1
|
Lan S, Cui Q, Luo D, Shi S, He C, Huang S, Xu C, Zhao L, Liu J, Gu CZ, Yang S, Fang X. Copper-Catalyzed Asymmetric Nucleophilic Opening of 1,1,2,2-Tetrasubstituted Donor-Acceptor Cyclopropanes for the Synthesis of α-Tertiary Amines. J Am Chem Soc 2024. [PMID: 39723834 DOI: 10.1021/jacs.4c14944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities. The alkyne, amine, and ester moieties within the products enable diverse further applications, including the asymmetric synthesis of bioactive molecules. Mechanistic studies indicate that the zwitterionic intermediate bearing a copper-acetylide unit plays a key role in the process, which represents a new mode for achieving catalytic asymmetric transformation of DACs.
Collapse
Affiliation(s)
- Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Qinqin Cui
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Defu Luo
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Siyu Shi
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Chengyang He
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shengyu Huang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Chao Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Lili Zhao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
- Fujian Normal University, Fuzhou 350108, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Cheng-Zhi Gu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
2
|
Fimm M, Saito F. Enantioselective Synthesis of Sulfinamidines via Asymmetric Nitrogen Transfer from N-H Oxaziridines to Sulfenamides. Angew Chem Int Ed Engl 2024; 63:e202408380. [PMID: 38747676 DOI: 10.1002/anie.202408380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 07/21/2024]
Abstract
Sulfinamidines are promising aza-SIV chiral building blocks in asymmetric synthesis and drug discovery. However, no report has documented their enantioselective synthesis. Here we present an enantioselective synthesis of sulfinamidines via electrophilic amination of sulfenamides using an enantiopure N-H oxaziridine. The resulting enantiomerically enriched primary sulfinamidines are configurationally stable at 90 °C in solution and show remarkable stability against organic acids and bases under non-aqueous conditions. We also demonstrate a one-pot, three-component, enantioselective synthesis of sulfinamides using N-H oxaziridine reagents.
Collapse
Affiliation(s)
- Marc Fimm
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| | - Fumito Saito
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
3
|
Liu Y, Yu Z, Li P, Yang T, Ding K, Zhang ZM, Tan Y, Li Z. Proteome-wide Ligand and Target Discovery by Using Strain-Enabled Cyclopropane Electrophiles. J Am Chem Soc 2024. [PMID: 39018468 DOI: 10.1021/jacs.4c04695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
The evolving use of covalent ligands as chemical probes and therapeutic agents could greatly benefit from an expanded array of cysteine-reactive electrophiles for efficient and versatile proteome profiling. Herein, to expand the current repertoire of cysteine-reactive electrophiles, we developed a new class of strain-enabled electrophiles based on cyclopropanes. Proteome profiling has unveiled that C163 of lactate dehydrogenase A (LDHA) and C88 of adhesion regulating molecule 1 (ADRM1) are ligandable residues to modulate the protein functions. Moreover, fragment-based ligand discovery (FBLD) has revealed that one fragment (Y-35) shows strong reactivity toward C66 of thioredoxin domain-containing protein 12 (TXD12), and its covalent binding has been demonstrated to impact its downstream signal pathways. TXD12 plays a pivotal role in enabling Y-35 to exhibit its antisurvival and antiproliferative effects. Finally, dicarbonitrile-cyclopropane has been demonstrated to be an electrophilic warhead in the development of GSTO1-involved dual covalent inhibitors, which is promising to alleviate drug resistance.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhongtang Yu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Peishan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Tao Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yi Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
4
|
Harikumar S, Kandy LTK, Guin A, Biju AT. Lewis acid-catalyzed one-pot thioalkenylation of donor-acceptor cyclopropanes using in situ generated dithiocarbamates and propiolates. Org Biomol Chem 2024; 22:1834-1838. [PMID: 38334700 DOI: 10.1039/d4ob00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Lewis acid-catalyzed one-pot 1,3-thioalkenylation of donor-acceptor (D-A) cyclopropanes has been demonstrated employing in situ generated dithiocarbamates (from amines and CS2) as nucleophilic triggers and alkyl propiolates as electrophiles. This method addresses the limitations of previously known carbothiolation approach, eliminating the need for extra filtration prior to the subsequent trapping with electrophiles. The anticipated thioalkenylated products were obtained in good to excellent yields with a moderate to good E/Z ratio. Three new bonds (C-N, C-S, and C-C) are formed during this 1,3-bisfunctionalization reaction. Notably, employing enantiomerically pure D-A cyclopropanes resulted in enantiopure 1,3-thioalkenylated products, underscoring the stereospecific nature of the developed reaction.
