1
|
Zheng Y, Yang T, Chan KF, Lin Z, Huang Z. Cobalt-catalysed desymmetrization of malononitriles via enantioselective borohydride reduction. Nat Chem 2024; 16:1845-1854. [PMID: 39367062 DOI: 10.1038/s41557-024-01592-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 07/02/2024] [Indexed: 10/06/2024]
Abstract
The high nitrogen content and diverse reactivity of malononitrile are widely harnessed to access nitrogen-rich fine chemicals. Although the facile substitutions of malononitrile can give structurally diverse quaternary carbons, their access to enantioenriched molecules, particularly chiral amines that are prevalent in bioactive compounds, remains rare. Here we report a cobalt-catalysed desymmetric reduction of disubstituted malononitriles to give highly functionalized β-quaternary amines. The pair of cobalt salt and sodium borohydride is proposed to generate a cobalt-hydride intermediate and initiate the reduction. Meanwhile, the enantiocontrol of the dinitrile is achieved through a tailored bisoxazoline ligand with two large flanks that create a narrow gap to host the bystanding nitrile and thus restrict the C(ipso)-C(α) bond rotation of the complexed one. Combined with the extensive derivatization possibilities of all substituents on the quaternary carbon, this asymmetric reduction unlocks pathways from malononitrile as a bulk chemical feedstock to intricate, chiral nitrogen-containing molecules.
Collapse
Affiliation(s)
- Yin Zheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Tilong Yang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ka Fai Chan
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
2
|
Xu A, Ren L, Huang J, Zhu Y, Wang G, Li C, Sun Y, Song L, You H, Chen FE. Highly enantioselective synthesis of both enantiomers of tetrahydroquinoxaline derivatives via Ir-catalyzed asymmetric hydrogenation. Chem Sci 2024:d4sc04222k. [PMID: 39246375 PMCID: PMC11376201 DOI: 10.1039/d4sc04222k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
A novel Ir-catalyzed asymmetric hydrogenation protocol for the synthesis of chiral tetrahydroquinoxaline (THQ) derivatives has been developed. By simply adjusting the reaction solvent, both enantiomers of mono-substituted chiral THQs could be selectively obtained in high yields with excellent enantioselectivities (toluene/dioxane: up to 93% yield and 98% ee (R); EtOH: up to 83% yield and 93% ee (S)). For 2,3-disubstituted chiral THQs, the cis-hydrogenation products were obtained with up to 95% yield, 20 : 1 dr, and 94% ee. Remarkably, this methodology was also applicable under continuous flow conditions, yielding gram-scale products with comparable yields and enantioselectivities (dioxane: 91% yield and 93% ee (R); EtOH: 90% yield and 87% ee (S)). Unlike previously reported Ir-catalyzed asymmetric hydrogenation protocols, this system exhibited a significant improvement as it required no additional additives. Furthermore, comprehensive mechanistic studies including deuterium-labeling experiments, control experiments, kinetic studies, and density functional theory (DFT) calculations were conducted to reveal the underlying mechanism of enantioselectivities for both enantiomers.
