1
|
Hou B, Wang K, Jiang C, Guo Y, Zhang X, Liu Y, Cui Y. Homochiral Covalent Organic Frameworks with Superhelical Nanostructures Enable Efficient Chirality-Induced Spin Selectivity. Angew Chem Int Ed Engl 2024; 63:e202412380. [PMID: 39180764 DOI: 10.1002/anie.202412380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Despite significant advancements in fabricating covalent organic frameworks (COFs) with diverse morphologies, creating COFs with superhelical nanostructures remains challenging. We report here the controlled synthesis of homochiral superhelical COF nanofibers by manipulating pendent alkyl chain lengths in organic linkers. This approach yields homochiral 3D COFs 13-OR with a 10-fold interpenetrated diamondoid structure (R=H, Me, Et, nPr, nBu) from enantiopure 1,1'-bi-2-naphthol (BINOL)-based tetraaldehydes and tetraamine. COF-13-OEt exhibits macroscopic chirality as right-handed and left-handed superhelical fibers, whereas others adopt spherical or non-helical morphologies. Time-tracking shows a self-assembly process from non-helical strands to single-stranded helical fibers and intertwined superhelices. Ethoxyl substituents, being of optimal size, balance solvophobic effects and intermolecular interactions, driving the formation of superhelical nanostructures, with handedness determined by BINOL chirality. The superhelical nature of these materials is evident in their chiral recognition and spin-filter properties, showing significantly improved enantiodiscrimination in carbohydrate binding (up to six times higher enantioselectivity) and a remarkable chiral-induced spin selectivity (CISS) effect with a 48-51 % spin polarization ratio, a feature absent in non-helical analogs.
Collapse
Affiliation(s)
- Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kaixuan Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yu Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaofeng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
2
|
Du YB, Lu QT, Cui YS, Wu KW, Wang Y, Zhang YZ, Zhao Z, Hou JL, Cai Q. Enantioselective Synthesis of Atropisomeric Tri-Axis Naphthalenes via Diels-Alder Reaction and Dehydrative Aromatization of Isobenzofurans. Angew Chem Int Ed Engl 2024:e202421060. [PMID: 39651784 DOI: 10.1002/anie.202421060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/11/2024]
Abstract
Atropisomers with multiple stereogenic axes have attracted much attention due to their increasing significance in the fields of natural products, chiral materials, and drug discoveries. However, the catalytic stereoselective construction of axially chiral ring scaffolds with more than two axes on a single benzene ring remains a challenging task. Herein, we present an efficient method for synthesizing triaxially chiral polysubstituted naphthalene scaffolds via sequential Ni(II)-catalyzed Diels-Alder reaction of isobenzofurans and TfOH-promoted dehydrative aromatization reaction. Using 1,3-biarylisobenzofurans and β-aryl-substituted α,β-unsaturated N-acyl pyrazoles as modular reaction partners, a series of naphthalenes with 1,3,4-triaxes were synthesized with excellent enantioselectivities and diastereoselectivities. Furthermore, by attaching two pyrene chromophores to this novel triaxially chiral ring scaffold, a circularly polarized luminescence (CPL)-active dye exhibiting a remarkable luminescence dissymmetry factor (glum=-0.019) and high fluorescence quantum efficiency (ØFL=0.29) was obtained, highlighting the potential applications of atropisomers with multiple stereogenic axes in the design of chiroptical organic materials.
Collapse
Affiliation(s)
- Yuan-Bo Du
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Qi-Tao Lu
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Yun-Shu Cui
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Kai-Wen Wu
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Yu-Zhen Zhang
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, China
| | - Jun-Li Hou
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| | - Quan Cai
- Department of Chemistry, Fudan University, 220 Handan Rd., Shanghai, 200433, China
| |
Collapse
|
3
|
Lai L, Wang S, Sang Y, Feng C, Liu M, Wang F, Lin S, Zhou Q. Multicolor and sign-invertible circularly polarized luminescence from nonchiral charge-transfer complexes assembled with N-terminal aromatic amino acids. NANOSCALE 2024. [PMID: 39618310 DOI: 10.1039/d4nr04308a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Circularly polarized luminescence (CPL) materials with precisely controlled emission colors and handedness are highly desirable for their promising applications in advanced optical technologies, but it is rather challenging to obtain them primarily due to the lack of convenient, powerful, and universal preparation strategies. Herein, we report a simple yet versatile solution route for constructing multicolor CPL materials with controllable handedness from nonchiral luminescent charge-transfer (CT) complexes through co-assembly with chiral N-terminal aromatic amino acids. The resulting ternary co-assemblies exhibit obvious CPL signals from 489 to 601 nm, covering from blue via green and yellow to orange-red. Notably, the CPL sign can be readily inverted by changing the substituents at the α-position of amino acids or the molecular structure of achiral electron donors due to effects on the hydrogen bonds, CT interactions, and stacking patterns. This work provides a new insight into developing CPL materials with tunable color and inverted handedness.
Collapse
Affiliation(s)
- Liyun Lai
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shunan Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yunxiao Sang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Chen Feng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Min Liu
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Fang Wang
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shaoliang Lin
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Quan Zhou
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
4
|
Han J, Fujikawa S, Kimizuka N. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Angew Chem Int Ed Engl 2024; 63:e202410431. [PMID: 38987230 DOI: 10.1002/anie.202410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.
Collapse
Affiliation(s)
- Jianlei Han
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
5
|
Sk MA, Kyarikwal R, Sadhu KK. Remarkable Stability of Glutathione-Based Supramolecular Gel in the Presence of Oxidative Stress from Hydrogen Peroxide. ACS APPLIED BIO MATERIALS 2024; 7:6950-6957. [PMID: 39350009 DOI: 10.1021/acsabm.4c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Low molecular weight 7-methoxy-3-(p-nitrophenyl)iminocoumarin (MNI) with donor and acceptor groups has been synthesized. The molecule shows typical π-stacking geometry in the crystal structure. In this study, MNI, an achiral small organic molecule, forms a nanostructured supramolecular gel along with a short peptide sequence glutathione (GSH). The self-assembly of the achiral organic coumarin component and chiral biomolecule produces a chiral gel with helical fiber structures. Interestingly, the helicities of chiral gels are controlled by the solvent ratio, where MNI in DMSO and GSH in water has been used. Variation of the solvent ratio from 6:4 to 1:9 for DMSO:H2O results in six gels (4, 5, 6, 7, 8 and 9), where the gel numbers signify the water content ratio. FE-SEM analysis shows gel fibers with right-handed helical structures, which have been further confirmed by circular dichroism (CD) with notable helicity in 4 to 6. This is the first report of controlled chiral helical nanostructured supramolecular gel formation by a solvent mixture with an organic small molecule and biomolecule. Interestingly, storage modulus (G') initially decreases from 4 to 6 and further increases up to 9. An opposite strain (%) trend was observed among these six gels. These unusual solvent-dependent gel properties have been further applied to monitor the stability of the gels in the presence of hydrogen peroxide (H2O2), which converts GSH to oxidized glutathione (GSSG) in general. The oxidative stress from H2O2 disrupts 4 to 6 gels, and precipitation occurs. It is noteworthy to mention that GSSG alone cannot form a gel with the MNI molecule and forms a precipitate. Remarkably, on the other hand, 7 to 9 remain as strong gels even after H2O2 treatment. Among all six gels, 9 shows extraordinary stability of gels even after H2O2 treatment.