Collapse
Affiliation(s)
- Sanjeevni Harikumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
5
|
Sosunovych B, Vashchenko BV, Andriashvili VA, Grygorenko OO. Bypassing Sulfonyl Halides: Synthesis of Sulfonamides from Other Sulfur-Containing Building Blocks. CHEM REC 2024; 24:e202300258. [PMID: 37753806 DOI: 10.1002/tcr.202300258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/11/2023] [Indexed: 09/28/2023]
Abstract
This review disclosed synthetic approaches to sulfonyl amides from non-sulfonyl halogenated precursors. Known methods were systematized into groups and subgroups according to the type of starting organosulfur compound. Thiols, disulfides, and sulfonamides form a group of S(II)-containing precursors, which are used in oxidative amination reactions. An important and versatile group for oxidative amination is represented with S(IV)-containing compounds, i. e., sufinates, sulfinamides, DMSO, N-sulfinyl-O-(tert-butyl)hydroxylamine, etc. A series of S(VI)-containing precursors for amination reactions (except sulfonyl halides) include sulfonic acids, sulfonyl azides, thiosulfonates, and sulfones. All approaches are represented with the most prominent examples of the resulting sulfonamides, which could be obtained in high yields mostly via short reaction sequences. Promising electrochemical methods for the preparation of sulfonamides from thiols, disulfides, sulfonamides, sulfinic acid derivatives, and dimethyl sulfoxide under mild and green conditions are also highlighted.
Collapse
Affiliation(s)
| | - Bohdan V Vashchenko
- Enamine Ltd, Winston Churchill 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Vladyslav A Andriashvili
- Enamine Ltd, Winston Churchill 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd, Winston Churchill 78, Kyїv, 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyїv, 01601, Ukraine
| |
Collapse
|
6
|
Dobrydnev AV, Popova MV, Volovenko YM. Cyclic Sulfinamides. CHEM REC 2024; 24:e202300221. [PMID: 37594737 DOI: 10.1002/tcr.202300221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Indexed: 08/19/2023]
Abstract
The literature on cyclic sulfinamides (put simply, sultims) published from 1989 to 2022 has been summarized and reviewed. The information is divided into two sections: the analysis of synthetic methods on the preparation of cyclic sulfinamides and the discussion of the chemical properties of cyclic sulfinamides focusing on their reactions and applications. The survey of the reaction conditions, provided in the most detailed way, and a critical view of the reaction mechanisms add an extra dimension to the text. The data presented will be useful to specialists in different areas, especially those who work in the field of synthetic organic and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Alexey V Dobrydnev
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01033, Ukraine
- Enamine Ltd., Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - Maria V Popova
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01033, Ukraine
- Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Yulian M Volovenko
- Taras Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyiv, 01033, Ukraine
| |
Collapse
|
7
|