Collapse
Affiliation(s)
- Ana Xu
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Lanxing Ren
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- School of Chemistry and Chemical Engineering, Hunan Province Key Laboratory for the Design and Application of Actinide Complexes, University of South China Hengyang City Hunan Province 421001 P.R. China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yuxiang Zhu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Gang Wang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Chaoyi Li
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Yongqiang Sun
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University Shanghai 200433 China
| |
Collapse
|
3
|
Wang H, Jie X, Su T, Wu Q, Kuang J, Sun Z, Zhao Y, Chong Q, Guo Y, Zhang Z, Meng F. Cobalt-Catalyzed Chemo- and Stereoselective Transfer Semihydrogenation of 1,3-Dienes with Water as a Hydrogen Source. J Am Chem Soc 2024; 146:23476-23486. [PMID: 39110419 DOI: 10.1021/jacs.4c06925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
(Z)-1,2-Disubstituted, trisubstituted, and tetrasubstituted alkenes are not only important units in medicinal chemistry, natural product synthesis, and material science but also useful intermediates in organic synthesis. Development of catalytic stereoselective transformations to access multisubstituted alkenes with various substitution patterns from easily accessible modular starting materials and readily available catalysts is a crucial goal in the field of catalysis. Water is an ideal hydrogen source for catalytic transfer hydrogenation despite of the high difficulty to activate water. Here, we report a cobalt-catalyzed protocol for regio- and stereoselective transfer semihydrogenation of 1,3-dienes to construct a broad scope of (Z)-1,2-disubstituted, (Z)-, (E)-trisubstituted, and tetrasubstituted alkenes in high stereoselectivity with H2O as the hydrogen source. Mechanistic studies revealed that the reactions proceeded through a unique Co(I)/Co(III) cycle and involved a 1,4-cobalt shift process, which is an unprecedented reaction pathway, providing a new platform for modular synthesis of multisubstituted alkenes as well as opportunities for designing novel reaction modes and pushing forward the advancement in organocobalt chemistry.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiaofeng Jie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Ting Su
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qianghui Wu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jian Kuang
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhao Sun
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yingying Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei 430079, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100871, China
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
5
|
Mendelsohn LN, MacNeil CS, Esposito MR, Pabst TP, Leahy DK, Davies IW, Chirik PJ. Asymmetric Hydrogenation of Indazole-Containing Enamides Relevant to the Synthesis of Zavegepant Using Neutral and Cationic Cobalt Precatalysts. Org Lett 2024; 26:2718-2723. [PMID: 37270693 DOI: 10.1021/acs.orglett.3c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The cobalt-catalyzed asymmetric hydrogenation of indazole-containing enamides relevant to the synthesis of the calcitonin gene-related peptide (CGRP) receptor antagonist, zavegepant (1), approved for the treatment of migraines, is described. Both neutral bis(phosphine)cobalt(II) and cationic bis(phosphine)cobalt(I) complexes served as efficient precatalysts for the enamide hydrogenation reactions, providing excellent yield and enantioselectivities (up to >99.9%) for a range of related substrates, though key reactivity differences were observed. Hydrogenation of indazole-containing enamide, methyl (Z)-2-acetamido-3-(7-methyl-1H-indazol-5-yl)acrylate, was performed on a 20 g scale.
Collapse
Affiliation(s)
- Lauren N Mendelsohn
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Connor S MacNeil
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Madison R Esposito
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David K Leahy
- Biohaven, LTD, New Haven, Connecticut 06510, United States
| | - Ian W Davies
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Chakrabortty S, de Bruin B, de Vries JG. Cobalt-Catalyzed Asymmetric Hydrogenation: Substrate Specificity and Mechanistic Variability. Angew Chem Int Ed Engl 2024; 63:e202315773. [PMID: 38010301 DOI: 10.1002/anie.202315773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Asymmetric hydrogenation finds widespread application in academia and industry. And indeed, a number of processes have been implemented for the production of pharma and agro intermediates as well as flavors & fragrances. Although these processes are all based on the use of late transition metals as catalysts, there is an increasing interest in the use of base metal catalysis in view of their lower cost and the expected different substrate scope. Catalysts based on cobalt have already shown their potential in enantioselective hydrogenation chemistry. This review outlines the impressive progress made in recent years on cobalt-catalyzed asymmetric hydrogenation of different unsaturated substrates. We also illustrate the ligand dependent substrate specificity as well as the mechanistic variability in detail. This may well guide further catalyst development in this research area.
Collapse
Affiliation(s)
| | - Bas de Bruin
- Van 't Hoff Institute for Molecular Sciences (HIMS), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Johannes G de Vries
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
7
|
Chen T, Hu Y, Tang X, Zou Y, Wei L, Zhang Z, Zhang W. Cobalt-Catalyzed Enantioselective Reductive Amination of Ketones with Hydrazides. Org Lett 2024; 26:769-774. [PMID: 38047613 DOI: 10.1021/acs.orglett.3c03529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
An efficient cobalt-catalyzed asymmetric reductive amination of ketones with hydrazides has been realized, directly producing valuable chiral hydrazines in high yields and enantioselectivities (up to 98% enantiomeric excess).