Collapse
Affiliation(s)
- Md Azimuddin Sk
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Reena Kyarikwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Kalyan K Sadhu
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
6
|
Liu ZF, Liu XX, Zhang H, Zeng L, Niu LY, Chen PZ, Fang WH, Peng X, Cui G, Yang QZ. Intense Circularly Polarized Luminescence Induced by Chiral Supramolecular Assembly: The Importance of Intermolecular Electronic Coupling. Angew Chem Int Ed Engl 2024; 63:e202407135. [PMID: 39018249 DOI: 10.1002/anie.202407135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/19/2024]
Abstract
Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron β-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by single-crystal XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθμ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.
Collapse
Affiliation(s)
- Zheng-Fei Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xin-Xin Liu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Han Zhang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lan Zeng
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Peng-Zhong Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Ganglong Cui
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
7
|
Li X, Xu WT, Xu XQ, Wang Y, Wang XQ, Yang HB, Wang W. Lighting Up Bispyrene-Functionalized Chiral Molecular Muscles with Switchable Circularly Polarized Excimer Emissions. Angew Chem Int Ed Engl 2024:e202412548. [PMID: 39136324 DOI: 10.1002/anie.202412548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 10/29/2024]
Abstract
Aiming at the further extension of the application scope of traditional molecular muscles, a novel bispyrene-functionalized chiral molecular [c2]daisy chain was designed and synthesized. Taking advantage of the unique dimeric interlocked structure of molecular [c2]daisy chain, the resultant chiral molecular muscle emits strong circularly polarized luminescence (CPL) attributed to the pyrene excimer with a high dissymmetry factor (glum) value of 0.010. More importantly, along with the solvent- or anion- induced motions of the chiral molecular muscle, the precise regulation of the pyrene stacking within its skeleton results in the switching towards either "inversed" state with sign inversion and larger glum values or "down" state with maintained handedness and smaller glum values, making it a novel multistate CPL switch. As the first example of chiral molecular muscle-based CPL switch, this proof-of-concept study not only successfully widens the application scopes of molecular muscles, but also provides a promising platform for the construction of novel smart chiral luminescent materials for practical applications.
Collapse
Affiliation(s)
- Xue Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Wei-Tao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xiao-Qin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering, Sinopec Research Institute of Petroleum Processing Co. LTD., Beijing, 100083, China
- East China Normal University, Shanghai, 200062, China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, East China Normal University, Shanghai, 200241, China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, China
| |
Collapse
|
8
|
Bu Y, Yu ZP, Lu Z, Wang H, Deng Y, Zhu X, Zhou H. In situ self-assembled near-infrared phototherapeutic agent: unleashing hydrogen free radicals and coupling with NADPH oxidation. Chem Sci 2024; 15:12559-12568. [PMID: 39118605 PMCID: PMC11304770 DOI: 10.1039/d4sc02199a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 08/10/2024] Open
Abstract
Investigation of electron transfer (ET) between photosensitizers (PSs) and adjacent substrates in hypoxic tumors is integral to highly efficient tumor therapy. Herein, the oxygen-independent ET pathway to generate hydrogen free radicals (H˙) was established by the in situ self-assembled phototherapeutic agent d-ST under near-infrared (NIR)-light irradiation, coupled with the oxidation of reduced coenzyme NADPH, which induced ferroptosis and effectively elevated the therapeutic performance in hypoxic tumors. The higher surface energy and longer exciton lifetimes of the fine crystalline d-ST nanofibers were conducive to improving ET efficiency. In hypoxic conditions, the excited d-ST can effectively transfer electrons to water to yield H˙, during which the overexpressed NADPH with rich electrons can power the electron flow to facilitate the generation of H˙, accompanied by NADP+ formation, disrupting cellular homeostasis and triggering ferroptosis. Tumor-bearing mouse models further showed that d-ST accomplished excellent phototherapy efficacy. This work sheds light onto the versatile electron pathways between PSs and biological substrates.
Collapse
Affiliation(s)
- Yingcui Bu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
- School of Materials and Chemistry, Anhui Agricultural University P.R. China
| | - Zhi-Peng Yu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
| | - Zhou Lu
- Anhui Key Laboratory for Control and Applications of Optoelectronic Information Materials, School of Physics and Electronic Information, Anhui Normal University P.R. China
| | - Haoran Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology P.R. China
| | - Yu Deng
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education Hefei 230601 P.R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University P.R. China
| |
Collapse
|
9
|
Cui F, Xie Z, Yang R, Zhang Y, Liu Y, Zheng H, Han X. Aggregation-induced emission enhancement (AIEE) active bispyrene-based fluorescent probe: "turn-off" fluorescence for the detection of nitroaromatics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124222. [PMID: 38565053 DOI: 10.1016/j.saa.2024.124222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
The detection of nitroaromatic explosives in real samples is essential for environmental monitoring because of their strongly powerful nature and wide applications in industries. Aggregation-induced emission enhancement (AIEE) active fluorescent probe has been widely employed to detect nitroaromatic explosives. Hereby, a simple V-shaped bispyrene-based fluorescent probe (called py-o) with AIEE properties was designed and synthesized, which was fully charactered by 1D NMR, ESI, FTIR, and 2D NOESY spectra. The py-o displayed bright blue-green fluorescence excimer emission at 480 nm in DMF/H2O (v/v 1:1). It is observed that the fluorescence excimer emission of py-o at 480 nm was quenched by PA in solution with a quenching constant of 5.45 × 104 M-1, and the limit of detection was approximately 0.139 μM. The details of the sensing mechanism were explained using 1H NMR titrations, Job's plot and Bensi-Hildebrand methods, which revealed a 1:1 binding ratio via the π-π interactions between PA and py-o. Meanwhile, it exhibited outstanding anti-interference ability in the detection of PA when interfering analytes were added under the same conditions. Furthermore, low-cost thin-layer chromatography (TLC) plates coated with py-o were developed as fluorescent tools for naked-eye detection of PA in the solid state. Therefore, this work provides a new method for constructing an AIEE fluorescent probe for the detection of nitroaromatic explosives to utilize in environmental monitoring.
Collapse
Affiliation(s)
- Fengjuan Cui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China.
| | - Zhiyu Xie
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Rui Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Yue Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Huiyuan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| | - Xue Han
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, Heilongjiang 161006, PR China
| |
Collapse
|
10
|
Pan H, Hou B, Jiang Y, Liu M, Ren XK, Chen Z. Control of Kinetic Pathways toward Supramolecular Chiral Polymorphs for Tunable Circularly Polarized Luminescence. Chemistry 2024:e202400899. [PMID: 38576216 DOI: 10.1002/chem.202400899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
An amphiphilic aza-BODIPY dye (S)-1 bearing two chiral hydrophilic side chains with S-stereogenic centers was synthesized. This dye exhibited kinetic-controlled self-assembly pathways and supramolecular chiral polymorphism properties in MeOH/H2O (9/1, v/v) mixed solvent. The (S)-1 monomers first aggregated into a kinetic controlled, off-pathway species Agg. A, which was spontaneously transformed into an on-pathway metastable aggregate (Agg. B) and subsequently into the thermodynamic Agg. C. The three aggregate polymorphs of dye (S)-1 displayed distinct optical properties and nanomorphologies. In particular, chiral J-aggregation characteristics were observed for both Agg. B and Agg. C, such as Davydov-split absorption bands (Agg. B), extremely sharp and intense J-band with large bathochromic shift (Agg. C), non-diminished fluorescence upon aggregation, as well as strong bisignated Cotton effects. Moreover, the AFM and TEM studies revealed that Agg. A had the morphology of nanoparticle while fibril or rod-like helical nanostructures with left-handedness were observed respectively for Agg. B and Agg. C. By controlling the kinetic transformation process from Agg. B to Agg. C, thin films consisting of Agg. B and Agg. C with different ratios were prepared, which displayed tunable CPL with emission maxima at 788-805 nm and g-factors between -4.2×10-2 and -5.1×10-2.