Roy S, Biswas A, Paul H, Ariyan SK, Chatterjee I. Introducing N-Sulfinylamines into Visible-Light-Induced Carbene Chemistry for the Synthesis of Diverse Amides and α-Iminoesters. Org Lett 2023; 25:8511-8515. [PMID: 37975825 DOI: 10.1021/acs.orglett.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A rare example of visible-light-mediated diverse reactivity of N-sulfinylamines with different types of carbene precursors has been disclosed. Acylsilanes and aryldiazoacetates have been utilized as nucleophilic and electrophilic carbene precursors into the N═S═O linchpin, to achieve valuable amides and α-iminoesters, respectively. Interestingly, diazocarbonyls can also participate in the amidation reaction with N-sulfinylamines via in situ generated ketenes. This operationally simple modular method offers a mild, transition-metal-free, and coupling-reagent-free protocol to fabricate structurally diverse amides and a promptly accessible technique to achieve α-iminoesters, where visible light remains as a key promoter.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Apurba Biswas
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Hrishikesh Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - S K Ariyan
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| |
Collapse
|
8
|
Austrup D, Saito F. A Sulfur Monoxide Surrogate Designed for the Synthesis of Sulfoxides and Sulfinamides. Angew Chem Int Ed Engl 2023:e202315123. [PMID: 37937482 DOI: 10.1002/anie.202315123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
Sulfur monoxide (SO) is a highly reactive species that cannot be isolated in bulk. However, SO can play a pivotal role as a fundamental building block in organic synthesis. Reported herein is the design and application of a sulfinylhydrazine reagent as an easily prepared sulfur monoxide surrogate. We show facile thermal SO transfer from this reagent to dienes where a reaction using a mechanistic probe suggests the generation of singlet SO. Combined with Grignard reagents and appropriate carbon or nitrogen electrophiles, the reagent serves as an effective "SO" donor to enable the one-pot, three-component synthesis of sulfoxides and sulfinamides.
Collapse
Affiliation(s)
- David Austrup
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| | - Fumito Saito
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
9
|
Andresini M, Colella M, Degennaro L, Luisi R. Overlooked aza-S(IV) motifs: synthesis and transformations of sulfinamidines and sulfinimidate esters. Org Biomol Chem 2023; 21:7681-7690. [PMID: 37725053 DOI: 10.1039/d3ob01382k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Significant advancements have been made in the synthesis of overlooked aza-S(IV) motifs. The accessibility of sulfinamidines and sulfinimidate esters has greatly improved through the recent development of efficient and complementary synthetic strategies. Intriguingly, new discoveries have emerged regarding the reactivity of these substances, highlighting the electrophilic nature of sulfinimidate esters and the nucleophilic character of sulfinamidines. Moreover, sulfinamidines have been found to be prone to oxidation, leading to the formation of important aza-S(VI) derivatives. In this review, our aim is to present an almost comprehensive overview of the most relevant achievements in the preparation and structural characterization of these overlooked compounds.
Collapse
Affiliation(s)
- Michael Andresini
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory Department of Pharmacy-Drug Sciences University of Bari "A. Moro" Via E., Orabona 4-70125 Bari, Italy.
| | - Marco Colella
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory Department of Pharmacy-Drug Sciences University of Bari "A. Moro" Via E., Orabona 4-70125 Bari, Italy.
| | - Leonardo Degennaro
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory Department of Pharmacy-Drug Sciences University of Bari "A. Moro" Via E., Orabona 4-70125 Bari, Italy.
| | - Renzo Luisi
- FLAME-Lab, Flow Chemistry and Microreactor Technology Laboratory Department of Pharmacy-Drug Sciences University of Bari "A. Moro" Via E., Orabona 4-70125 Bari, Italy.