Collapse
Affiliation(s)
- Tiantian Chen
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xuyang Tang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Liangming Wei
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, School of Electronics, Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
8
|
Song X, Bai S, Li Y, Yi T, Long X, Pu Q, Dang T, Ma M, Ren Q, Qin X. Expedient and divergent synthesis of unnatural peptides through cobalt-catalyzed diastereoselective umpolung hydrogenation. SCIENCE ADVANCES 2023; 9:eadk4950. [PMID: 38117889 PMCID: PMC10732522 DOI: 10.1126/sciadv.adk4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
The development of a reliable method for asymmetric synthesis of unnatural peptides is highly desirable and particularly challenging. In this study, we present a versatile and efficient approach that uses cobalt-catalyzed diastereoselective umpolung hydrogenation to access noncanonical aryl alanine peptides. This protocol demonstrates good tolerance toward various functional groups, amino acid sequences, and peptide lengths. Moreover, the versatility of this reaction is illustrated by its successful application in the late-stage functionalization and formal synthesis of various representative chiral natural products and pharmaceutical scaffolds. This strategy eliminates the need for synthesizing chiral noncanonical aryl alanines before peptide formation, and the hydrogenation reaction does not result in racemization or epimerization. The underlying mechanism was extensively explored through deuterium labeling, control experiments, HRMS identification, and UV-Vis spectroscopy, which supported a reasonable CoI/CoIII catalytic cycle. Notably, acetic acid and methanol serve as safe and cost-effective hydrogen sources, while indium powder acts as the terminal electron source.
Collapse
Affiliation(s)
- Xinjian Song
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Shuangyi Bai
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Yuan Li
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Tong Yi
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xinyu Long
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qinghua Pu
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Ting Dang
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Mengjie Ma
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Qiao Ren
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
| | - Xurong Qin
- Engineering Research Center of Coptis Development and Utilization, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Road, Chongqing, 400715, P. R. China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, No. 94 Wei Jin Road, Tianjin, 300071, P. R. China
| |
Collapse
|
9
|
Yang H, Hu Y, Zou Y, Zhang Z, Zhang W. Cobalt-Catalyzed Efficient Asymmetric Hydrogenation of α-Primary Amino Ketones. JACS AU 2023; 3:2981-2986. [PMID: 38034968 PMCID: PMC10685343 DOI: 10.1021/jacsau.3c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Based on an amino-group-assisted coordination strategy and a proton-shuttle-activated outer-sphere mode, the cobalt-catalyzed asymmetric hydrogenation of α-primary amino ketones has been developed, resulting in the efficient synthesis of chiral vicinal amino alcohols bearing functionalized aryl rings in high yields and enantioselectivities (up to 99% enantiomeric excess (ee)) within 0.5 h.
Collapse
Affiliation(s)
- Huiwen Yang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanhua Hu
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yashi Zou
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhenfeng Zhang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai
Key Laboratory for Molecular Engineering of Chiral Drugs, School of
Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Frontiers
Science Center for Transformative Molecules, School of Chemistry and
Chemical Engineering, Shanghai Jiao Tong
University, Shanghai 200240, China
| |
Collapse
|
10
|
Xu A, Li C, Huang J, Pang H, Zhao C, Song L, You H, Zhang X, Chen FE. Highly enantioselective synthesis of both tetrahydroquinoxalines and dihydroquinoxalinones via Rh-thiourea catalyzed asymmetric hydrogenation. Chem Sci 2023; 14:9024-9032. [PMID: 37655018 PMCID: PMC10466277 DOI: 10.1039/d3sc00803g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/03/2023] [Indexed: 09/02/2023] Open
Abstract
Chiral tetrahydroquinoxalines and dihydroquinoxalinones represent the core structure of many bioactive molecules. Herein, a simple and efficient Rh-thiourea-catalyzed asymmetric hydrogenation for enantiopure tetrahydroquinoxalines and dihydroquinoxalinones was developed under 1 MPa H2 pressure at room temperature. The reaction was magnified to the gram scale furnishing the desired products with undamaged yield and enantioselectivity. Application of this methodology was also conducted successfully under continuous flow conditions. In addition, 1H NMR experiments revealed that the introduction of a strong Brønsted acid, HCl, not only activated the substrate but also established anion binding between the substrate and the ligand. More importantly, the chloride ion facilitated heterolytic cleavage of dihydrogen to regenerate the active dihydride species and HCl, which was computed to be the rate-determining step. Further deuterium labeling experiments and density functional theory (DFT) calculations demonstrated that this reaction underwent a plausible outer-sphere mechanism in this new catalytic transformation.
