mechanistically-different methods have enabled the use of various gaseous alkanes for the development of different bond-forming reactions, including C-C, C-B, C-N, C-Si and C-S bonds.
Collapse
Affiliation(s)
- Antonio Pulcinella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Daniele Mazzarella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Fuentes MÁ, Gava R, Saper NI, Romero EA, Caballero A, Hartwig JF, Pérez PJ. Copper-Catalyzed Dehydrogenative Amidation of Light Alkanes. Angew Chem Int Ed Engl 2021; 60:18467-18471. [PMID: 33979475 PMCID: PMC8457245 DOI: 10.1002/anie.202104737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2021] [Indexed: 01/18/2023]
Abstract
The functionalization of C-H bonds in light alkanes, particularly to form C-N bonds, remains a challenge. We report the dehydrogenative coupling of amides with C1-C4 hydrocarbons to form N-alkyl amide products with tBuOOtBu as oxidant, and a copper complex of a phenanthroline-type ligand as catalyst. The reactions occurred in good yields in benzene or supercritical carbon dioxide as solvents. This strategy allowed for the determination of the relative reactivity of these alkane C-H bonds toward this amination process and showed, in contrast to prior work with larger alkanes, that the reactivity correlated with bond dissociation energies.
Collapse
Affiliation(s)
- M Ángeles Fuentes
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Riccardo Gava
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - Noam I Saper
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Erik A Romero
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Ana Caballero
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Pedro J Pérez
- Laboratorio de Catálisis Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007, Huelva, Spain
| |
Collapse
|