Collapse
Affiliation(s)
- Hongfei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Baokai Hou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuanyuan Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zhijian Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
11
|
Huang W, Zhu Y, Zhou K, Chen L, Zhao Z, Zhao E, He Z. Boosting Circularly Polarized Luminescence from Alkyl-Locked Axial Chirality Scaffold by Restriction of Molecular Motions. Chemistry 2024; 30:e202303667. [PMID: 38057693 DOI: 10.1002/chem.202303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Boosting the circularly polarized luminescence of small organic molecules has been a stubborn challenge because of weak structure rigidity and dynamic molecular motions. To investigate and eliminate these factors, here, we carried out the structure-property relationship studies on a newly-developed axial chiral scaffold of bidibenzo[b,d]furan. The molecular rigidity was finely tuned by gradually reducing the alkyl-chain length. The environmental factors were considered in solution, crystal, and polymer matrix at different temperatures. As a result, a significant amplification of the dissymmetry factor glum from 10-4 to 10-1 was achieved, corresponding to the situation from (R)-4C in solution to (R)-1C in polymer film at room temperature. A synergistic strategy of increasing the intramolecular rigidity and enhancing the intermolecular interaction to restrict the molecular motions was thus proposed to improve circularly polarized luminescence. The though-out demonstrated relationship will be of great importance for the development of high-performance small organic chiroptical systems in the future.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuxin Zhu
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Kang Zhou
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Letian Chen
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
12
|
Lian Z, Liu L, He J, Fan S, Guo S, Li X, Liu G, Fan Y, Chen X, Li M, Chen C, Jiang H. Structurally Diverse Pyrene-decorated Planar Chiral [2,2]Paracyclophanes with Tunable Circularly Polarized Luminescence between Monomer and Excimer. Chemistry 2024; 30:e202303819. [PMID: 37997515 DOI: 10.1002/chem.202303819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/25/2023]
Abstract
We reported the synthesis of a series of structurally diverse CPL-active molecules, in which pyrene units were installed to chiral pm/po-[2,2]PCP scaffolds either with or without a triple bond spacer for pm/po-PCP-P1 and pm/po-PCP-P2, respectively. The X-ray crystallographic analyses revealed that these pyrene-based [2,2]PCP derivatives exhibited diverse structures and crystal packings in the solid phases. The pyrene-based [2,2]PCP derivatives exhibit various (chir)optical properties in organic solutions, depending on their respective structures. In a mixture of dioxane and water, pm/po-PCP-P1 emit green excimer fluorescence, whereas pm/po-PCP-P2 emit blue one. The chiroptical investigation demonstrated that Rp-pm-PCP-P1 and Rp-pm-PCP-P2 exhibited completely opposite CD and CPL signals even they possess the same chiral Rp-[2,2]PCP core. The same argument also holds for other chiral pyrene-based [2,2]PCP derivatives. The theoretical calculation revealed that these unusual phenomena were attributed to different orientation between transition electric dipole moments and the magnetic dipole moments originating from the presence or absence of a triple bond spacer. These pyrene-based [2,2]PCP derivatives display various colours and fluorescence emissions in the solid state and PMMA films, possibly due to the different packings as observed in the crystal structure. Moreover, these compounds also can interact with perylene diimide through π-π interactions, leading to near-white fluorescence.
Collapse
Affiliation(s)
- Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shimin Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guoqin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chuanfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
13
|
Oka M, Kozako R, Teranishi Y, Yamada Y, Miyake K, Fujimura T, Sasai R, Ikeue T, Iida H. Chiral Supramolecular Organogel Constructed Using Riboflavin and Melamine: Its Application in Photo-Catalyzed Colorimetric Chiral Sensing and Enantioselective Adsorption. Chemistry 2024; 30:e202303353. [PMID: 38012829 DOI: 10.1002/chem.202303353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The synthesis of a chiral supramolecular organogel via the hierarchical helical self-assembly of optically active riboflavin and melamine derivatives is described herein. Owing to the photocatalysis of riboflavin and the supramolecular chirality induced in the helically stacked riboflavin/melamine complex, the gel is observed to act as a light-stimulated chiral sensor of optically active alcohols by detecting the change in color from yellow to green. The gel also served as an efficient chiral adsorbent, enabling optical resolution of a racemic compound with high chiral recognition ability.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Kozako
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Teranishi
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Yamada
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Kazuhiro Miyake
- Center for Material Research Platform, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takuya Fujimura
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Sasai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
14
|
Weng GG, Xu K, Hou T, Huang XD, Qin MF, Bao SS, Zheng LM. Enhancing the Circularly Polarized Luminescence of Europium Coordination Polymers by Doping a Chromophore Ligand into Superhelices. Inorg Chem 2023; 62:21044-21052. [PMID: 38051505 DOI: 10.1021/acs.inorgchem.3c02806] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lanthanide-based molecular materials showing efficient circularly polarized luminescence (CPL) activity with a high quantum yield are attractive due to their potential applications in data storage, optical sensors, and 3D displays. Herein we present an innovative method to achieve enhanced CPL activity and a high quantum yield by doping a chromophore ligand into a coordination polymer superhelix. A series of homochiral europium(III) phosphonates with a helical morphology were prepared with the molecular formula S-, R-[Eu(cyampH)3-3n(nempH)3n]·3H2O (S/R-Eu-n, n = 0-5%). The doping of chromophore ligand S- or R-nempH2 into superhelices of S/R-Eu-0% not only turned on the CPL activity with the dissymmetry factor |glum| on the order of 10-3 but also increased the quantum yield by about 14-fold. This work may shed light on the development of efficient CPL-active lanthanide-based coordination polymers for applications.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Key Laboratory of Jiangxi University for Functional Materials Chemistry, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ting Hou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
15
|
Tang J, Zhang S, Zhou BW, Wang W, Zhao L. Hyperconjugative Aromaticity-Based Circularly Polarized Luminescence Enhancement in Polyaurated Heterocycles. J Am Chem Soc 2023; 145:23442-23451. [PMID: 37870916 DOI: 10.1021/jacs.3c04953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Hyperconjugative aromaticity (HA) frequently appears in metalla-aromatics, but its effect on photophysical properties remains unexplored to date. Herein, we reveal two different HA scenarios in nearly isostructural triaurated indolium and benzofuranylium compounds. The biased HAs show a discernible effect on the spatial arrangement of metal atoms and thus tailor metal parentage in frontier orbitals and the HOMO-LUMO energy gap. Theoretical calculations and structural analyses demonstrate that HA not only influences the degree of electron delocalization over the trimetalated aromatic rings but also affects π-coordination of Au(I) and intercluster aurophilic interaction. Consequently, the triaurated benzofuranylium complex shows better photoluminescence performance (quantum yield up to 49.7%) over the indolium analogue. Furthermore, four pairs of axially chiral bibenzofuran-centered trinuclear and hexanuclear gold clusters were purposefully synthesized to correlate their HA-involved structures with the chiroptical response. The triaurated benzofuranylium complexes exhibit strong circular dichroism (CD) response in solution but CPL silence even in solid film. In contrast, the hexa-aurated homologues display strong CD and intense CPL signals in both aggregated state and solid film (luminescence anisotropy factor glum up to 10-3). Their amplified chiroptical response is finally ascribed to the dominant intermolecular exciton couplings of large assemblies formed through the HA-tailored aggregation of hexanuclear compounds.