| |
Collapse
|
10
|
Andrews J, Kalepu J, Palmer CF, Poole DL, Christensen KE, Willis MC. Photocatalytic Carboxylate to Sulfinamide Switching Delivers a Divergent Synthesis of Sulfonamides and Sulfonimidamides. J Am Chem Soc 2023; 145:21623-21629. [PMID: 37738304 PMCID: PMC10557147 DOI: 10.1021/jacs.3c07974] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 09/24/2023]
Abstract
sulfinamides, sulfonamides, and sulfonimidamides are in-demand motifs in medicinal chemistry, yet methods for the synthesis of alkyl variants that start from simple, readily available feedstocks are scarce. In addition, bespoke syntheses of each class of molecules are usually needed. In this report, we detail the synthesis of these three distinct sulfur functional groups, using readily available and structurally diverse alkyl carboxylic acids as the starting materials. The method harnesses alkyl radical generation from carboxylic acids using acridine photocatalysts and 400 nm light with subsequent radical addition to sulfinylamine reagents, delivering sulfinamide products. Using the N-alkoxy sulfinylamine reagent t-BuO-NSO as the radical trap provides common N-alkoxy sulfinamide intermediates, which can be converted in a divergent manner to either sulfonamides or sulfonimidamides, by treatment with sodium hydroxide, or an amine, respectively. The reactions are scalable, tolerate a broad range of functional groups, and can be used for the diversification of complex biologically active compounds.
Collapse
Affiliation(s)
- Jonathan
A. Andrews
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jagadeesh Kalepu
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Darren L. Poole
- GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K.
| | | | - Michael C. Willis
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
11
|
Malik M, Senatore R, Castiglione D, Roller-Prado A, Pace V. Highly chemoselective homologative assembly of the α-substituted methylsulfinamide motif from N-sulfinylamines. Chem Commun (Camb) 2023; 59:11065-11068. [PMID: 37644820 DOI: 10.1039/d3cc03326k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
α-Substituted methylsulfinamide are prepared through the homologation of electrophilic N-sulfinylamines with Li-CHXY reagents. The transformation takes place under full chemocontrol and exhibits good flexibility for preparing both N-aryl and N-alkyl analogues. Various sensitive functionalities can be accommodated on the starting materials, thus documenting a wide reaction scope.
Collapse
Affiliation(s)
- Monika Malik
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Raffaele Senatore
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Davide Castiglione
- Department of Chemistry, Via Giuria 7, University of Turin, Turin 10125, Italy
| | - Alexander Roller-Prado
- Department of Inorganic Chemistry - Functional Materials, University of Vienna, Waehringerstrasse 42, 1090, Vienna, Austria
| | - Vittorio Pace
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
- Department of Chemistry, Via Giuria 7, University of Turin, Turin 10125, Italy
| |
Collapse
|
12
|
Ma HJ, Gao K, Wang XL, Zeng JY, Yang Y, Jiang Y. AlCl 3-mediated ring-opening reactions of indoline-2-thiones with acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes. Org Biomol Chem 2023; 21:6312-6316. [PMID: 37493459 DOI: 10.1039/d3ob00909b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
AlCl3-mediated nucleophilic ring-opening reactions of indoline-2-thiones with various acyl cyclopropanes, bi-cyclopropanes and spirocyclic cyclopropanes were investigated. A series of ketones functionalized with indolylthio groups were synthesized in yields ranging from moderate to good. Moreover, chemical transformations of 4-indolylthio butan-1-ones to dihydro-2H-thiepino[2,3-b]indoles and sulfone were carried out to further expand both synthetic utility and structural complexity.
Collapse
Affiliation(s)
- Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Ke Gao
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Xue-Long Wang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Jun-Yi Zeng
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|
13
|
Debnath B, Sarkar T, Karjee P, Purkayastha SK, Guha AK, Punniyamurthy T. Palladium-Catalyzed Annulative Coupling of Spirovinylcyclopropyl Oxindoles with p-Quinone Methides. J Org Chem 2023. [PMID: 37437136 DOI: 10.1021/acs.joc.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Pd-catalyzed annulative coupling of spirovinylcyclopropyl oxindoles with p-quinone methides has been accomplished via cascade carbon-carbon bond formation to afford bis-spirooxindole scaffolds. The mild reaction conditions, diastereoselectivity, functional group diversity, post-synthetic transformations, and mechanistic studies using DFT calculations are the important practical features.
