1
|
Xu D, Zhou G, Liu B, Jia S, Liu Y, Yan H. Catalytic Asymmetric Synthesis of Inherently Chiral Eight-Membered O-Heterocycles through Cross-[4+4] Cycloaddition of Quinone Methides. Angew Chem Int Ed Engl 2025; 64:e202416873. [PMID: 39540793 DOI: 10.1002/anie.202416873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/19/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Inherently chiral eight-membered rings embedded in tetraphenylene derivatives and hetero-analogues exhibit unique properties and allow diverse applications. A conceptually viable and straightforward approach to these frameworks is [4+4] cycloaddition, which still remains elusive. Herein, we describe the stereoselective cross-[4+4] cycloaddition of quinone methides (QMs), leading to the formation of oxa-analogues of tetraphenylene with exceptional chemo-, diastereo-, and enantioselectivity. The structures of these novel rigid eight-membered O-heterocycles were explored by single-crystal X-ray diffraction, and their stereochemical stability was elaborated through both density functional theory (DFT) calculations and thermal racemization experiments. The developed methodology exhibited broad substrate scope and the resulting cross-[4+4] cycloadducts could be readily transformed into valuable chiral building blocks. Our findings expand the library of inherently chiral medium-sized rings and also contribute to the advancement of asymmetric cross-[4+4] cycloadditions of quinone methides.
Collapse
Affiliation(s)
- Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Guojie Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Bangli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Shiqi Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
2
|
Huang S, Wen H, Li Y, Qin W, Wang P, Lan Y, Jia S, Yan H. Organocatalytic enantioselective synthesis of double S-shaped quadruple helicene-like molecules. Nat Commun 2025; 16:500. [PMID: 39779671 PMCID: PMC11711666 DOI: 10.1038/s41467-024-55590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Helicene-shaped molecules are compelling chemical structures with unique twisted helical chirality and remarkable properties. Although progress occurs in the catalytic asymmetric synthesis of helicene (-like) molecules, the enantioselective synthesis of multiple helicenes, especially four or higher helicity, is still challenging and has yet to be achieved. Herein, we report an organocatalytic [4 + 2] cycloadditions to achieve double S-shaped quadruple helicene-like molecules with high enantioselectivity (up to 96% e.e.). The enantioselective synthesis of (P,P,P,P) and (M,M,M,M) configurational quadruple helical molecules can be achieved by modulating the structure of the catalyst. Density functional theory (DFT) calculations show that the reaction involves the formation of a duplex vinylidene ortho-quinone methide (VQM) intermediate and two successive cycloaddition reactions. Configurational stability studies elucidate the isomerization process between the isomers. In addition, the structural features and optical properties of the quadruple helicene-like molecules were investigated to explore their potential applications.
Collapse
Affiliation(s)
- Shengli Huang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Haojun Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yige Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, China
| | - Shiqi Jia
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China.
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
| |
Collapse
|
3
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
4
|
Xu T, Wang Y, Jin S, Rahman AU, Yan X, Yuan Q, Liu H, Wang JY, Yan W, Jiao Y, Liang R, Li G. Amino Turbo Chirality and Its Asymmetric Control. RESEARCH (WASHINGTON, D.C.) 2024; 7:0474. [PMID: 39301263 PMCID: PMC11411161 DOI: 10.34133/research.0474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
A series of new targets containing 3 chiral elements of central, orientational, and turbo chirality have been designed and synthesized asymmetrically. The absolute configurations and conformations of these types of chirality were concurrently controlled by using chiral sulfonimine auxiliary and unambiguously determined by x-ray diffraction analysis. These targets include alpha unnatural amino acid derivatives, which may play an important role for drug design, discovery, and development. Three propellers of turbo framework are covalently connected to a chiral C(sp3) center via C(sp2)-C(sp3) bonding along with a C-N axis, while one of them is orientated away from the same carbon chiral center. The turbo or propeller chirality is characterized by 2 types of molecular arrangements of propellers, clockwise (PPP) and counterclockwise (MMM), respectively. The turbo stereogenicity was found to depend on the center chirality of sulfonimine auxiliary instead of the chiral C(sp3) center, i.e., (S)- and (R)-sulfinyl centers led to the asymmetric formation of PPP- and MMM-configurations, respectively. Computational studies were conducted on relative energies for rotational barriers of a turbo target along the C-N anchor and the transition pathway between 2 enantiomers meeting our experimental observations. This work is anticipated to have a broad impact on chemical, biomedical, and materials sciences in the future.
Collapse
Affiliation(s)
- Ting Xu
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
| | - Anis U. Rahman
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Xianghua Yan
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry,
Changzhou University, Changzhou, Jiangsu 213164, China
| | - Wenxin Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education,
Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education,
Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Ruibin Liang
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| | - Guigen Li
- School of Chemistry and Chemical Engineering,
Nanjing University, Nanjing 210093, China
- Department of Chemistry and Biochemistry,
Texas Tech University, Lubbock, TX 79409-1061, USA
| |
Collapse
|
5
|
Zhu XQ, Yang HY, Ye LW. Chiral Brønsted Acid-Catalyzed Asymmetric Reaction via Vinylidene Ortho-Quinone Methides. Chemistry 2024; 30:e202402247. [PMID: 38923595 DOI: 10.1002/chem.202402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Vinylidene ortho-quinone methides (VQMs) have been proven to be versatile and crucial intermediates in the catalytic asymmetric reaction in last decade, and thus have drawn considerable concentrations on account of the practical application in the construction of enantiomerically pure functional organic molecules. However, in comparison to the well established chiral Brønsted base-catalyzed asymmetric reaction via VQMs, chiral Brønsted acid-catalyzed reaction is rarely studied and there is no systematic summary to date. In this review, we summarize the recent advances in the chiral Brønsted acid-catalyzed asymmetric reaction via VQMs according to three types of reactions: a) intermolecular asymmetric nucleophilic addition to VQMs; b) intermolecular asymmetric cycloaddition of VQMs; c) intramolecular asymmetric cyclization of VQMs. Finally, we put forward the remained challenges and opportunities for potential breakthroughs in this area.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Hai-Yu Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Long-Wu Ye
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
6
|
Bao W, Wang XJ, Wang SH, Chen SW, Liu HH, Xiang SH, Tan B. Design of Stable Chiral Aminosulfonium Ylides and Their Catalytic Asymmetric Synthesis. Angew Chem Int Ed Engl 2024:e202412508. [PMID: 39213133 DOI: 10.1002/anie.202412508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The isolation and catalytic enantioselective synthesis of configurationally stable S-stereogenic sulfonium ylides have been significant challenges in the field of asymmetric synthesis. These reactive intermediates are crucial for a variety of synthetic transformations, yet their inherent tendency towards rapid inversion at the sulfur stereocenter has hindered their practical utilization. Conventional approaches have focused on strategies that incorporate a C=S bond-containing cyclic framework to help mitigate this stereochemical lability. In this work, we present an alternative tactic that leverages the stabilizing influence of an adjacent N-atom and cyclic sulfide moiety. Exploiting a copper catalyzed enantioselective intermolecular carbene transfer reaction, structurally diverse S-stereogenic aminosulfonium ylides have been achieved in excellent yields and enantioselectivities. Experimental results indicate that the careful selection of 2-diazo-1,3-diketone precursors is crucial for achieving optimal stereoinduction in this transformation. The resulting highly enantioenriched aminosulfonium ylides allow for further stereospecific elaborations to furnish aminosulfonium ylide oxides and sulfinamide. This work expands the boundaries of chiral sulfonium ylide chemistry, providing access to a broad range of previously elusive S-stereogenic aminosulfonium ylide scaffolds.