Collapse
Affiliation(s)
- Jian Tang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Sinopec (Beijing) Research Institute of Chemical Industry, Beijing 100013, China
| | - Siqi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Bo-Wei Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wan Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Liang Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Feng X, Wang X, Redshaw C, Tang BZ. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chem Soc Rev 2023; 52:6715-6753. [PMID: 37694728 DOI: 10.1039/d3cs00251a] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Molecular aggregates are self-assembled from multiple molecules via weak intermolecular interactions, and new chemical and physical properties can emerge compared to their individual molecule. With the development of aggregate science, much research has focused on the study of the luminescence behaviour of aggregates rather than single molecules. Pyrene as a classical fluorophore has attracted great attention due to its diverse luminescence behavior depending on the solution state, molecular packing pattern as well as morphology, resulting in wide potential applications. For example, pyrene prefers to emit monomer emission in dilute solution but tends to form a dimer via π-π stacking in the aggregation state, resulting in red-shifted emission with quenched fluorescence and quantum yield. Over the past two decades, much effort has been devoted to developing novel pyrene-based fluorescent molecules and determining the luminescence mechanism for potential applications. Since the concept of "aggregation-induced emission (AIE)" was proposed by Tang et al. in 2001, aggregate science has been established, and the aggregated luminescence behaviour of pyrene-based materials has been extensively investigated. New pyrene-based emitters have been designed and synthesized not only to investigate the relationships between the molecular structure and properties and advanced applications but also to examine the effect of the aggregate morphology on their optical and electronic properties. Indeed, new aggregated pyrene-based molecules have emerged with unique properties, such as circularly polarized luminescence, excellent fluorescence and phosphorescence and electroluminescence, ultra-high mobility, etc. These properties are independent of their molecular constituents and allow for a number of cutting-edge technological applications, such as chemosensors, organic light-emitting diodes, organic field effect transistors, organic solar cells, Li-batteries, etc. Reviews published to-date have mainly concentrated on summarizing the molecular design and multi-functional applications of pyrene-based fluorophores, whereas the aggregation behaviour of pyrene-based luminescent materials has received very little attention. The majority of the multi-functional applications of pyrene molecules are not only closely related to their molecular structures, but also to the packing model they adopt in the aggregated state. In this review, we will summarize the intriguing optoelectronic properties of pyrene-based luminescent materials boosted by aggregation behaviour, and systematically establish the relationship between the molecular structure, aggregation states, and optoelectronic properties. This review will provide a new perspective for understanding the luminescence and electronic transition mechanism of pyrene-based materials and will facilitate further development of pyrene chemistry.
Collapse
Affiliation(s)
- Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
17
|
Liao Q, Li Q, Li Z. The Key Role of Molecular Packing in Luminescence Property: From Adjacent Molecules to Molecular Aggregates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306617. [PMID: 37739004 DOI: 10.1002/adma.202306617] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Indexed: 09/24/2023]
Abstract
The luminescence materials act as the key components in many functional devices, as well as the detection and imaging systems, which can be permeated in each aspect of modern life, and attract more and more attention for the creative technology and applications. In addition to the diverse properties of organic luminogens, the multiple molecular packing at aggregated states frequently offers new and/or exciting performance. However, there still lacks comprehensive analysis of molecular packing in these organic materials, resulting in an increased gap between molecular design and practical applications. In this review, from the basic knowledge of organic compounds as single molecules, to the discernable property of excimer, charge transfer (CT) complex or self-assembly systems by adjacent molecules, and finally to the opto-electronic performance of molecular aggregates, the relevant factors to molecular packing and practical applications are discussed.
Collapse
Affiliation(s)
- Qiuyan Liao
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qianqian Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, TaiKang Center for Life and Medical Sciences, Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
18
|
Das A, Ghosh S, George SJ. Chiroptical Amplification of Induced Circularly Polarized Luminescence in Nucleotide-Templated Supramolecular Polymer. Angew Chem Int Ed Engl 2023; 62:e202308281. [PMID: 37534951 DOI: 10.1002/anie.202308281] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Efficient circularly polarized luminescence (CPL) from purely organic molecules holds great promise for applications in displays, sensing, and bioimaging. However, achieving high dissymmetry values (glum ) from organic chromophores remains a significant challenge. Herein, we present a bioinspired approach using adenosine triphosphate (ATP)-triggered supramolecular polymerization of a naphthalene diimide-derived monomer (ANSG) to induce CPL with a remarkable glum value of 1.1×10-2 . The ANSG molecules undergo a templated, chiral self-assembly through a cooperative growth mechanism in the presence of ATP, resulting in scrolled nanotubes with aggregation-induced enhanced emission (AIEE) and induced CPL. Furthermore, we demonstrate the concept of chiroptical amplification of induced CPL by efficiently amplifying asymmetry using a mixture of chiral ATP and achiral pyrophosphate. This innovative approach opens numerous opportunities in the emerging field of circularly polarized luminescence.
Collapse
Affiliation(s)
- Angshuman Das
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Saikat Ghosh
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
19
|
Zhao Z, Zhang L, Zhao Y, Li Y, Shi J, Zhi J, Dong Y. Helical Self-Assembly and Fe 3+ Detection of V-Shaped AIE-Active Chiral Tetraphenylbutadiene-Based Polyamides. Chemistry 2023; 29:e202301035. [PMID: 37200207 DOI: 10.1002/chem.202301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Chiral aggregation-induced emission (AIE) molecules have drawn attention for their helical self-assembly and special optical properties. The helical self-assembly of AIE-active chiral non-linear main-chain polymers can produce some desired optical features. In this work, a series of V-shaped chiral AIE-active polyamides P1-C3, P1-C6, P1-C12 and linear P2-C3, P2-C6, bearing n-propyl/hexyl/dodecyl side-chains, based on tetraphenylbutadiene (TPB), were prepared. All target main-chain polymers exhibit distinct AIE characteristics. The polymer P1-C6 with moderate length alkyl chains shows better AIE properties. The V-shaped main-chains and the chiral induction of (1R,2R)-(+)-1,2-cyclohexanediamine in each repeating unit promote the polymer chains display helical conformation, and multiple helical polymer chains induce nano-fibers helicity when the polymer chains aggregate and self-assemble in THF/H2 O mixtures. Simultaneously, the helical conformation polymer chains and helical nano-fibers cause P1-C6 produce strong circular dichroism (CD) signals with positive Cotton effect. Moreover, P1-C6 could also occur fluorescence quenching response to Fe3+ selectively with a low detection limit of 3.48 μmol/L.