Collapse
Affiliation(s)
- Ana Xu
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Chaoyi Li
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Junrong Huang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Heng Pang
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Chengyao Zhao
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Hengzhi You
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
| | - Xumu Zhang
- Department of Chemistry, Shenzhen Grubbs Institute, Southern University of Science and Technology Shenzhen 518055 China
| | - Fen-Er Chen
- School of Science, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen) Taoyuan Street, Nanshan District Shenzhen 518055 China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
11
|
Gridnev ID. Co-Catalyzed Asymmetric Hydrogenation. The Same Enantioselection Pattern for Different Mechanisms. Int J Mol Sci 2023; 24:5568. [PMID: 36982642 PMCID: PMC10057697 DOI: 10.3390/ijms24065568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The mechanism of the recently reported catalyzed asymmetric hydrogenation of enyne 1 catalyzed by the Co-(R,R)-QuinoxP* complex was studied by DFT. Conceivable pathways for the Co(I)-Co(III) mechanism were computed together with a Co(0)-Co(II) catalytic cycle. It is commonly assumed that the exact nature of the chemical transformations taking place along the actually operating catalytic pathway determine the sense and level of enantioselection of the catalytic reaction. In this work, two chemically different mechanisms reproduced the experimentally observed perfect stereoselection of the same handedness. Moreover, the relative stabilities of the transition states of the stereo induction stages were controlled via exactly the same weak disperse interactions between the catalyst and the substrate.
Collapse
Affiliation(s)
- Ilya D Gridnev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119911 Moscow, Russia
| |
Collapse
|
12
|
Hu Y, Zou Y, Yang H, Ji H, Jin Y, Zhang Z, Liu Y, Zhang W. Precise Synthesis of Chiral Z-Allylamides by Cobalt-Catalyzed Asymmetric Sequential Hydrogenations. Angew Chem Int Ed Engl 2023; 62:e202217871. [PMID: 36753391 DOI: 10.1002/anie.202217871] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/09/2023]
Abstract
Asymmetric sequential hydrogenations of conjugated enynes have been developed using a Ph-BPE-CoI catalyst for the precise synthesis of chiral Z-allylamides in high activity (up to 1000 substrate/catalyst (S/C)) and with excellent enantioselectivity (up to >99 % enantiomeric excess (ee)). Mechanism experiments and theoretical calculations support a cationic CoI /CoIII redox catalytic cycle. The catalytic activity difference between cobalt complexes of Ph-BPE and QuinoxP* was explained by the process decomposition of rate-determining step in the second hydrogenation.
Collapse
Affiliation(s)
- Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huiwen Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Haotian Ji
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
13
|
Wei H, Chen H, Chen J, Gridnev ID, Zhang W. Nickel-Catalyzed Asymmetric Hydrogenation of α-Substituted Vinylphosphonates and Diarylvinylphosphine Oxides. Angew Chem Int Ed Engl 2023; 62:e202214990. [PMID: 36507919 DOI: 10.1002/anie.202214990] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Chiral α-substituted ethylphosphonate and ethylphosphine oxide compounds are widely used in drugs, pesticides, and ligands. However, their catalytic asymmetric synthesis is still rare. Of the only asymmetric hydrogenation methods available at present, all cases use rare metal catalysts. Herein, we report an efficient earth-abundant transition-metal nickel catalyzed asymmetric hydrogenation affording the corresponding chiral ethylphosphine products with up to 99 % yield, 96 % ee (enantiomeric excess) (99 % ee, after recrystallization) and 1000 S/C (substrate/catalyst); this is also the first study on the asymmetric hydrogenation of terminal olefins using a nickel catalyst under a hydrogen atmosphere. The catalytic mechanism was investigated via deuterium-labelling experiments and calculations which indicate that the two added hydrogen atoms of the products come from hydrogen gas. Additionally, it is believed that the reaction involves a NiII rather than Ni0 cyclic process based on the weak attractive interactions between the Ni catalyst and terminal olefin substrate.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hao Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jianzhong Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
14
|
Recent advances with cobalt-mediated asymmetric hydrogenations. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
|
15
|
Nie Y, Yuan Q, Gao F, Terada M, Zhang W. Iridium-Catalyzed Double Asymmetric Hydrogenation of 2,5-Dialkylienecyclopentanones for the Synthesis of Chiral Cyclopentanones. Org Lett 2022; 24:7878-7882. [PMID: 36264061 DOI: 10.1021/acs.orglett.2c02656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report an efficient iridium-catalyzed double asymmetric hydrogenation of 2,5-dialkylienecyclopentanones, delivering the chiral 2,5-disubstituted cyclopentanones in excellent yields and stereoselectivities. The results of the kinetic experiments and control experiments indicated that the two C═C bonds were hydrogenated in a stepwise manner and the second stereocenter was synergistically controlled by the chiral catalyst and the chirality of monohydrogenated product. The hydrogenated products can be prepared on a gram-scale and are easily derivatized.