Collapse
Affiliation(s)
- Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati 781001, India
| | | |
Collapse
|
14
|
Pham QH, Tague AJ, Richardson C, Gardiner MG, Pyne SG, Hyland CJT. Palladium-catalysed enantio- and regioselective (3 + 2) cycloaddition reactions of sulfamidate imine-derived 1-azadienes towards spirocyclic cyclopentanes. Chem Sci 2023; 14:4893-4900. [PMID: 37181759 PMCID: PMC10171190 DOI: 10.1039/d3sc01510f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 05/16/2023] Open
Abstract
An enantio- and diastereoselective Pd-catalysed (3 + 2) cycloaddition of bis(trifluoroethyl) 2-vinyl-cyclopropane-1,1-dicarboxylate (VCP) with cyclic sulfamidate imine-derived 1-azadienes (SDAs) has been developed. These reactions provide highly functionalized spiroheterocycles having three contiguous stereocentres, including a tetrasubstituted carbon bearing an oxygen functionality. The two geminal trifluoroethyl ester moieties can be manipulated in a facially selective manner to afford more diversely decorated spirocycles with four contiguous stereocentres. In addition, diastereoselective reduction of the imine moiety can also afford a fourth stereocentre and exposes the important 1,2-amino alcohol functionality.
Collapse
Affiliation(s)
- Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Andrew J Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Michael G Gardiner
- Research School of Chemistry, The Australian National University Canberra 2601 Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong 2522 New South Wales Australia
| |
Collapse
|
15
|
Zhang Y, Li H, Yang X, Zhou P, Shu C. Recent advances in the synthesis of cyclic sulfinic acid derivatives (sultines and cyclic sulfinamides). Chem Commun (Camb) 2023; 59:6272-6285. [PMID: 37140259 DOI: 10.1039/d3cc01238g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The chemistry of cyclic sulfinic acid derivatives (sultines and cyclic sulfinamides) was underdeveloped for a long time due to their inaccessibility. Considering the importance of cyclic sulfinate esters and amides in the fields of chemistry, pharmaceutical science, and material science, synthesis strategies involving cyclic sulfinic acid derivatives have been paid more attention in recent years, and have been widely used in the synthesis of sulfur-containing compounds such as sulfoxides, sulfones, sulfinates and thioethers. Despite the impressive improvements that have been made in last twenty years with the new strategies, to date, no reviews have been published, to the best of our knowledge, dealing with the preparation of cyclic sulfinic acid derivatives. This review summarizes the latest advances in the development of new synthesis methods to access cyclic sulfinic acid derivatives in the last two decades. The synthetic strategies are reviewed by highlighting their product diversity, selectivity and applicability, and the mechanistic rationale is presented where possible. We wish to bring readers a comprehensive understanding of the state-of-play of cyclic sulfinic acid derivative formation and make a contribution to future research.
Collapse
Affiliation(s)
- Yongxin Zhang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Helian Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Xiaoxiao Yang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Pan Zhou
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
| | - Chao Shu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China.
- HICI Digital Power Technology Co., Ltd, Wuhan, Hubei, China
| |
Collapse
|
16
|
Deswal S, Guin A, Biju AT. Benzotriazole-Triggered Three-Component Lewis Acid-Catalyzed Ring-Opening 1,3-Aminofunctionalization of Donor-Acceptor Cyclopropanes. Org Lett 2023; 25:1643-1648. [PMID: 36876870 DOI: 10.1021/acs.orglett.3c00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of benzotriazoles as nucleophilic triggers in the three-component Yb(OTf)3-catalyzed ring-opening 1,3-aminofunctionalization of donor-acceptor (D-A) cyclopropanes is presented. Using N-halo succinimide (NXS) as the third component, the reaction afforded the 1,3-aminohalogenation product in up to an 84% yield. Moreover, using alkyl halides or Michael acceptors as the third components, the 3,1-carboaminated products are formed in up to a 96% yield in a one-pot operation. Employing Selectfluor as the electrophile, the reaction furnished the 1,3-aminofluorinated product in a 61% yield.