Collapse
Affiliation(s)
- Wen Bao
- School of Basic Medical Sciences & School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xu-Jie Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Wang
- School of Basic Medical Sciences & School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Shi-Wu Chen
- School of Basic Medical Sciences & School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Zhao Z, Li Y, Jia S, Peng L, Zhang Z, Wu F, Wang P, Qin W, Lan Y, Yan H. Catalytic asymmetric functionalization and dearomatization of thiophenes. Chem Sci 2024:d4sc03530e. [PMID: 39156933 PMCID: PMC11325187 DOI: 10.1039/d4sc03530e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024] Open
Abstract
The asymmetric synthesis of thiophene-derived compounds, including catalytic asymmetric dearomatization of thiophene and atroposelective synthesis of benzothiophene derivatives, has rarely been reported. In this work, the asymmetric transformation of the thiophene motif is investigated. Through the rational design of substrates with a thiophene structure, by using the vinylidene ortho-quinone methide (VQM) intermediate as a versatile tool, axially chiral naphthyl-benzothiophene derivatives and thiophene-dearomatized chiral spiranes were obtained in high yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Zhengxing Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yingxin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Shiqi Jia
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
- Chongqing University FuLing Hospital, Chongqing University Chongqing 408000 P. R. China
| | - Zian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Fengdi Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University Chongqing 400030 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
8
|
Luo Z, Liao M, Li W, Zhao S, Tang K, Zheng P, Chi YR, Zhang X, Wu X. Ionic Hydrogen Bond-Assisted Catalytic Construction of Nitrogen Stereogenic Center via Formal Desymmetrization of Remote Diols. Angew Chem Int Ed Engl 2024; 63:e202404979. [PMID: 38745374 DOI: 10.1002/anie.202404979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The control of noncarbon stereogenic centers is of profound importance owing to their enormous interest in bioactive compounds and chiral catalyst or ligand design for enantioselective synthesis. Despite various elegant approaches have been achieved for construction of S-, P-, Si- and B-stereocenters over the past decades, the catalyst-controlled strategies to govern the formation of N-stereogenic compounds have garnered less attention. Here, we disclose the first organocatalytic approach for efficient access to a wide range of nitrogen-stereogenic compounds through a desymmetrization approach. Intriguingly, the pro-chiral remote diols, which are previously not well addressed with enantiocontrol, are well differentiated by potent chiral carbene-bound acyl azolium intermediates. Preliminary studies shed insights on the critical importance of the ionic hydrogen bond (IHB) formed between the dimer aggregate of diols to afford the chiral N-oxide products that feature a tetrahedral nitrogen as the sole stereogenic element with good yields and excellent enantioselectivities. Notably, the chiral N-oxide products could offer an attractive strategy for chiral ligand design and discovery of potential antibacterial agrochemicals.
Collapse
Grants
- National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas)-YQHW
- the starting grant of Guizhou University [(2022)47)]
- National Natural Science Foundation of China (21732002, 22061007, 22071036, and 22207022)
- Frontiers Science Center for Asymmetric Synthesis and Medicinal Molecules
- Department of Education, Science and Technology Department of Guizhou Province [Qiankehe-jichu-ZK[2022]zhongdian024]
- Program of Introducing Talents of Discipline to Universities of China (111 Program, D20023) at Guizhou University
- Singapore National Research Foundation under its NRF Investigatorship (NRF-NRFI2016-06) and Competitive Research Program (NRF-CRP22-2019-0002)
- Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award (RG7/20, RG70/21), MOE AcRF Tier 2 (MOE2019-T2-2-117)
- a Chair Professorship Grant, and Nanyang Technological University
- (2022)47 starting grant of Guizhou University
- 21732002 National Natural Science Foundation of China
- 22061007 National Natural Science Foundation of China
- 22071036 National Natural Science Foundation of China
- 22207022 National Natural Science Foundation of China
- Qiankehe-jichu-ZK[2022]zhongdian024 Department of Education, Science and Technology Department of Guizhou Province
- Qiankehejichu-ZK[2024]yiban030 Department of Education, Science and Technology Department of Guizhou Province
- NRF-NRFI2016-06 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- NRF-CRP22-2019-0002 Singapore National Research Foundation under its NRF Investigatorship and Competitive Research Program
- RG7/20, RG70/21 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- MOE2019-T2-2-117 Ministry of Education, Singapore, under its MOE AcRF Tier 1 Award, MOE AcRF Tier 2
- Chair Professorship Grant, and Nanyang Technological University
- C210812008 Agency for Science, Technology and Research (A*STAR) under its Career Development Fund
- M22K3c0091 Manufacturing, TradeConnectivity (MTC) Young Individual Research Grants.