Collapse
Affiliation(s)
- Zixuan Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Lulu Zhang
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Ying Zhao
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yanji Li
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Jianbing Shi
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Junge Zhi
- School of Chemistry and Chemical Engineering Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| | - Yuping Dong
- School of Materials Science and Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Beijing, 100081, China
| |
Collapse
|
20
|
Ma S, Zhao B, Deng J. Helical Polymer Working as a Chirality Amplifier to Generate and Modulate Multicolor Circularly Polarized Luminescence in Small Molecular Fluorophore/Polymer Composite Films. ACS CENTRAL SCIENCE 2023; 9:1409-1418. [PMID: 37521789 PMCID: PMC10375879 DOI: 10.1021/acscentsci.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 08/01/2023]
Abstract
In-depth studies of chirality and circularly polarized luminescence (CPL) have become indispensable in the process of learning human nature. Small molecules with CPL activity are one of the research hotspots. However, the CPL properties of such materials are generally not satisfying. Here, we synthesized a series of chiral small molecular fluorophores that cannot demonstrate CPL emission themselves. By introducing an optically inactive helical polymer, chirality transfer and chirality amplification efficiently occur, thereby generating intense CPL emission. Through combining different chiralized fluorophores, multicolor CPL-active films with emission wavelength centered at 463, 525, and 556 nm were fabricated, with the maximum luminescence dissymmetry factor (glum) being up to -0.028. Then, benefiting from the strong CPL emission and appropriate energy donor-acceptor system, we further established a circularly polarized fluorescence-energy transfer (CPF-ET) strategy in which the CPL-active films work as a donor emitting circularly polarized fluorescence to excite an achiral fluorophore (Nile red) as the acceptor, producing red CPL with glum of up to -0.011 at around 605 nm.
Collapse
|
21
|
Ai Y, Ni Z, Shu Z, Zeng Q, Lei X, Zhu Y, Zhang Y, Fei Y, Li Y. Supramolecular Strategy to Achieve Distinct Optical Characteristics and Boosted Chiroptical Enhancement Based on the Closed Conformation of Platinum(II) Complexes. Inorg Chem 2023. [PMID: 37365822 DOI: 10.1021/acs.inorgchem.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Synthesis of chiral molecules for understanding and revealing the expression, transfer, and amplification of chirality is beneficial to explore effective chiral medicines and high-performance chiroptical materials. Herein, we report a series of square-planar phosphorescent platinum(II) complexes adopting a dominantly closed conformation that exhibit efficient chiroptical transfer and enhancement due to the nonclassical intramolecular C-H···O or C-H···F hydrogen bonds between bipyridyl chelating and alkynyl auxiliary ligands as well as the intermolecular π-π stacking and metal-metal interactions. The spectroscopic and theoretical calculation results demonstrate that the chirality and optic properties are regulated from the molecular level to hierarchical assemblies. Notably, a 154 times larger gabs value of the circular dichroism signals is obtained. This study provides a feasible design principle to achieve large chiropticity and control the expression and transfer of the chirality.
Collapse
Affiliation(s)
- Yeye Ai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhigang Ni
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhu Shu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Qingguo Zeng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xin Lei
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yihang Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yinghao Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yuexuan Fei
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongguang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
22
|
Sun Y, Jiang Y, Jiang J, Li T, Liu M. Keto-form directed hierarchical chiral self-assembly of Schiff base derivatives with amplified circularly polarized luminescence. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
23
|
Geng Z, Liu Z, Li H, Zhang Y, Zheng W, Quan Y, Cheng Y. Inverted and Amplified CP-EL Behavior Promoted by AIE-Active Chiral Co-Assembled Helical Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209495. [PMID: 36479735 DOI: 10.1002/adma.202209495] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
It is well-known that high-performance circularly polarized organic light-emitting diodes (CP-OLEDs) remain a formidable challenge to the future application of circularly polarized luminescent (CPL)-active materials. Herein, the design of a pair of AIE-active chiral enantiomers (L/D-HP) is described to construct chiral co-assemblies with an achiral naphthalimide dye (NTi). The resulting co-assemblies emit an inverted CPL signal compared with that from the L/D-HP enantiomers. After thermal annealing at 120 °C, the inverted CPL signal of this kind of L/D-HP-NTi with a 1:1 molar ratio shows regular and ordered helical nanofibers arranged through intermolecularly ordered layered packing and is accompanied with a further amplified effect (|gem | = 0.032, λem = 535 nm). Significantly, non-doped CP-OLEDs based on a device emitting layer (EML) of L/D-HP-NTi exhibits a low turn-on voltage (Von ) of 4.7 V, a high maximum brightness (Lmax ) of 2001 cd m-2 , and moderate maximum external quantum efficiency (EQEmax ) of 2.3%, as well as excellent circularly polarized electroluminescence (CP-EL) (|gEL | = 0.023, λem = 533 nm).
Collapse
Affiliation(s)
- Zhongxing Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zheng Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenhua Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yixiang Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
24
|
Li Q, Lu X, Lv Z, Zhu B, Lu Q. Full-Color and Switchable Circularly Polarized Light from a Macroscopic Chiral Dendritic Film through a Solid-State Supramolecular Assembly. ACS NANO 2022; 16:18863-18872. [PMID: 36346796 DOI: 10.1021/acsnano.2c07768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chiral materials displaying chirality across multiple length scales have attracted increasing interest due to their potential applications in diverse fields. Herein, we report an efficient approach for the construction of macroscopic crystal dendrites with hierarchical chirality based on an in situ solid assembly in a block copolymer film. Chiral fluorescent crystals are formed by enantiopure d-/l-dibenzoyl tartaric acid and pyrenecarboxylic acid in a poly(1,4-butadiene)-b-poly(ethylene oxide) film. The chiro-optical activity of the crystalline dendrites can be greatly amplified in the absorption and scattering regions and goes along with the dimension of dendrites. Notably, the chiral dendrites exhibited strong circularly polarized luminescence emission with a high dissymmetric factor (0.03). The enhancement of the quantum yield of the chiral film was up to 28%, which was 14 times higher that of the corresponding fluorescent molecules. The circularly polarized emission bands of the films can be fine-tuned by contriving the emissive bands of fluorescent molecules. More importantly, the chiral signals are able to be wiped when the fluorescent group photodimerizes under UV irradiation. This work provides an efficient way to develop functional materials through solid self-assembly.