Collapse
Affiliation(s)
- Yu Nie
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Feng Gao
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
16
|
Xu Y, Luo Y, Ye J, Deng Y, Liu D, Zhang W. Rh-Catalyzed Sequential Asymmetric Hydrogenations of 3-Amino-4-Chromones Via an Unusual Dynamic Kinetic Resolution Process. J Am Chem Soc 2022; 144:20078-20089. [PMID: 36255361 DOI: 10.1021/jacs.2c09266] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh-catalyzed sequential asymmetric hydrogenations of 3-amino-4-chromones have been achieved for the first time via an unprecedented dynamic kinetic resolution under neutral conditions, providing (S,R)-3-amino-4-chromanols in high yields (up to 98%) with excellent enantio- and diastereoselectivities (up to 99.9% ee and 20:1 dr). The mechanistic studies based on control experiments and density functional theory (DFT) calculations suggest that the dynamic kinetic resolution process for the intermediate enantiomers generated in the first hydrogenation step proceeded via a stereomutation (or called chiral assimilation) pathway from an undesired enantiomer to the desired enantiomer rather than via traditional racemization of the undesired enantiomer. The protocol can be performed on a gram scale with a relatively low catalyst loading and offers a practical and convenient pathway for synthesizing a series of bioactive chromanols and their derivatives.
Collapse
Affiliation(s)
- Yunnan Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianxun Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yu Deng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
17
|
Lu P, Wang H, Mao Y, Hong X, Lu Z. Cobalt-Catalyzed Enantioconvergent Hydrogenation of Minimally Functionalized Isomeric Olefins. J Am Chem Soc 2022; 144:17359-17364. [DOI: 10.1021/jacs.2c08525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Peng Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Hongliang Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yihui Mao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Zhan Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
18
|
Mendelsohn LN, Pavlovic L, Zhong H, Friedfeld MR, Shevlin M, Hopmann KH, Chirik PJ. Mechanistic Investigations of the Asymmetric Hydrogenation of Enamides with Neutral Bis(phosphine) Cobalt Precatalysts. J Am Chem Soc 2022; 144:15764-15778. [PMID: 35951601 DOI: 10.1021/jacs.2c06454] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mechanism of the asymmetric hydrogenation of prochiral enamides by well-defined, neutral bis(phosphine) cobalt(0) and cobalt(II) precatalysts has been explored using(R,R)-iPrDuPhos ((R,R)-iPrDuPhos = (+)-1,2-bis[(2R,5R)-2,5-diisopropylphospholano]benzene) as a representative chiral bis(phosphine) ligand. A series of (R,R)-(iPrDuPhos)Co(enamide) (enamide = methyl-2-acetamidoacrylate (MAA), methyl(Z)-α-acetamidocinnamate (MAC), and methyl(Z)-acetamido(4-fluorophenyl)acrylate (4FMAC)) complexes (1-MAA, 1-MAC, and 1-4FMAC), as well as a dinuclear cobalt tetrahydride, [(R,R)-(iPrDuPhos)Co]2(μ2-H)3(H) (2), were independently synthesized, characterized, and evaluated in both stoichiometric and catalytic hydrogenation reactions. Characterization of (R,R)-(iPrDuPhos)Co(enamide) complexes by X-ray diffraction established the formation of the pro-(R) diastereomers in contrast to the (S)-alkane products obtained from the catalytic reaction. In situ monitoring of the cobalt-catalyzed hydrogenation reactions by UV-visible and freeze-quench electron paramagnetic resonance spectroscopies revealed (R,R)-(iPrDuPhos)Co(enamide) complexes as the catalyst resting state for all the three enamides studied. Variable time normalization analysis kinetic studies of the cobalt-catalyzed hydrogenation reactions in methanol established a rate law that is first order in (R,R)-(iPrDuPhos)Co(enamide) and H2 but independent of the enamide concentration. Deuterium-labeling studies, including measurement of an H2/D2 kinetic isotope effect and catalytic hydrogenations with HD, established an irreversible H2 addition step to the bound enamide. Density functional theory calculations support that this step is both rate and selectivity determining. Calculations, as well as HD-labeling studies, provide evidence for two-electron redox cycling involving cobalt(0) and cobalt(II) intermediates during the catalytic cycle. Taken together, these experiments support an unsaturated pathway for the [(R,R)-(iPrDuPhos)Co]-catalyzed hydrogenation of prochiral enamides.