Collapse
Affiliation(s)
- Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
17
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor-Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2023; 62:e202214390. [PMID: 36322458 PMCID: PMC10099577 DOI: 10.1002/anie.202214390] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 11/05/2022]
Abstract
A novel class of highly activated donor-acceptor cyclopropanes bearing only a single, vinylogous acceptor is presented. These strained moieties readily undergo cycloadditions with aldehydes, ketones, thioketones, nitriles, naphth-2-ols and various other substrates to yield the corresponding carbo- and heterocycles. Diastereocontrol can be achieved through the choice of catalyst (Brønsted or Lewis acid). The formation of tetrahydrofurans was shown to be highly enantiospecific when chiral cyclopropanes are employed. A series of mechanistic and kinetic experiments was conducted to elucidate a plausible catalytic cycle and to rationalize the stereochemical outcome.
Collapse
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Oliver Hergert
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität FreiburgInstitute of Organic ChemistryAlbertstraße 2179104Freiburg (Breisgau)Germany
| |
Collapse
|
18
|
Knyazev DA, Belaya MA, Volodin AD, Korlyukov AA, Novikov RA, Tomilov YV. Gallium trichloride-mediated reactions of ‘double’ donor–acceptor cyclopropanes with alkenes and dienes. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor‐Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Oliver Hergert
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität Freiburg Institute of Organic Chemistry Albertstraße 21 79104 Freiburg (Breisgau) Germany
| |
Collapse
|
20
|
Vartanova AE, Levina II, Ratmanova NK, Andreev IA, Ivanova OA, Trushkov IV. Ambident reactivity of 5-aminopyrazoles towards donor-acceptor cyclopropanes. Org Biomol Chem 2022; 20:7795-7802. [PMID: 36148530 DOI: 10.1039/d2ob01490d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-catalysed reactions of donor-acceptor cyclopropanes with 1,3-disubstituted 5-aminopyrazoles were investigated. Under catalysis with gallium(III) chloride, products of the three-membered ring opening via a nucleophilic attack of the exocyclic amino group were obtained in a chemoselective manner. Oppositely, in the presence of scandium(III) triflate, products of either N-alkylation or C(4)-alkylation, or a mixture of both were formed. The products of the C(4) alkylation were transformed in one step into tetrahydropyrazolo[3,4-b]azepines that are attractive for medicinal chemistry and pharmacology.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| | - Irina I Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Nina K Ratmanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| |
Collapse
|
21
|
McLeod DA, Thøgersen MK, Barløse CL, Skipper ML, Obregón EB, Jørgensen KA. Enantioselective (8+3) Cycloadditions by Activation of Donor-Acceptor Cyclopropanes Employing Chiral Brønsted Base Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206096. [PMID: 35580010 PMCID: PMC9401081 DOI: 10.1002/anie.202206096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 12/18/2022]
Abstract
A novel enantioselective (8+3) cycloaddition between donor-acceptor cyclopropanes and heptafulvenoids catalysed by a chiral bifunctional Brønsted base is described. Importantly, the reaction, which leverages an anionic activation strategy, is divergent from prototypical Lewis-acid activation protocols. A series of cyclopropylketones react with tropones affording the desired (8+3) cycloadducts in high yield and enantiomeric excess. For barbiturate substituted heptafulvenes, the (8+3) cycloaddition with cyclopropylketones proceeds in good yield, excellent diastereoselectivity and high enantiomeric excess. The experimental work is supported by DFT calculations, which indicate that the bifunctional organocatalyst activates both the donor-acceptor cyclopropane and tropone; the reaction proceeds in a step-wise manner with the ring-closure being the stereodetermining step.