Collapse
Affiliation(s)
- Zhongfu Luo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Minghong Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Wei Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Sha Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Kun Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Pengcheng Zheng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), A*STAR, Singapore, 138632, Singapore
| | - Xingxing Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| |
Collapse
|
9
|
Shikari A, Parida C, Chandra Pan S. Catalytic Asymmetric Dearomatization of 2,3-Disubstituted Indoles by a [4 + 2] Cycloaddition Reaction with In Situ Generated Vinylidene ortho-Quinone Methides: Access to Polycyclic Fused Indolines. Org Lett 2024; 26:5057-5062. [PMID: 38489515 DOI: 10.1021/acs.orglett.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A protocol of enantioselective dearomatization of 2,3-disubstituted indoles by an organocatalytic intermolecular (4 + 2) cycloaddition reaction with in situ generated vinylidene ortho-quinone methide has been documented. A wide range of polycyclic 2,3-fused indolines containing vicinal quaternary carbon stereocenters was readily prepared in high yields and with excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Chandrakanta Parida
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| |
Collapse
|
10
|
Wang Y, Huang Y, Bao X, Wei X, Wei S, Qu J, Wang B. Organocatalytic diastereo- and atropo-selective construction of eight-membered bridged (hetero)biaryls via asymmetric intramolecular [3 + 2] cycloaddition. Chem Sci 2024; 15:8880-8887. [PMID: 38873056 PMCID: PMC11168085 DOI: 10.1039/d4sc01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
An unprecedented and straightforward route for the asymmetric construction of privileged atroposelective bridged (hetero)biaryl eight-membered scaffolds has been accomplished through chiral phosphoric acid catalyzed asymmetric intramolecular [3 + 2] cycloaddition of innovative (hetero)biaryl aldehydes with 3-aminooxindole hydrochlorides. A class of eight-membered bridged (hetero)biaryl lactones fused to spiro[pyrrolidine-oxindole] derivatives, possessing both chiral C-C/C-N axes and multiple contiguous stereocenters, were obtained in good yields with excellent enantioselectivities and diastereoselectivities in one step through this direct strategy. In addition, the good scalability and derivatization of the title compounds demonstrated their synthetic utility.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Yue Huang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xingfu Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Shiqiang Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Jingping Qu
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Baomin Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
11
|
Wang Y, Xu T, Jin S, Wang JY, Yuan Q, Liu H, Tang Y, Zhang S, Yan W, Jiao Y, Li G. Design and Asymmetric Control of Orientational Chirality by Using the Combination of C(sp 2)-C(sp) Levers and Achiral N-Protecting Group. Chemistry 2024; 30:e202400005. [PMID: 38497560 DOI: 10.1002/chem.202400005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
New chiral targets of orientational chirality have been designed and asymmetrically synthesized by taking advantage of N-sulfinyl imine-directed nucleophilic addition/oxidation, Suzuki-Miyaura, and Sonogashira cross-coupling reactions. Orientation of single isomers has been selectively controlled by using aryl/alkynyl levers [C(sp2)-C(sp) axis] and tBuSO2- protecting group on nitrogen as proven by X-ray diffraction analysis. The key structural characteristic of resulting orientational products is shown by remote through-space blocking manner. Seventeen examples of multi-step synthesis were obtained with modest to good chemical yields and complete orientational selectivity.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jia-Yin Wang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Hao Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Wenxin Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, 79409-1061, USA
| |
Collapse
|
12
|
Gaucherand A, Yen-Pon E, García-López D, Naubron JV, Chentouf S, Giorgi M, Humbel S, Jean M, Rodriguez J, Bonne D. Padlocking dihydrofurannulation for the control of small degree of helicity built on a fused-tetracyclic core. Chem Sci 2024; 15:7300-7307. [PMID: 38756805 PMCID: PMC11095505 DOI: 10.1039/d4sc00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/15/2024] [Indexed: 05/18/2024] Open
Abstract
Enantioselective construction of small molecules displaying a configurationally stable helical shape built on a fused-tetracyclic core is a daunting synthetic challenge even more pronounced when five-membered rings are incorporated in the structure. The resulting higher configurational lability strongly hampers their access, and therefore the development of new efficient methodologies is timely and highly desirable. In this context, we describe a padlocking approach via the enantioselective organocatalytic domino furannulation of appropriately designed achiral fused-tricyclic precursors resulting in the synthesis of configurationally locked helically chiral tetracyclic scaffolds featuring one or two five-membered rings with the simultaneous control of central and helical chiralities.
Collapse
Affiliation(s)
- Arthur Gaucherand
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Expédite Yen-Pon
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Diego García-López
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean-Valère Naubron
- Aix Marseille Université, CNRS, Centrale Marseille, FSCM, Spectropole Marseille France
| | - Sara Chentouf
- Aix Marseille Université, CNRS, Centrale Marseille, FSCM, Spectropole Marseille France
| | - Michel Giorgi
- Aix Marseille Université, CNRS, Centrale Marseille, FSCM, Spectropole Marseille France
| | - Stéphane Humbel
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Marion Jean
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| | - Damien Bonne
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2 Marseille France
| |
Collapse
|
13
|
Xu T, Wang JY, Wang Y, Jin S, Tang Y, Zhang S, Yuan Q, Liu H, Yan W, Jiao Y, Yang XL, Li G. C(sp)-C(sp) Lever-Based Targets of Orientational Chirality: Design and Asymmetric Synthesis. Molecules 2024; 29:2274. [PMID: 38792134 PMCID: PMC11123770 DOI: 10.3390/molecules29102274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In this study, the design and asymmetric synthesis of a series of chiral targets of orientational chirality were conducted by taking advantage of N-sulfinylimine-assisted nucleophilic addition and modified Sonogashira catalytic coupling systems. Orientational isomers were controlled completely using alkynyl/alkynyl levers [C(sp)-C(sp) axis] with absolute configuration assignment determined by X-ray structural analysis. The key structural element of the resulting orientational chirality is uniquely characterized by remote through-space blocking. Forty examples of multi-step synthesis were performed, with modest to good yields and excellent orientational selectivity. Several chiral orientational amino targets are attached with scaffolds of natural and medicinal products, showing potential pharmaceutical and medical applications in the future.
