1
|
Kaasik M, Chen PP, Ričko S, Jørgensen KA, Houk KN. Asymmetric [4 + 2], [6 + 2], and [6 + 4] Cycloadditions of Isomeric Formyl Cycloheptatrienes Catalyzed by a Chiral Diamine Catalyst. J Am Chem Soc 2023; 145:23874-23890. [PMID: 37862136 DOI: 10.1021/jacs.3c09551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Novel asymmetric aminocatalytic cycloadditions are described between formyl cycloheptatrienes and 6,6-dimethylfulvene that lead to [4 + 2], [6 + 2], and [4 + 6] cycloadducts. The unprecedented reaction course is dependent on the position of the formyl functionality in the cycloheptatriene core, and each formyl cycloheptatriene isomer displays a distinct reactivity pattern. The formyl cycloheptatriene isomers are activated by a chiral primary diamine catalyst, and the activation mode is dependent on the position of the formyl functionality relative to the cycloheptatriene core. The [4 + 2] and [6 + 2] cycloadducts are formed via rare iminocatalytic inverse electron-demand cycloadditions, while the [4 + 6] cycloadduct is formed by a normal electron-demand cycloaddition. The reactivity displayed by the different formyl cycloheptatrienes was investigated by DFT calculations. These computational studies account for the different reaction paths for the three isomeric formyl cycloheptatrienes. The aminocatalytic [4 + 2], [6 + 2], and [4 + 6] cycloadditions proceed by stepwise processes, and the interplay between conjugation, substrate distortion, and dispersive interactions between the fulvene and aminocatalyst mainly defines the outcome of each cycloaddition.
Collapse
Affiliation(s)
- Mikk Kaasik
- Department of Chemistry, Aarhus University, DK-80000 Aarhus C, Denmark
| | - Pan-Pan Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Sebastijan Ričko
- Department of Chemistry, Aarhus University, DK-80000 Aarhus C, Denmark
- Aarhus Institute of Advanced Studies, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Bitsch RS, Jessen NI, Jørgensen KA. Higher-Order Cycloaddition Reactions for the Construction of Polycyclic Aromatic and Polycyclic Heteroaromatic Compounds. Chemistry 2023; 29:e202204008. [PMID: 36592117 DOI: 10.1002/chem.202204008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/03/2023]
Abstract
Cycloadditions are an important class of reactions in materials science for the construction of polycyclic aromatic and polycyclic heteroaromatic compounds. Recently, cycloadditions have been expanded beyond the "classical" group of cycloadditions involving six π-electrons, and it is now possible to control cycloadditions for an extended number of π-electrons by applying organocatalysis. This novel field of cycloadditions-termed higher-order cycloadditions-allows new synthetic methodologies to construct polycyclic carbo- and heteroaromatic compounds in two or three dimensions. This concept presents higher-order cycloadditions as a method for accessing two- and three-dimensional azulenes and cyclazines, as well as three dimensional indenes, as polycyclic aromatic and polycyclic heteroaromatic compounds.
Collapse
Affiliation(s)
- René S Bitsch
- Department of Chemistry, Aarhus University, 8000, Aarhus C, Denmark
| | | | | |
Collapse
|
3
|
Li A, Gao Y, Lu JB, Chen ZC, Du W, Chen YC. Asymmetric higher-order [10 + n] cycloadditions of palladium-containing 10π-cycloaddends. Chem Sci 2022; 13:9265-9270. [PMID: 36092999 PMCID: PMC9384823 DOI: 10.1039/d2sc02985e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/14/2022] [Indexed: 11/21/2022] Open
Abstract
We uncovered an asymmetric higher-order [10 + 2] cycloaddition reaction between diverse activated alkenes and a new type of π-allylpalladium complex-containing dipole-type 10π-cycloaddend, which was generated in situ from 2-methylene-1-indanols via a dehydrative insertion and deprotonation strategy under double activation of Pd(0) and phosphoric acid. A similar strategy was applied to an asymmetric higher-order [10 + 8] cycloaddition reaction or [10 + 4] cycloaddition reaction by using a heptafulvene derivative or a cyclic enone, respectively, as the acceptor. A variety of polycyclic frameworks imbedding an indene core were generally furnished in moderate to excellent yields with high levels of enantioselectivity by employing a newly designed chiral phosphoramidite ligand.
Collapse
Affiliation(s)
- Ao Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Yang Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Jian-Bin Lu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Zhi-Chao Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University Chengdu 610041 China +86 28 85502609
- College of Pharmacy, Third Military Medical University Shapingba, Chongqing 400038 China
| |
Collapse
|
4
|
Zhao JQ, Zhou S, Qian HL, Wang ZH, Zhang YP, You Y, Yuan WC. Higher-order [10 + 2] cycloaddition of 2-alkylidene-1-indanones enables the dearomatization of 3-nitroindoles: access to polycyclic cyclopenta[ b]indoline derivatives. Org Chem Front 2022. [DOI: 10.1039/d2qo00289b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The higher-order [10 + 2] cycloaddition of 3-nitroindoles and 2-alkylidene-1-indanones enables the dearomatization of 3-nitroindoles and affords a range of structurally diverse cyclopenta[b]indolines with excellent results.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Shun Zhou
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hui-Ling Qian
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
5
|
|
6
|
Yang G, Li Z, Liu Y, Guo D, Sheng X, Wang J. Organocatalytic Higher-Order [8+2] Cycloaddition for the Assembly of Atropoenantiomeric 3-Arylindolizines. Org Lett 2021; 23:8109-8113. [PMID: 34590868 DOI: 10.1021/acs.orglett.1c03220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present an unprecedented atroposelective [8+2] cycloaddition reaction between pyridinium/isoquinolinium ylides and ynals. It is worth noting that this protocol represents a new example of the organocatalyzed atropoenantioselective higher-order cycloaddition reaction, providing various axial chiral 3-arylindolizines in good yields and high enantioselectivities. In addition, the obtained axially chiral 3-aryldolizines also provide many opportunities for structural transformations and potential drug discovery.
Collapse
Affiliation(s)
- Gongming Yang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zhipeng Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Yuhan Liu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Xijun Sheng
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Jian Wang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|