Collapse
|
22
|
Wang H, Zhang M, Xie M, Guo H. Lewis Acid Catalyzed (3+2)‐Cycloadditions of Chiral Pyrimidinyl‐Substituted Cyclopropanes with Nitrosoarenes or Silyl Enol Ethers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hai‐Xia Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Mi‐Mi Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Ming‐Sheng Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Hai‐Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
23
|
Wu Z, Zeng X. Curtius-Type Rearrangement of Sulfinyl Azides: A Matrix Isolation and Computational Study. J Phys Chem A 2022; 126:4367-4375. [PMID: 35771242 DOI: 10.1021/acs.jpca.2c02469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The highly unstable methyl sulfinyl azide, CH3S(O)N3, has been synthesized and characterized for the first time. In the gas phase, CH3S(O)N3 decomposes quickly at room temperature (300 K) with an estimated half-life (t1/2) of 7 min. Upon irradiation at 266 nm in cryogenic Ar (10 K) and Ne (3 K) matrices, the azide extrudes molecular nitrogen by yielding the novel sulfinyl nitrene intermediate CH3S(O)N in the closed-shell singlet ground state, which has been characterized with matrix-isolation IR and UV-vis spectroscopy. Prolonged irradiation at 266 nm causes Curtius rearrangement of the nitrene to form N-sulfinylamine CH3NSO and S-nitrosothiol CH3SNO. By high-vacuum flash pyrolysis (HVFP) at 800 K, CH3S(O)N3 also decomposes and furnishes CH3S(O)N with minor fragmentation products HNSO and CH2 in the gas phase. A similar photo-induced Curtius-type rearrangement of trifluoromethyl sulfinyl azide CF3S(O)N3 to CF3NSO and CF3SNO has also been observed in matrices. According to the theoretical calculations at the CCSD(T)/aug-cc-pVTZ//B3LYP/6-311++G (3df,3pd) level of theory, the rearrangement of CH3S(O)N3 prefers a stepwise pathway by initial formation of the nitrene intermediate CH3S(O)N. In line with the thermal persistence of CH3S(O)N in the gas phase, the barriers for its subsequent rearrangement are higher than 30 kcal mol-1.
Collapse
Affiliation(s)
- Zhuang Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200437, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200437, China
| |
Collapse
|
24
|
Andreev I, Boichenko M, Ratmanova N, Ivanova O, Levina I, Khrustalev V, Sedov I, Trushkov I. 4‐(Dimethylamino)pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivan Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | - Maksim Boichenko
- Lomonosov Moscow State University Department of Chemistry RUSSIAN FEDERATION
| | - Nina Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | | | - Irina Levina
- FSBSI Institute of Biochemical Physics named after N M Emanuel of the Russian Academy of Sciences RUSSIAN FEDERATION
| | | | - Igor Sedov
- Kazan Federal University RUSSIAN FEDERATION
| | - Igor Trushkov
- N.D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| |
Collapse
|
25
|
McLeod DA, Thøgersen MK, Barløse CL, Skipper ML, Obregón EB, Jørgensen KA. Enantioselective (8+3) Cycloadditions by Activation of Donor–Acceptor Cyclopropanes Employing Chiral Brønsted Base Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- David A. McLeod
- Department of Chemistry Aarhus University 8000 Aarhus C Denmark
| | | | | | | | | | | |
Collapse
|
26
|
Jacob A, Barkawitz P, Jones PG, Werz DB. Insertion of S 2 into Donor-Acceptor Cyclopropanes: Access to Dithiolanes and Their Conversion to Thietane Dioxides. Org Lett 2022; 24:3028-3032. [PMID: 35442042 DOI: 10.1021/acs.orglett.2c00967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile and efficient route to dithiolanes starting from donor-acceptor cyclopropanes is reported. Potassium p-toluenethiosulfonate has been established as the reagent of choice for this formal insertion of the disulfide moiety. Using this methodology, dithiolanes have been synthesized in moderate to good yields with high functional group tolerance. Upon treatment with an excess of mCPBA, the corresponding dithiolanes delivered four-membered thietane dioxides, the formal (3+1)-cycloaddition product of D-A cyclopropanes, and sulfur dioxide.