Collapse
Affiliation(s)
- Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, School of Pharmacy, Changzhou University, Changzhou 213164, China;
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Hao Liu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| | - Wenxin Yan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (W.Y.); (Y.J.)
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecular, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China; (W.Y.); (Y.J.)
| | - Xiao-Liang Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China; (T.X.); (Y.W.); (S.J.)
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA; (Y.T.); (S.Z.); (Q.Y.); (H.L.)
| |
Collapse
|
14
|
Wang CJ, Meng HJ, Tang Y, Chen J, Zhou L. Aromatic Amine and Chiral Phosphoric Acid Synergistic Catalyzed Cascade Reaction of Alkynylnaphthols with Aldehydes. Org Lett 2024; 26:1489-1494. [PMID: 38358098 DOI: 10.1021/acs.orglett.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A novel approach using aromatic amines and chiral phosphoric acids in a synergistic catalytic cascade reaction of 2-alkynylnaphthols with aldehydes has been established. This method offers a direct route to preparing flavanone analogues with excellent stereoselectivity. Mechanistic studies reveal a sequential process involving addition, elimination, cyclization, and hydrolysis in which aromatic amines and chiral phosphoric acids play key roles via imine-enamine and hydrogen bonding models.
Collapse
Affiliation(s)
- Chuan-Jin Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Hao-Jie Meng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
15
|
Zhang HH, Li TZ, Liu SJ, Shi F. Catalytic Asymmetric Synthesis of Atropisomers Bearing Multiple Chiral Elements: An Emerging Field. Angew Chem Int Ed Engl 2024; 63:e202311053. [PMID: 37917574 DOI: 10.1002/anie.202311053] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
With the rapid development of asymmetric catalysis, the demand for the enantioselective synthesis of complex and diverse molecules with different chiral elements is increasing. Owing to the unique features of atropisomerism, the catalytic asymmetric synthesis of atropisomers has attracted a considerable interest from the chemical science community. In particular, introducing additional chiral elements, such as carbon centered chirality, heteroatomic chirality, planar chirality, and helical chirality, into atropisomers provides an opportunity to incorporate new properties into axially chiral compounds, thus expanding the potential applications of atropisomers. Thus, it is important to perform catalytic asymmetric transformations to synthesize atropisomers bearing multiple chiral elements. In spite of challenges in such transformations, in recent years, chemists have devised powerful strategies under asymmetric organocatalysis or metal catalysis, synthesizing a wide range of enantioenriched atropisomers bearing multiple chiral elements. Therefore, the catalytic asymmetric synthesis of atropisomers bearing multiple chiral elements has become an emerging field. This review summarizes the rapid progress in this field and indicates challenges, thereby promoting this field to a new horizon.
Collapse
Affiliation(s)
- Hong-Hao Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Tian-Zhen Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Si-Jia Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
| | - Feng Shi
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
16
|
Wang Y, Zhu X, Pan D, Jing J, Wang F, Mi R, Huang G, Li X. Rhodium-catalyzed enantioselective and diastereodivergent access to diaxially chiral heterocycles. Nat Commun 2023; 14:4661. [PMID: 37537163 PMCID: PMC10400608 DOI: 10.1038/s41467-023-39968-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
N-N axially chiral biaryls represent a rarely explored class of atropisomers. Reported herein is construction of diverse classes of diaxially chiral biaryls containing N-N and C-N/C-C diaxes in distal positions in excellent enantioselectivity and diastereoselectivity. The N-N chiral axis in the products provides a handle toward solvent-driven diastereodivergence, as has been realized in the coupling of a large scope of benzamides and sterically hindered alkynes, affording diaxes in complementary diastereoselectivity. The diastereodivergence has been elucidated by computational studies which revealed that the hexafluoroisopropanol (HFIP) solvent molecule participated in an unusual manner as a solvent as well as a ligand and switched the sequence of two competing elementary steps, resulting in switch of the stereoselectivity of the alkyne insertion and inversion of the configuration of the C-C axis. Further cleavage of the N-directing group in the diaxial chiral products transforms the diastereodivergence to enantiodivergence.
Collapse
Affiliation(s)
- Yishou Wang
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, 266237, Qingdao, China
| | - Xiaohan Zhu
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 300072, Tianjin, China
| | - Jierui Jing
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China
| | - Fen Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China.
| | - Ruijie Mi
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, 266237, Qingdao, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, 300072, Tianjin, China.
| | - Xingwei Li
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, 266237, Qingdao, China.
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, 710062, Xi'an, China.
| |
Collapse
|
17
|
Yang K, Mao Y, Zhang Z, Xu J, Wang H, He Y, Yu P, Song Q. Construction of C-B axial chirality via dynamic kinetic asymmetric cross-coupling mediated by tetracoordinate boron. Nat Commun 2023; 14:4438. [PMID: 37488114 PMCID: PMC10366327 DOI: 10.1038/s41467-023-40164-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Catalytic dynamic kinetic asymmetric transformation (DyKAT) provides a powerful tool to access chiral stereoisomers from racemic substrates. Such transformation has been widely employed on the construction of central chirality, however, the application in axial chirality remains underexplored because its equilibrium of substrate enantiomers is limited to five-membered metalacyclic intermediate. Here we report a tetracoordinate boron-directed dynamic kinetic asymmetric cross-coupling of racemic, configurationally stable 3-bromo-2,1-azaborines with boronic acid derivatives. A series of challenging C-B axially chiral compounds were prepared with generally good to excellent enantioselectivities. Moreover, this transformation can also be extended to prepare atropisomers bearing adjacent C-B and C-C diaxes with excellent diastereo- and enantio-control. The key to the success relies on the rational design of a reversible tetracoordinate boron intermediate, which is supported by theoretical calculations that dramatically reduces the rotational barrier of the original C-B axis and achieves the goal of DyKAT.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanfei Mao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhihan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jie Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Hao Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yong He
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
18
|
Cai WY, Ding QN, Zhou L, Chen J. Asymmetric Synthesis of Axially Chiral Molecules via Organocatalytic Cycloaddition and Cyclization Reactions. Molecules 2023; 28:4306. [PMID: 37298781 PMCID: PMC10254363 DOI: 10.3390/molecules28114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Atropisomeric molecules are present in many natural products, biologically active compounds, chiral ligands and catalysts. Many elegant methodologies have been developed to access axially chiral molecules. Among them, organocatalytic cycloaddition and cyclization have attracted much attention because they have been widely used in the asymmetric synthesis of biaryl/heterobiaryls atropisomers via construction of carbo- and hetero-cycles. This strategy has undoubtedly become and will continue to be a hot topic in the field of asymmetric synthesis and catalysis. This review aims to highlight the recent advancements in this field of atropisomer synthesis by using different organocatalysts in cycloaddition and cyclization strategies. The construction of each atropisomer, its possible mechanism, the role of catalysts, and its potential applications are illustrated.