Collapse
Affiliation(s)
- Lauren N Mendelsohn
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Ljiljana Pavlovic
- Department of Chemistry, UiT - The Arctic University of Norway, Tromsø N-9037, Norway
| | - Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Max R Friedfeld
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Michael Shevlin
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kathrin H Hopmann
- Department of Chemistry, UiT - The Arctic University of Norway, Tromsø N-9037, Norway
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
19
|
Jin Y, Zou Y, Hu Y, Han Y, Zhang Z, Zhang W. Azole-Directed Cobalt-Catalyzed Asymmetric Hydrogenation of Alkenes. Chemistry 2022; 28:e202201517. [PMID: 35622378 DOI: 10.1002/chem.202201517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 12/11/2022]
Abstract
The azole-directed cobalt-catalyzed asymmetric hydrogenation of alkenes has been developed with high efficiency. With this approach, chiral pyrazole compounds were obtained in quantitative yields and excellent enantioselectivities (up to 99 % ee) under mild conditions, and the hydrogenation was conducted on a gram scale with up to 2000 TON. Several useful applications were demonstrated including the convenient introduction of β-chirality to a drug intermediate containing an azole ring.
Collapse
Affiliation(s)
- Yue Jin
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yanhua Hu
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yunxi Han
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
20
|
Pavlovic L, Mendelsohn LN, Zhong H, Chirik PJ, Hopmann KH. Cobalt-Catalyzed Asymmetric Hydrogenation of Enamides: Insights into Mechanisms and Solvent Effects. Organometallics 2022; 41:1872-1882. [PMID: 35915664 PMCID: PMC9335863 DOI: 10.1021/acs.organomet.2c00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/28/2022]
Abstract
The mechanistic details of the (PhBPE)Co-catalyzed asymmetric hydrogenation of enamides are investigated using computational and experimental approaches. Four mechanistic possibilities are compared: a direct Co(0)/Co(II) redox path, a metathesis pathway, a nonredox Co(II) mechanism featuring an aza-metallacycle, and a possible enamide-imine tautomerization pathway. The results indicate that the operative mechanism may depend on the type of enamide. Explicit solvent is found to be crucial for the stabilization of transition states and for a proper estimation of the enantiomeric excess. The combined results highlight the complexity of base-metal-catalyzed hydrogenations but do also provide guiding principles for a mechanistic understanding of these systems, where protic substrates can be expected to open up nonredox hydrogenation pathways.
Collapse
Affiliation(s)
- Ljiljana Pavlovic
- Department
of Chemistry, UiT - The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Lauren N. Mendelsohn
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongyu Zhong
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J. Chirik
- Department
of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kathrin H. Hopmann
- Department
of Chemistry, UiT - The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
21
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles. Angew Chem Int Ed Engl 2022; 61:e202202814. [PMID: 35238455 DOI: 10.1002/anie.202202814] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/21/2022]
Abstract
The asymmetric hydrogenation (AH) of 3H-indoles represents an ideal approach to the synthesis of useful chiral indoline scaffolds. However, very few catalytic systems based on precious metals have been developed to realize this challenging reaction. Herein, we report a Mn-catalyzed AH of 3H-indoles with excellent yields and enantioselectivities. The kinetic resolution of racemic 3H-indoles by AH was also achieved with high s-factors to construct quaternary stereocenters. Many acid-sensitive functional groups, which cannot be tolerated when using a state-of-the-art ruthenium catalyst, were compatible with manganese catalysis. This new process expands the scope of this transformation and highlights the uniqueness of earth-abundant metal catalysis. The reaction could proceed with catalyst loadings at the parts per million (ppm) level with an exceptional turnover number of 72 350. This is the highest value yet reported for an earth-abundant metal-catalyzed AH reaction.