Collapse
|
27
|
Guin A, Deswal S, Biju AT. Ring-Opening 1,3-Carbothiolation of Donor-Acceptor Cyclopropanes Using Alkyl Halides and In Situ Generated Dithiocarbamates. J Org Chem 2022; 87:6504-6513. [PMID: 35412311 DOI: 10.1021/acs.joc.2c00447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Two-step, ring-opening 1,3-carbothiolation of donor-acceptor (D-A) cyclopropanes employing alkyl halides and in situ generated dithiocarbamates (from amines and CS2) has been demonstrated under mild conditions. The reaction is operationally simple and works with good functional group compatibility. Three new bonds including C-N, C-S, and C-C are formed in this 1,3-bifunctionalization strategy. Electron-poor olefins can also be used as electrophiles instead of alkyl halides. The use of enantiomerically pure D-A cyclopropane afforded enantiopure 1,3-carbothiolated product, thus demonstrating the stereospecificity of the reaction.
Collapse
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shiksha Deswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
28
|
Ding M, Zhang ZX, Davies TQ, Willis MC. A Silyl Sulfinylamine Reagent Enables the Modular Synthesis of Sulfonimidamides via Primary Sulfinamides. Org Lett 2022; 24:1711-1715. [PMID: 35188396 PMCID: PMC9084605 DOI: 10.1021/acs.orglett.2c00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A new N-silyl sulfinylamine
reagent allows the
rapid preparation of a broad range of (hetero)aryl, alkenyl, and alkyl
primary sulfinamides, using Grignard, organolithium, or organozinc
reagents to introduce the carbon fragment. Treatment of these primary
sulfinamides with an amine in the presence of a hypervalent iodine
reagent leads directly to NH-sulfonimidamides. This two-step sequence
is straightforward to perform and provides a modular approach to sulfonimidamides,
allowing ready variation of both reaction components, including primary
and secondary amines.
Collapse
Affiliation(s)
- Mingyan Ding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Ze-Xin Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Thomas Q. Davies
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Michael C. Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
29
|
Jaiswal V, Godara M, Das D, Gandon V, Saha J. Leveraging the Domino Skeletal Expansion of Thia-/Selenazolidinones via Nitrogen-Atom Transfer in Hexafluoroisopropanol: Room Temperature Access to Six-Membered S/Se,N-Heterocycles. J Org Chem 2021; 87:613-627. [PMID: 34904438 DOI: 10.1021/acs.joc.1c02621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, a highly regioselective domino skeletal-expansion process that transforms 2-aminothiazolidinone into six-membered S,N-heterocycle is developed with the aid of TMS-azide in hexafluoroisopropanol (HFIP) at ambient temperature. Functioning of the C2 tertiary amine as latent reactive group on thiazolidinone moiety was the key to this development, which allowed relay substitution with azide and imparted subsequent ring-expansion under metal/acid free-conditions. The reaction also underscored an intermolecular nitrogen-atom transfer process from TMS-azide leading to final products, where any intermediary azidothiazolidinone was absent. The strategy was extendable to analogous synthesis of Se,N-heterocycles, and furthermore, late-stage drug-modification and follow-up transformations were also performed. Density functional theory calculations and control experiments provided important mechanistic insights and highlighted potential roles of HFIP in the transformation.
Collapse
Affiliation(s)
- Vandana Jaiswal
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Mangilal Godara
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Dinabandhu Das
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau cedex, France
| | - Jaideep Saha
- Division of Molecular Synthesis & Drug Discovery, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|