Collapse
Affiliation(s)
- Qingxiang Li
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Xuemin Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Zhiguo Lv
- School of Physics and Astronomy, Key Laboratory of Artificial Structures and Quantum Control, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| | - Bangshang Zhu
- Institute of Analytic Center, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Qinghua Lu
- School of Chemistry and Chemical Engineering, Shanghai Key Lab of Electrical & Thermal Aging, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, People's Republic of China
| |
Collapse
|
25
|
Shi Z, Wang Q, Yi J, Zhao C, Chen S, Tian H, Qu D. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022; 61:e202207405. [DOI: 10.1002/anie.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zhao‐Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Qian Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shao‐Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Da‐Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals, School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
26
|
Wang Y, Gong J, Wang X, Li W, Wang X, He X, Wang W, Yang H. Multistate Circularly Polarized Luminescence Switching through Stimuli‐Induced Co‐Conformation Regulations of Pyrene‐Functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022; 61:e202210542. [DOI: 10.1002/anie.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Jiacheng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xianwei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei‐Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xu‐Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xiao He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Shanghai Frontiers Science Center of Molecule Intelligent Syntheses & Chang-Kung Chuang Institute School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| |
Collapse
|
27
|
Wang Y, Gong J, Wang X, Li WJ, Wang XQ, He X, Wang W, Yang HB. Multistate Circularly Polarized Luminescence Switching through Stimuli‐induced Co‐conformation Regulations of Pyrene‐functionalized Topologically Chiral [2]Catenane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Jiacheng Gong
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xianwei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei-Jian Li
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xu-Qing Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xiao He
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Wei Wang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Hai-Bo Yang
- East China Normal University Department of Chemistry 3663 N. Zhongshan Road 200062 Shanghai CHINA
| |
Collapse
|
28
|
Zhang Y, Li H, Geng Z, Zheng W, Quan Y, Cheng Y. Dynamically stable and amplified circularly polarized excimer emission regulated by solvation of chiral co-assembly process. Nat Commun 2022; 13:4905. [PMID: 35988006 PMCID: PMC9392786 DOI: 10.1038/s41467-022-32714-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Chiral supramolecular assembly has been assigned to be one of the most favorable strategies for the development of excellent circularly polarized luminescent (CPL)-active materials. Herein, we report our study of an achiral boron-containing pyrene (Py)-based chromophore (PyBO) as a circularly polarized excimer emission (CPEE) dye induced by chiral co-assemblies containing chiral binaphthyl-based enantiomers (R/S-M). Chiral co-assembly R/S-M-(PyBO)4 fresh film spin-coated from toluene solution can exhibit orderly nanofibers and strong green CPEE (λem = 512 nm, gem = ±0.45, ΦFL = 51.2 %) resulting from an achiral PyBO excimer. In contrast, only a very weak blue CPL was observed (λem = 461 nm, gem = ± 0.0125, ΦFL = 19.0 %) after 187 h due to PyBO monomer emission as spherulite growth. Interestingly, this kind of chiral co-assembly R-M-(PyBO)4-T film from tetrahydrofuran (THF) solution retains uniform morphology and affords the most stable and strongest CPEE performance (λem = 512 nm, gem = + 0.62, ΦFL = 53.3 %) after 10 days.
Collapse
Affiliation(s)
- Yuxia Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhongxing Geng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenhua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| | - Yixiang Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
29
|
Shi ZT, Wang Q, Yi J, Zhao C, Chen SY, Tian H, Qu DH. Encoding Supramolecular Chiral Self‐Assembly with Photo‐Controlled Circularly Polarized Luminescence by Overcrowded Alkene‐Based Bis‐PBI Modulators. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboretory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Joint Research Center East China University of Science and Technology CHINA
| | - Qian Wang
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Jinhao Yi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Chengxi Zhao
- Key Laboretory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Jiont Research Center East China University of Science and Technology CHINA
| | - Shao-Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - He Tian
- Key Laboratory for Advanced Materials and Joint Internation Research Laboratory of Precision Chemistry and Molecular Enginering, Feringa Nobel Prize Scientist Joint Research Center East China University of Science and Technology CHINA
| | - Da-Hui Qu
- Key Labs for Advanced Materials Institute of Fine Chemicals, East China University of Science and Technology Meilong Road 130 200237 Shanghai CHINA
| |
Collapse
|
30
|
Tu C, Wu W, Liang W, Zhang D, Xu W, Wan S, Lu W, Yang C. Host-Guest Complexation-Induced Aggregation Based on Pyrene-Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202203541. [PMID: 35499863 DOI: 10.1002/anie.202203541] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 01/03/2023]
Abstract
Several γ-cyclodextrin (CD) derivatives mono- or di-substituted by pyrenes at the primary rim of the CD were demonstrated to aggregate into nano-strips in aqueous solutions, with the pyrene moieties interpenetrating into γ-CD cavities. The hydrophobic complexation-induced aggregation provides a rigid chiral environment for the pyrenes and leads to significant electronic circular dichroism (ECD) and circularly polarized luminescence (CPL) activities, giving unprecedently high gabs and glum values up to 4.3×10-2 and 5.3×10-2 , respectively. The aggregates lead to excimer emission with high quantum yields and show BCPL and Bi CPL up to 338. 6 M-1 cm-1 and 169.3 M-1 cm-1 , respectively.
Collapse
Affiliation(s)
- Chenlin Tu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wenting Liang
- Department of Chemistry, Institute of Environmental Science Shanxi University, Taiyuan, 030006, China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Wei Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| | - Shigang Wan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wei Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
31
|
Wu J, Zhang J, Liu Y, Wang J, Zhang C, Yan J, Li W, Masuda T, Whittaker AK, Zhang A. Supramolecular Chiral Assembly of Symmetric Molecules with an Extended Conjugated Core. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33734-33745. [PMID: 35834778 DOI: 10.1021/acsami.2c09752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
C3-symmetric molecules carrying a conjugated diacetylene (DA) core are found to self-assemble into well-defined supramolecular fibers with enhanced supramolecular chirality in both organic and aqueous solutions. The conjugated core affords these amphiphiles characteristic fluorescence properties, which can be quenched partially due to the aggregation. Integration of the C3-symmetry with the conjugation provides these novel molecules strong aggregation tendency through solvent-mediated π-π stacking with preferential supramolecular chirality, which is predominately related to steric hindrance from their dipeptide pendants. Highly uniform supramolecular fibers of P and M handedness with thickness consistent in the dimensions of individual C3 molecules are obtained. The increase of concentrations induces these fibers to wrap together to form supramolecular fibrous bundles. Topochemical polymerization of the DA moieties can transform these supramolecular fibers into stable covalent polymers. We therefore believe that self-assembly of these C3-symmetric molecules with extended conjugated DA cores provides new prospects for the construction of supramolecular helical fibers through enhanced π-π stacking and creates a convenient strategy to furnish covalent chiral polymers of hierarchical structures through supramolecular assembly.