Collapse
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yihan Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong, 529090, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Xiao G, Xie C, Guo Q, Zi G, Hou G, Huang Y. Nickel-Catalyzed Asymmetric Hydrogenation of γ-Keto Acids, Esters, and Amides to Chiral γ-Lactones and γ-Hydroxy Acid Derivatives. Org Lett 2022; 24:2722-2727. [PMID: 35363497 DOI: 10.1021/acs.orglett.2c00826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient asymmetric hydrogenation of a series of γ-keto acid derivatives, including γ-keto acids, esters, and amides, using a Ni-(R,R)-QuinoxP* complex as the catalyst has been developed to afford chiral γ-hydroxy acid derivatives with excellent enantioselectivities, up to 99.9% ee. This method provides not only an economical one-pot approach for the synthesis of chiral γ-lactones but also access to (S)-norfluoxetine, an inhibitor of neural serotonin reuptake and an essential intermediate for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Guiying Xiao
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuping Huang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|
23
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of 3H‐Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yihan Xu
- Tsinghua University Department of Chemistry CHINA
| | - Yibiao Li
- Wuyi University Department of Chemistry CHILE
| | - Qiang Liu
- Tsinghua University Department of Chemistry Tsinghuayuan 1 100084 Beijing CHINA
| |
Collapse
|
24
|
Nie Y, Li J, Yuan Q, Zhang W. Synthesis of Chiral Hydantoins and Thiazolidinediones via
Iridium‐Catalyzed
Asymmetric Hydrogenation. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yu Nie
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jing Li
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- College of Chemistry, Zhengzhou University 75 Daxue Road Zhengzhou 450052 P. R. China
| |
Collapse
|
25
|
Golagani D, Ghouse AM, Ajmeera S, Akondi SM. Divergent cyanoalkylation/cyanoalkylsulfonylation of enamides under organophotoredox catalytic conditions. Org Biomol Chem 2022; 20:8599-8604. [DOI: 10.1039/d2ob01775j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An organophotoredox catalyzed divergent cyanoalkylation/cyanoalkylsulfonylation of enamides is described.
Collapse
Affiliation(s)
- Durga Golagani
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abuthayir Mohamathu Ghouse
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sriram Ajmeera
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Du Q, Zhang L, Gao F, Wang L, Zhang W. Progress in Transition Metal-Catalyzed Asymmetric Ring-Opening Reactions of Epoxides and Aziridines. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Sun Z, Chen L, Qiu KX, Liu B, Li H, Yu F. Enantioselective Peroxidation of C-Alkynyl Imines Enabled by Chiral BINOL Calcium Phosphate. Chem Commun (Camb) 2022; 58:3035-3038. [DOI: 10.1039/d1cc07156d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we reported a catalytic enantioselective addition of C-alkynyl imines with hydroperoxides catalyzd by chiral BINOL calcium phosphate, affording a broad range of enantioenriched α-peroxy propargylamines in good yields (80-99%)...
Collapse
|
28
|
Li M, Zhang J, Zou Y, Zhou F, Zhang Z, Zhang W. Asymmetric hydrogenation for the synthesis of 2-substituted chiral morpholines. Chem Sci 2021; 12:15061-15066. [PMID: 34909146 PMCID: PMC8612400 DOI: 10.1039/d1sc04288b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Asymmetric hydrogenation of unsaturated morpholines has been developed by using a bisphosphine-rhodium catalyst bearing a large bite angle. With this approach, a variety of 2-substituted chiral morpholines could be obtained in quantitative yields and with excellent enantioselectivities (up to 99% ee). The hydrogenated products could be transformed into key intermediates for bioactive compounds. 2-Substituted chiral morpholines were synthesized via a newly developed asymmetric hydrogenation of dehydromorpholines catalyzed by a bisphosphine–rhodium complex bearing a large bite angle.![]()
Collapse
Affiliation(s)
- Mingxu Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yashi Zou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fengfan Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China .,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
29
|
Zhou JS, Guo S, Zhao X, Chi YR. Nickel-catalyzed enantioselective umpolung hydrogenation for stereoselective synthesis of β-amido esters. Chem Commun (Camb) 2021; 57:11501-11504. [PMID: 34652359 DOI: 10.1039/d1cc05257h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nickel complexes ligated by strongly donating diphosphines catalyze enantioselective hydrogenation for the preparation of acyclic and cyclic β-amido esters. A combination of acetic acid and indium powder provides protons and electrons to form nickel hydrido complexes under umpolung hydrogenation conditions.