Collapse
Affiliation(s)
| | | | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China; (W.-Y.C.); (Q.-N.D.)
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China; (W.-Y.C.); (Q.-N.D.)
| |
Collapse
|
19
|
Peng L, Zeng Z, Li K, Liu Y, Lan Y, Yan H. Regiodivergent catalytic asymmetric dearomative cycloaddition of bicyclic heteroaromatics. SCIENCE ADVANCES 2023; 9:eadg1645. [PMID: 36989366 PMCID: PMC10058237 DOI: 10.1126/sciadv.adg1645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The catalytic dearomative cycloaddition of bicyclic heteroaromatics including benzofurans and indoles provides rapid access to functionalized heterocyclic molecules. Because of the inherent stereoelectronic differences, the furan or pyrrole nucleus is more prone to dearomative cycloaddition than the benzene ring. Here, we realized a geometry-based differentiation approach for achieving C6-C7 and C7-C7a regioselectivity. The rotationally restricted σ bond at C7 position respectively placed the C6-C7 and C7-C7a sites of benzofurans or indoles in an optimal spatial orientation toward the axially chiral heterodiene, thus affording two enantioenriched polycyclic compounds from a single racemic heterobiaryl atropisomers. Calculation results of density functional theory interpreted the mechanism of this parallel kinetic resolution. The bioactivity of the dearomatized products was evaluated in cancer cell lines with certain compounds exhibiting interesting biological activities.
Collapse
Affiliation(s)
- Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Zhen Zeng
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
20
|
Gao J, Zhang S, Du D. Alkynyl Acylazolium: a Versatile 1,3-Bielectrophilic 3C-Synthon in NHC-Organocatalysis. CHEM REC 2023:e202300046. [PMID: 36942970 DOI: 10.1002/tcr.202300046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/03/2023] [Indexed: 03/23/2023]
Abstract
N-Heterocyclic carbene (NHC) organocatalysis has emerged as a powerful tool in the field of modern organic synthesis especially in the asymmetric construction of various cyclic skeletons. As an emerging NHC-bound 1,3-bielectrophilic intermediate, alkynyl acylazolium has drawn substantial attention in recent years, and has been used as a versatile 3C-synthon in synthesizing valuable organic molecules since its discovery. In this review, focused on the different pathways for the formation of alkynyl acylazoliums from different precursors like alkynoic esters, alkynoic acids and ynals, the recent advances in the transformations and applications of alkynyl acylazoliums pioneered or developed over the last decade under NHC-catalysis were summarized comprehensively. At the same time, the outlook for further investigation and exploration of novel reaction modes for alkynyl acylazoliums in the future was also discussed.
Collapse
Affiliation(s)
- Jian Gao
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Simiao Zhang
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Ding Du
- Department of Chemistry, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
21
|
Tan TD, Qian GL, Su HZ, Zhu LJ, Ye LW, Zhou B, Hong X, Qian PC. Brønsted acid-catalyzed asymmetric dearomatization for synthesis of chiral fused polycyclic enone and indoline scaffolds. SCIENCE ADVANCES 2023; 9:eadg4648. [PMID: 36921050 PMCID: PMC10017053 DOI: 10.1126/sciadv.adg4648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
In the past two decades, substantial advances have been made on the asymmetric alkyne functionalization by the activation of inert alkynes. However, these asymmetric transformations have so far been mostly limited to transition metal catalysis, and chiral Brønsted acid-catalyzed examples are rarely explored. Here, we report a chiral Brønsted acid-catalyzed dearomatization reaction of phenol- and indole-tethered homopropargyl amines, allowing the practical and atom-economical synthesis of a diverse array of valuable fused polycyclic enones and indolines bearing a chiral quaternary carbon stereocenter and two contiguous stereogenic centers in moderate to good yields with excellent diastereoselectivities and generally excellent enantioselectivities (up to >99% enantiomeric excess). This protocol demonstrates Brønsted acid-catalyzed asymmetric dearomatizations via vinylidene-quinone methides.