Collapse
Affiliation(s)
- Jindiao Wu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Jianan Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Yanjun Liu
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Jun Wang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jiatao Yan
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Toshio Masuda
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Afang Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 20444, P. R. China
| |
Collapse
|
32
|
Gao Z, Yan F, Shi L, Han Y, Qiu S, Zhang J, Wang F, Wu S, Tian W. Acylhydrazone-based supramolecular assemblies undergoing a converse sol-to-gel transition on trans → cis photoisomerization. Chem Sci 2022; 13:7892-7899. [PMID: 35865886 PMCID: PMC9258502 DOI: 10.1039/d2sc01657e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Photoisomeric supramolecular assemblies have drawn enormous attention in recent years. Although it is a general rule that photoisomerization from a less to a more distorted isomer causes the destruction of assemblies, this photoisomerization process inducing a converse transition from irregular aggregates to regular assemblies is still a great challenge. Here, we report a converse sol-to-gel transition derived from the planar to nonplanar photoisomer conversion, which is in sharp contrast to the conventional light-induced gel collapse. A well-designed acylhydrazone-linked monomer is exploited as a photoisomer to realize the above-mentioned phase transition. In the monomer, imine is responsible for trans-cis interconversion and amide generates intermolecular hydrogen bonds enabling the photoisomerization-driven self-assembly. The counterintuitive feature of the sol-to-gel transition is ascribed to the partial trans → cis photoisomerization of acylhydrazone causing changes in stacking mode of monomers. Furthermore, the reversible phase transition is applied in the valves formed in situ in microfluidic devices, providing fascinating potential for miniature materials.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Fei Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Yifei Han
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Juan Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| | - Feng Wang
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Si Wu
- Department of Polymer Science and Engineering, University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an 710072 P. R. China
| |
Collapse
|
33
|
Tu C, Wu W, Liang W, Zhang D, Xu W, Wan S, Lu W, Yang C. Host–Guest Complexation‐Induced Aggregation Based on Pyrene‐Modified Cyclodextrins for Improved Electronic Circular Dichroism and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chenlin Tu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wenting Liang
- Department of Chemistry Institute of Environmental Science Shanxi University Taiyuan 030006 China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Wei Xu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| | - Shigang Wan
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Wei Lu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry and State Key Laboratory of Biotherapy Sichuan University Chengdu 610064 China
| |
Collapse
|
34
|
Zhao F, Zhao J, Wang Y, Liu HT, Shang Q, Wang N, Yin X, Zheng X, Chen P. [5]Helicene-based chiral triarylboranes with large luminescence dissymmetry factors over a 10 -2 level: synthesis and design strategy via isomeric tuning of steric substitutions. Dalton Trans 2022; 51:6226-6234. [PMID: 35362491 DOI: 10.1039/d2dt00677d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Constructing chiral luminescent systems with both large luminescence dissymmetry factor (glum) and high luminous efficiency has been considered a great challenge. We herein describe a highly efficient approach to sterically stabilize the helical configurations of carbo[5]helicenes for improved CPL properties in a series of π-donor and π-acceptor substituted [5]helicenes (1, 2, 3, 4 and 5). Enabled by the ortho-installation of methyl groups as well as the steric effects of triarylamine (Ar3N) and triarylborane (Ar3B) handles in meta-substituted [5]helicenes, their optical resolution into enantiomers has been accomplished using preparative chiral HPLC. The molecular chirality of [5]helicenes can be transferred to Ar3B and Ar3N as light emitters, which allowed further investigations of their chiroptics, including optical rotation, circular dichroism (CD) and circularly polarized luminescence (CPL). Remarkably, 4 has been demonstrated to display dramatically enhanced CPL performance with a much larger glum (>1.2 × 10-2) and an increased emission quantum efficiency (ΦS = 0.75) compared with the other analogues, as a result of the isomeric tuning of substitutions with differential steric and electronic effects. These experimentally observed CPL activities were rationalized by TD-DFT computations for the angle (θμ,m) between electric and magnetic transition dipole moments in the excited states. In addition, the conspicuous intramolecular donor-acceptor charge transfer led to thermal responses in the emissions of 2 and 4 over a broad temperature range.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | | | - Nan Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaodong Yin
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China.
| |
Collapse
|
35
|
Garain S, Sarkar S, Chandra Garain B, Pati SK, George SJ. Chiral Arylene Diimide Phosphors: Circularly Polarized Ambient Phosphorescence from Bischromophoric Pyromellitic Diimides. Angew Chem Int Ed Engl 2022; 61:e202115773. [PMID: 35015335 DOI: 10.1002/anie.202115773] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Indexed: 12/17/2022]
Abstract
Chiral organic phosphors with circularly polarized room-temperature phosphorescence (CPP) provide new prospects to the realm of circularly polarized luminescence (CPL) materials, owing to the long-lived triplet states and persistent emission. Although several molecular designs show efficient room-temperature phosphorescence (RTP), realization of ambient organic CPP remains a formidable challenge. Herein, we introduce a chiral bischromophoric phosphor design to realize ambient CPP emission by appending molecular phosphors to a chiral diaminocyclohexane core. Thus, solution-processable polymer films of the trans-1,2-diaminocyclohexane (DAC) chiral cores with heavy-atom substituted pyromellitic diimide phosphors, exhibits one of the most efficient exclusive CPP emissions with high phosphorescence quantum yield (≈18 % in air and ≈46 % under vacuum) and significant luminescence dissymmetry factor (|glum |≈4.0×10-3 ).
Collapse
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | - Souvik Sarkar
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| | | | - Swapan K Pati
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India.,Theoretical Sciences Unit, JNCASR, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore, 560064, India
| |
Collapse
|
36
|
Zhang Y, Li H, Geng Z, Zheng WH, Quan Y, Cheng Y. Inverted Circularly Polarized Luminescence Behavior Induced by Helical Nanofibers through Chiral Co-Assembly from Achiral Liquid Crystal Polymers and Chiral Inducers. ACS NANO 2022; 16:3173-3181. [PMID: 35142484 DOI: 10.1021/acsnano.1c11011] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chiral supramolecular assembly can provide a powerful strategy for developing circularly polarized luminescence (CPL)-active materials by forming helices or superhelices into single or multiple components. Herein, we chose three achiral liquid crystal polymers (LC-P1/P2/P3) and chiral binaphthyl-based inducers (R/S-M) with anchored dihedral angles to construct chiral co-assemblies and explore the induced CPL behavior from pyrenyl (Py) emitters in achiral LC polymers through the regulation of helical nanofibers during the supramolecular co-assembly process. Most interestingly, chiral co-assembly (R/S-M)0.1-(P3)0.9 emitted an inverted blue-colored CPL signal during thermal annealing treatment at the glass transition temperature due to the flexible main chain of the LC polymer (LC-P3). The strongest blue-colored CPL emission for the (R/S-M)0.1-(P3)0.9 spin-coated film (λem = 455 nm, |gem| = 6.47 × 10-2, ΦF = 48.5%) could be detected by using thermal annealing treatment at 105 °C.
Collapse
Affiliation(s)
- Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hang Li
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhongxing Geng
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wen-Hua Zheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
37
|
Yang X, Jin X, Zhou L, Duan P, Fan Y, Wang Y. Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Lili Zhou
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences Beijing National Laboratory for Molecular Science Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 100190 Beijing P. R. China
- University of Chinese Academy of Sciences No.19(A) Yuquan Road, Shijingshan District 100049 Beijing P. R. China
| |
Collapse
|
38
|
Ghosh A, Dubey SK, Patra M, Mandal J, Ghosh NN, Saha R, Bhattacharjee S. Coiled‐Coil Helical Nano‐Assemblies: Shape Persistent, Thixotropic, and Tunable Chiroptical Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202103942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Angshuman Ghosh
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
- TCG Lifescience, Block BN, Sector V, Saltlake Kolkata 700156 West Bengal India
| | - Soumen Kumar Dubey
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Maxcimilan Patra
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | - Jishu Mandal
- CIF Biophysical Laboratory CSIR-Indian Institute of Chemical Biology Jadavpur Kolkata 700032 West Bengal India
| | - Narendra Nath Ghosh
- Department of Chemistry University of Gour Banga Mokdumpur- 732103 West Bengal India
| | - Rajat Saha
- Department of Chemistry Kazi Nazrul University Asansol 713340 West Bengal India
| | | |
Collapse
|
39
|
Shen Y, Yao K, Li H, Xu Z, Quan Y, Cheng Y. Strong CPL-active liquid crystal materials induced by intermolecular hydrogen-bonding interaction and a chirality induction mechanism. SOFT MATTER 2022; 18:477-481. [PMID: 34929727 DOI: 10.1039/d1sm01607e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A novel co-assembly material can emit strong CPL signals (λem = 485 nm, glum = +0.076/-0.064) from an achiral AIE-active β-cyanostilbene (CYS) liquid crystal dye through intermolecular hydrogen bond (HB) interaction and chirality induction after a rapid cooling quench treatment.