Collapse
Affiliation(s)
- Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China.
| | - Siyu Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xiaohu Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
30
|
Xu Y, Liu D, Deng Y, Zhou Y, Zhang W. Rhodium-Catalyzed Asymmetric Hydrogenation of 3-Benzoylaminocoumarins for the Synthesis of Chiral 3-Amino Dihydrocoumarins. Angew Chem Int Ed Engl 2021; 60:23602-23607. [PMID: 34596267 DOI: 10.1002/anie.202110286] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/16/2021] [Indexed: 12/18/2022]
Abstract
An asymmetric hydrogenation of 3-benzoylaminocoumarins was achieved for the first time using our BridgePhos-Rh catalytic system, providing chiral 3-amino dihydrocoumarins in high yields (up to 98 %) and with excellent enantioselectivities (up to 99.7 % ee). The relationship between the enantioselectivities of the hydrogenations and the dihedral angles and the resulting π-π stacking effects of the BridgePhos-Rh complexes, which were determined by X-ray diffraction analysis, are discussed. The corresponding hydrogenated products allow for many transformations, providing several chiral skeletons with important physiological and pharmacological activities.
Collapse
Affiliation(s)
- Yunnan Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Deng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yi Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.,Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
31
|
Xu Y, Liu D, Deng Y, Zhou Y, Zhang W. Rhodium‐Catalyzed Asymmetric Hydrogenation of 3‐Benzoylaminocoumarins for the Synthesis of Chiral 3‐Amino Dihydrocoumarins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yunnan Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yu Deng
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yi Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
32
|
Zhang CC, Chen LJ, Shen BC, Xie HD, Li W, Sun ZW. Enantioselective decarboxylative Mannich reaction of β-keto acids with C-alkynyl N-Boc N, O-acetals: access to chiral β-keto propargylamines. Org Biomol Chem 2021; 19:8607-8612. [PMID: 34569587 DOI: 10.1039/d1ob01555a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chiral keto-substituted propargylamines are an essential class of multifunctional compounds in the field of organic and pharmaceutical synthesis and have attracted considerable attention, but the related synthetic approaches remain limited. Therefore, a concise and efficient method for the enantioselective synthesis of β-keto propargylamines via chiral phosphoric acid-catalyzed asymmetric Mannich reaction between β-keto acids and C-alkynyl N-Boc N,O-acetals as easily available C-alkynyl imine precursors has been demonstrated here, affording a broad scope of β-keto N-Boc-propargylamines in high yields (up to 97%) with generally high enantioselectivities (up to 97 : 3 er).
Collapse
Affiliation(s)
- Cong-Cong Zhang
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Li-Jun Chen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Bao-Chun Shen
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Hui-Ding Xie
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Wei Li
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Zhong-Wen Sun
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China. .,Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan University, Kunming, 650091, China
| |
Collapse
|
33
|
IMAMOTO T. Synthesis and applications of high-performance P-chiral phosphine ligands. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:520-542. [PMID: 34759073 PMCID: PMC8610783 DOI: 10.2183/pjab.97.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/30/2021] [Indexed: 05/18/2023]
Abstract
Metal-catalyzed asymmetric synthesis is one of the most important methods for the economical and environmentally benign production of useful optically active compounds. The success of the asymmetric transformations is significantly dependent on the structure and electronic properties of the chiral ligands coordinating to the center metals, and hence the development of highly efficient ligands, especially chiral phosphine ligands, has long been an important research subject in this field. This review article describes the synthesis and applications of P-chiral phosphine ligands possessing chiral centers at the phosphorus atoms. Rationally designed P-chiral phosphine ligands are synthesized by the use of phosphine-boranes as the intermediates. Conformationally rigid and electron-rich P-chiral phosphine ligands exhibit excellent enantioselectivity and high catalytic activity in various transition-metal-catalyzed asymmetric reactions. Recent mechanistic studies of rhodium-catalyzed asymmetric hydrogenation are also described.
Collapse
Affiliation(s)
- Tsuneo IMAMOTO
- Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
34
|
Wu L, Wei H, Shen J, Chen J, Zhang W. Development of Earth-Abundant Metals-Catalyzed Enantioselective Alkenylations Using Alkenyl Metal Reagents. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Wan F, Tang W. Cobalt-Catalyzed Chemo- and Enantio-selective Hydrogenation of Conjugated Enynes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202100063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|