Collapse
Affiliation(s)
- Tong-De Tan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gan-Lu Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hao-Ze Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lu-Jing Zhu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
- Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Peng-Cheng Qian
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
- Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials and Industry Technology, Wenzhou University, Wenzhou 325000, China
| |
Collapse
|
22
|
Wu P, Yu L, Gao CH, Cheng Q, Deng S, Jiao Y, Tan W, Shi F. Design and synthesis of axially chiral aryl-pyrroloindoles via the strategy of organocatalytic asymmetric (2 + 3) cyclization. FUNDAMENTAL RESEARCH 2023; 3:237-248. [PMID: 38932922 PMCID: PMC11197731 DOI: 10.1016/j.fmre.2022.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 01/10/2023] Open
Abstract
The catalytic asymmetric construction of axially chiral indole-based frameworks is an important area of research due to the unique characteristics of such frameworks. Nevertheless, research in this area is still in its infancy and has some challenges, such as designing and constructing new classes of axially chiral indole-based scaffolds and developing their applications in chiral catalysts, ligands, etc. To overcome these challenges, we present herein the design and atroposelective synthesis of aryl-pyrroloindoles as a new class of axially chiral indole-based scaffolds via the strategy of organocatalytic asymmetric (2 + 3) cyclization between 3-arylindoles and propargylic alcohols. More importantly, this new class of axially chiral scaffolds was derived into phosphines, which served as efficient chiral ligands in palladium-catalyzed asymmetric reactions. Moreover, theoretical calculations provided an in-depth understanding of the reaction mechanism. This work offers a new strategy for constructing axially chiral indole-based scaffolds, which are promising for finding more applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Lei Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Cong-Hui Gao
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qi Cheng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shuang Deng
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yinchun Jiao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
23
|
Smith O, Popescu MV, Hindson MJ, Paton RS, Burton JW, Smith MD. Control of stereogenic oxygen in a helically chiral oxonium ion. Nature 2023; 615:430-435. [PMID: 36922609 PMCID: PMC10017494 DOI: 10.1038/s41586-023-05719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/09/2023] [Indexed: 03/17/2023]
Abstract
The control of tetrahedral carbon stereocentres remains a focus of modern synthetic chemistry and is enabled by their configurational stability. By contrast, trisubstituted nitrogen1, phosphorus2 and sulfur compounds3 undergo pyramidal inversion, a fundamental and well-recognized stereochemical phenomenon that is widely exploited4. However, the stereochemistry of oxonium ions-compounds bearing three substituents on a positively charged oxygen atom-is poorly developed and there are few applications of oxonium ions in synthesis beyond their existence as reactive intermediates5,6. There are no examples of configurationally stable oxonium ions in which the oxygen atom is the sole stereogenic centre, probably owing to the low barrier to oxygen pyramidal inversion7 and the perception that all oxonium ions are highly reactive. Here we describe the design, synthesis and characterization of a helically chiral triaryloxonium ion in which inversion of the oxygen lone pair is prevented through geometric restriction to enable it to function as a determinant of configuration. A combined synthesis and quantum calculation approach delineates design principles that enable configurationally stable and room-temperature isolable salts to be generated. We show that the barrier to inversion is greater than 110 kJ mol-1 and outline processes for resolution. This constitutes, to our knowledge, the only example of a chiral non-racemic and configurationally stable molecule in which the oxygen atom is the sole stereogenic centre.
Collapse
Affiliation(s)
- Owen Smith
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Mihai V Popescu
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
- Department of Chemistry, Colorado State University, Ft. Collins, CO, USA
| | | | - Robert S Paton
- Department of Chemistry, Colorado State University, Ft. Collins, CO, USA.
| | | | - Martin D Smith
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Xu D, Chang Y, Liu Y, Qin W, Yan H. Mechanistic Features of Asymmetric Vinylidene ortho-Quinone Methide Construction and Subsequent Transformations. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Da Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yu Chang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
25
|
Ma X, Li L, Tan M, Zhong Z, Liang J, Li P, Song Q. Modular assembly of versatile tetrasubstituted alkenyl monohalides from alkynyl tetracoordinate borons. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
26
|
Ma C, Sun Y, Yang J, Guo H, Zhang J. Catalytic Asymmetric Synthesis of Tröger's Base Analogues with Nitrogen Stereocenter. ACS CENTRAL SCIENCE 2023; 9:64-71. [PMID: 36712492 PMCID: PMC9881208 DOI: 10.1021/acscentsci.2c01121] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 06/18/2023]
Abstract
Nitrogen stereocenters are common chiral units in natural products, pharmaceuticals, and chiral catalysts. However, their research has lagged largely behind, compared with carbon stereocenters and other heteroatom stereocenters. Herein, we report an efficient method for the catalytic asymmetric synthesis of Tröger's base analogues with nitrogen stereocenters via palladium catalysis and home-developed GF-Phos. It allows rapid construction of a new rigid cleft-like structure with both a C- and a N-stereogenic center in high efficiency and selectivity. A variety of applications as a chiral organocatalyst and metallic catalyst precursors were demonstrated. Furthermore, DFT calculations suggest that the NH···O hydrogen bonding and weak interaction between the substrate and ligand are crucial for the excellent enantioselectivity control.
Collapse
Affiliation(s)
- Chun Ma
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Yue Sun
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Junfeng Yang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Fudan
Zhangjiang Institute, Shanghai 201203, P. R. China
| | - Hao Guo
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- Zhuhai
Fudan Innovation Institute, Zhuhai, 519000, P. R. China
| | - Junliang Zhang
- Department
of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
27
|
Sun J, Zhang W, Song R, Yang D, Lv J. Divergent Coupling of ortho-Alkynylnaphthols and Benzofurans: [4 + 2] Cycloaddition and Friedel-Crafts Reaction. J Org Chem 2023; 88:442-454. [PMID: 36520642 DOI: 10.1021/acs.joc.2c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Catalytic direct [4 + 2] cycloaddition reactions and Friedel-Crafts reactions of ortho-alkynylnaphthols with benzofurans have been developed, affording functionalized hydrobenzofuro[3,2-b]chromans and hydroarylation products, respectively, in high yields with high chemoselectivity.
Collapse
Affiliation(s)
- Jiaying Sun
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wenxuan Zhang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Daoshan Yang
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-Electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
28
|
Jin S, Xu T, Tang Y, Wang JY, Wang Y, Pan J, Zhang S, Yuan Q, Rahman AU, Aquino AJA, Lischka H, Li G. A new chiral phenomenon of orientational chirality, its synthetic control and computational study. Front Chem 2023; 10:1110240. [PMID: 36688043 PMCID: PMC9850238 DOI: 10.3389/fchem.2022.1110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
A new type of chirality, orientational chirality, consisting of a tetrahedron center and a remotely anchored blocker, has been discovered. The key structural element of this chirality is characterized by multiple orientations directed by a through-space functional group. The multi-step synthesis of orientational chiral targets was conducted by taking advantage of asymmetric nucleophilic addition, Suzuki-Miyaura cross-coupling and Sonogashira coupling. An unprecedented catalytic species showing a five-membered ring consisting of C (sp2)-Br-Pd-C (sp2) bonds was isolated during performing Suzuki-Miyaura cross-coupling. X-ray diffraction analysis confirmed the species structure and absolute configuration of chiral orientation products. Based on X-ray structures, a model was proposed for the new chirality phenomenon to differentiate the present molecular framework from previous others. DFT computational study presented the relative stability of individual orientatiomers. This discovery would be anticipated to result in a new stereochemistry branch and to have a broad impact on chemical, biomedical, and material sciences in the future.