Collapse
Affiliation(s)
- Yihao Shen
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Kun Yao
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hang Li
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhaoran Xu
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry of MOE and Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
40
|
Garain S, Sarkar S, Garain BC, Pati SK, George SJ. Chiral Arylene Diimide Phosphors: Circularly Polarized Ambient Phosphorescence from Bischromophoric Pyromellitic Diimides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Swadhin Garain
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research New Chemistry Unit INDIA
| | - Souvik Sarkar
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research New Chemistry Unit INDIA
| | - Bidhan Chandra Garain
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research Theoretical Sciences Unit INDIA
| | - Swapan Kumar Pati
- JNCASR: Jawaharlal Nehru Centre for Advanced Scientific Research Theoretical Sciences Unit INDIA
| | | |
Collapse
|
41
|
Affiliation(s)
- Yunying Xu
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
42
|
Xue C, Xu L, Wang H, Li T, Liu M. Circularly Polarized Luminescence (CPL) from Pyrene‐Appended Cyclohexanediamides and Photoirradiation‐Tuned CPL Inversion. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chenlu Xue
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Lifei Xu
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Han‐Xiao Wang
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| | - Tiesheng Li
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P.R. China
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 P.R. China
| |
Collapse
|
43
|
Yang X, Jin X, Zhou L, Duan P, Fan Y, Wang Y. Modulating the Excited State Chirality of Dynamic Chemical Reactions in Chiral Micelles. Angew Chem Int Ed Engl 2021; 61:e202115600. [PMID: 34881474 DOI: 10.1002/anie.202115600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/11/2022]
Abstract
Chirality generation and transfer is not only of critical importance in resolving the origin of biological homochirality, but also is of great significance for exploring the chirality-related functionalities in nanomaterials and supramolecular systems. Although modulating the ground state chirality in chiral nanomaterials has been widely demonstrated, it remains a big challenge to steer the excited state chirality (circularly polarized luminescence, CPL). Herein, we present a kind of chiral spherical micelles constructed by chiral cationic gemini surfactants, whose surfaces and cavities could co-assemble with hydrophilic and hydrophobic emitters concurrently. Subsequently, the hydrophilic and hydrophobic emitters could be endowed with CPL activity in the aqueous phase. Additionally, the cavities of such micelles can be regarded as the powerful chiral confined space, which could effectively modulate the excited state chirality of dynamic chemical reactions, enabling color-adjustable CPL emission.
Collapse
Affiliation(s)
- Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China
| | - Lili Zhou
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No.11, ZhongGuanCun BeiYiTiao, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, 100190, Beijing, P. R. China.,University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, P. R. China
| |
Collapse
|
44
|
Zheng D, Guo S, Zheng L, Xu Q, Wang Y, Jiang H. Red circularly polarized luminescence from intramolecular excimers restricted by chiral aromatic foldamers. Chem Commun (Camb) 2021; 57:12016-12019. [PMID: 34713879 DOI: 10.1039/d1cc05163f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aromatic oligoamide foldamers are highlighted as a verstile paltform for developing single-handed foldamers with two aromatic acetenyl groups at the same side. The foldamers with pyrene acetenyl units exhibit red excimer emissions, which were circularly polarized and show interesting circularly polarized luminescence properties with high CPL brightness BCPL up to 109.8 M-1.cm-1. The red excimer CPL was attributed to the extended conjugations and the spatial restriction of pyrene units at the same side of foldamers.
Collapse
Affiliation(s)
- Dan Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Shengzhu Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Lu Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, China. .,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Qi Xu
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China. .,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
45
|
Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1146-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Xu Y, Hao A, Xing P. X⋅⋅⋅X Halogen Bond-Induced Supramolecular Helices. Angew Chem Int Ed Engl 2021; 61:e202113786. [PMID: 34729878 DOI: 10.1002/anie.202113786] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Indexed: 12/28/2022]
Abstract
The halogen bond is the attractive interaction between the electrophilic region of a halogen atom and the nucleophilic region of another molecular entity, emerging as a favorable manner to manipulate supramolecular chirality in self-assemblies. Engineering halogen bonded helical structures remains a challenge due to its sensitivity to solvent polarity and competitive forces like hydrogen bonds. Herein, we report a X⋅⋅⋅X (X=Cl, Br, I) type weak halogen bond that induces the formation and evolution of supramolecular helical structures both in solid and solution state. The π-conjugated phenylalanine derivatives with F, Cl, Br and I substitution self-assembled into 21 helical packing driven by hydrogen bond and halogen bond, respectively. The specific molecular geometries of π-conjugated amino acids gave rise to multiple noncovalent forces to stabilize the X⋅⋅⋅X halogen bond with small bond energies ranging from -0.69 to -1.49 kcal mol-1 . Halogen bond induced an opposite helicity compared to the fluorinated species, accompanied by the inversed circularly polarized luminescence.
Collapse
Affiliation(s)
- Yunying Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
47
|
Vonhausen Y, Lohr A, Stolte M, Würthner F. Two-step anti-cooperative self-assembly process into defined π-stacked dye oligomers: insights into aggregation-induced enhanced emission. Chem Sci 2021; 12:12302-12314. [PMID: 34603660 PMCID: PMC8480337 DOI: 10.1039/d1sc03813c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Aggregation-induced emission enhancement (AIEE) phenomena received great popularity during the last decade but in most cases insights into the packing structure – fluorescence properties remained scarce. Here, an almost non-fluorescent merocyanine dye was equipped with large solubilizing substituents, which allowed the investigation of it's aggregation behaviour in unpolar solvents over a large concentration range (10−2 to 10−7 M). In depth analysis of the self-assembly process by concentration-dependent UV/Vis spectroscopy at different temperatures revealed a two-step anti-cooperative aggregation mechanism. In the first step a co-facially stacked dimer is formed driven by dipole–dipole interactions. In a second step these dimers self-assemble to give an oligomer stack consisting of about ten dyes. Concentration- and temperature-dependent UV/Vis spectroscopy provided insight into the thermodynamic parameters and allowed to identify conditions where either the monomer, the dimer or the decamer prevails. The centrosymmetric dimer structure could be proven by 2D NMR spectroscopy. For the larger decamer atomic force microscopy (AFM), diffusion ordered spectroscopy (DOSY) and vapour pressure osmometric (VPO) measurements consistently indicated that it is of small and defined size. Fluorescence, circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy provided insights into the photofunctional properties of the dye aggregates. Starting from an essentially non-fluorescent monomer (ΦFl = 0.23%) a strong AIEE effect with excimer-type fluorescence (large Stokes shift, increased fluorescence lifetime) is observed upon formation of the dimer (ΦFl = 2.3%) and decamer (ΦFl = 4.5%) stack. This increase in fluorescence is accompanied for both aggregates by an aggregation-induced CPL enhancement with a strong increase of the glum from ∼0.001 for the dimer up to ∼0.011 for the higher aggregate. Analysis of the radiative and non-radiative decay rates corroborates the interpretation that the AIEE effect originates from a pronounced decrease of the non-radiative rate due to π–π-stacking induced rigidification that outmatches the effect of the reduced radiative rate that originates from the H-type exciton coupling in the co-facially stacked dyes. The self-assembly of a dipolar merocyanine into preferred dimers and small-sized chiral aggregates leads to enhanced emission due to a reduced non-radiative rate as well as amplified circular polarized luminescence.![]()
Collapse
Affiliation(s)
- Yvonne Vonhausen
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Andreas Lohr
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany .,Center for Nanosystems Chemistry (CNC), Bavarian Polymer Institute (BPI), Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|