Collapse
Affiliation(s)
- Shengzhou Jin
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yao Tang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Jia-Yin Wang
- Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University, Changzhou, Jiangsu, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Junyi Pan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Sai Zhang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Anis Ur Rahman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Adelia J. A. Aquino
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, United States
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States,*Correspondence: Guigen Li, ; Hans Lischka,
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States,*Correspondence: Guigen Li, ; Hans Lischka,
| |
Collapse
|
29
|
Zhang S, Wang X, Han LL, Li J, Liang Z, Wei D, Du D. Atroposelective Synthesis of Triaryl α-Pyranones with 1,2-Diaxes by N-Heterocyclic Carbene Organocatalysis. Angew Chem Int Ed Engl 2022; 61:e202212005. [PMID: 36314469 DOI: 10.1002/anie.202212005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Atropisomers bearing multiple stereogenic axes are of increasing importance to the field of material science, pharmaceuticals, and catalysis. However, the atroposelective construction of multi-axis atropisomers remains rare and challenging, due to the intrinsical difficulties in the stereo-control of the multiple stereogenic axes. Herein, we demonstrate a single-step construction of a new class of 1,2-diaxially chiral triaryl α-pyranones by an N-heterocyclic carbene organocatalytic asymmetric [3+3] annulation of well-designed alkynyl acylazolium precursors and enolizable sterically hindered 2-aryl ketones. The protocol features broad substrate scope (>50 examples), excellent stereo-control (most cases >20 : 1 dr, up to 99.5 : 0.5 er), and potentially useful synthetic applications. The success of this reaction relies on the rational design of structurally matched reaction partners and the careful selection of the asymmetric catalytic system. DFT calculations have also been performed to discover and rationalize the origin of the high stereoselectivity of this reaction.
Collapse
Affiliation(s)
- Simiao Zhang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Xiaoxue Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Li-Li Han
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Jibin Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Zheng Liang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| |
Collapse
|
30
|
Zhang XL, Gu J, Cui WH, Ye Z, Yi W, Zhang Q, He Y. Stepwise Asymmetric Allylic Substitution-Isomerization Enabled Mimetic Synthesis of Axially Chiral B,N-Heterocycles. Angew Chem Int Ed Engl 2022; 61:e202210456. [PMID: 36281992 DOI: 10.1002/anie.202210456] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Indexed: 11/07/2022]
Abstract
Axially chiral molecules bearing multiple stereogenic axes are of great importance in the field of organic chemistry. However, the efficient construction of atropisomers featuring two different types of stereogenic axes has rarely been explored. Herein, we report the novel atroposelective synthesis of configurationally stable axially chiral B,N-heterocycles. By using stepwise asymmetric allylic substitution-isomerization (AASI) strategy, diaxially chiral B,N-heterocycles bearing B-C and C-N axes that are related to the moieties of axially chiral enamines and arylborons were also obtained. In this case, all four stereoisomers of diaxially chiral B,N-heterocycles were stereodivergently afforded in high enantioselectivities. Density functional theory (DFT) studies demonstrated that the NH⋅⋅⋅π interactions played a unique role in the promotion of stereospecific isomerization, thereby leading to the highly efficient central-to-axial chirality transfer.
Collapse
Affiliation(s)
- Xiu-Lian Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wen-Hao Cui
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiwen Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
31
|
Organocatalytic enantioselective construction of bicyclic γ-butrolactones. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
32
|
Yang C, Shi L, Wang F, Su Y, Xia JB, Li F. Rhodium-Catalyzed Asymmetric (3 + 2 + 2) Annulation via N–H/C–H Dual Activation and Internal Alkyne Insertion toward N-Fused 5/7 Bicycles. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chao Yang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Lijun Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yijin Su
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
33
|
Gou B, Tang Y, Lin Y, Yu L, Jian Q, Sun H, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022; 61:e202208174. [DOI: 10.1002/anie.202208174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 02/06/2023]
Affiliation(s)
- Bo‐Bo Gou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yue Tang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Yan‐Hong Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Le Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Qing‐Song Jian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Huai‐Ri Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science National Demonstration Center for Experimental Chemistry Education Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
34
|
Qin W, Liu Y, Yan H. Enantioselective Synthesis of Atropisomers via Vinylidene ortho-Quinone Methides (VQMs). Acc Chem Res 2022; 55:2780-2795. [PMID: 36121104 DOI: 10.1021/acs.accounts.2c00486] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Atropisomers, arising from conformational restriction, are inherently chiral due to the intersecting dissymmetric planes. Since there are numerous applications of enantiopure atropisomers in catalyst design, drug discovery, and material science, the asymmetric preparation of these highly prized molecules has become a flourishing field in synthetic chemistry. A number of catalysts, synthetic procedures, and novel concepts have been developed for the manufacture of the atropisomeric molecules. However, due to the intrinsic properties of different types of atropisomers featuring biaryl, hetero-biaryl, or non-biaryl architectures, only very few methods pass the rigorous inspection and are considered generally applicable. The development of a broadly applicable synthetic strategy for various atropisomers is a challenge. In this Account, we summarize our recent studies on the enantioselective synthesis of atropisomers using the vinylidene ortho-quinone methides (VQMs) as pluripotent intermediates.The most appealing features of VQMs are the disturbed aromaticity and axial chirality of the allene fragment. At the outset, the applications of VQMs in organic synthesis have been neglected due to their principal liabilities: ephemeral nature, extraordinary reactivity, and multireaction sites. The domestication of this transient intermediate was demonstrated by in situ catalytic asymmetric generation of VQMs, and the reactivity and selectivity were fully explored by judiciously modifying precursors and tuning catalytic systems. A variety of axially chiral heterocycles were achieved through five-, six-, seven- and nine-membered ring formation of VQM intermediates with different kinds of branched nucleophilic functional groups. The axially chiral C-N axis could be constructed from VQM intermediates via N-annulation or desymmetrization of preformed C-N scaffolds. We take advantage of the high electrophilicity of VQMs toward a series of sulfur and carbon based nucleophiles leading to atropisomeric vinyl arenes. Furthermore, chiral helical compounds were realized by cycloaddition or consecutive annulation of VQM intermediates. These achievements demonstrated that the VQMs could work as a nuclear parent for the collective synthesis of distinct and complex optically active atropisomers. Recently, we have realized the isolation and structural characterization of the elusive VQMs, which were questioned as putative intermediates for decades. The successful isolation of VQMs provided direct evidence for their existence and an unprecedented opportunity to directly investigate their reactivity. The good thermal stability and reserved reactivity of the isolated VQMs demonstrated their great potential as synthetic reagents and expanded the border of VQM chemistry.
Collapse
Affiliation(s)
- Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
35
|
Gou BB, Tang Y, Lin YH, Yu L, Jian QS, Sun HR, Chen J, Zhou L. Modular Construction of Heterobiaryl Atropisomers and Axially Chiral Styrenes via All‐Carbon Tetrasubstituted VQMs. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo-Bo Gou
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yue Tang
- Northwest University College of Chemistry & Materials Science CHINA
| | - Yan-Hong Lin
- Northwest University College of Chemistry & Materials Science CHINA
| | - Le Yu
- Northwest University College of Chemistry & Materials Science CHINA
| | - Qing-Song Jian
- Northwest University College of Chemistry & Materials Science CHINA
| | - Huai-Ri Sun
- Northwest University College of Chemistry & Materials Science CHINA
| | - Jie Chen
- Northwest University College of Chemistry & Materials Science CHINA
| | - Ling Zhou
- Northwest University College of Chemistry & Materials Science 1 Xuefu Ave., Chang’an District 710127 Xi'an CHINA
| |
Collapse
|
36
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine-Membered Carbonate-Bridged Biaryls. Angew Chem Int Ed Engl 2022; 61:e202206501. [PMID: 35621411 DOI: 10.1002/anie.202206501] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/27/2022]
Abstract
We herein demonstrated an efficient method for the atroposelective construction of nine-membered carbonate-bridged biaryls through vinylidene ortho-quinone methide (VQM) intermediates. Diverse products with desirable pharmacological features were synthesized in satisfying yields and good to excellent enantioselectivities. In subsequent bioassays, several agents showed considerable antiproliferative activity via the mitochondrial-related apoptosis mechanism. Further transformations produced more structural diversity and may inspire new ideas for developing functional molecules.
Collapse
Affiliation(s)
- Shiqi Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Xin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P. R. China
| |
Collapse
|
37
|
Zhang S, Luo ZH, Wang WT, Qian L, Liao JY. Simultaneous Construction of C-N Axial and Central Chirality via Silver-Catalyzed Desymmetrizative [3 + 2] Cycloaddition of Prochiral N-Aryl Maleimides with Activated Isocyanides. Org Lett 2022; 24:4645-4649. [PMID: 35724978 DOI: 10.1021/acs.orglett.2c01761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report an unprecedented strategy for the simultaneous construction of a remote C-N stereogenic axis and three contiguous stereogenic carbon centers via silver-catalyzed desymmetrizative [3 + 2] cycloaddition of prochiral N-aryl maleimides with activated isocyanides. This method features operational simplicity, wide substrate scope, high efficiency, and good to excellent stereoselectivity. Notably, it represents the first example of catalytic enantioselective synthesis of C-N atropisomers with the use of activated isocyanides.
Collapse
Affiliation(s)
- Sen Zhang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058
| | - Zhang-Hong Luo
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058
| | - Wen-Tao Wang
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058
| | - Linghui Qian
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058
| | - Jia-Yu Liao
- College of Pharmaceutical Sciences, and Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou, China, 310058.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China, 310018
| |
Collapse
|
38
|
Wang Y, Zhou X, Shan W, Liao R, Deng Y, Peng F, Shao Z. Construction of Axially Chiral Indoles by Cycloaddition–Isomerization via Atroposelective Phosphoric Acid and Silver Sequential Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yingcheng Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Xue Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Wenyu Shan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Ruisong Liao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - YuHua Deng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Fangzhi Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan Provincial Center for Research & Development of Natural Products, and State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China
| |
Collapse
|
39
|
Jia S, Tian Y, Li X, Wang P, Lan Y, Yan H. Atroposelective Construction of Nine‐Membered Carbonate Bridged Biaryls. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shiqi Jia
- Zhengzhou University Green Catalysis Center 重庆大学虎溪校区药学院 zhengzhou CHINA
| | - Yuhong Tian
- Chongqing University School of Pharmaceutical Sciences Chongqing CHINA
| | - Xin Li
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Pengfei Wang
- Chongqing University School of Pharmaceutical Sciences CHINA
| | - Yu Lan
- Chongqing University School of Chemistry and Chemical Engineering CHINA
| | - Hailong Yan
- Chongqing University Innovative Drug Research Center No.55 Daxuecheng South Rd 401331 Chongqing CHINA
| |
Collapse
|
40
|
Rodríguez‐Salamanca P, Fernández R, Hornillos V, Lassaletta JM. Asymmetric Synthesis of Axially Chiral C-N Atropisomers. Chemistry 2022; 28:e202104442. [PMID: 35191558 PMCID: PMC9314733 DOI: 10.1002/chem.202104442] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/16/2022]
Abstract
Molecules with restricted rotation around a single bond or atropisomers are found in a wide number of natural products and bioactive molecules as well as in chiral ligands for asymmetric catalysis and smart materials. Although most of these compounds are biaryls and heterobiaryls displaying a C-C stereogenic axis, there is a growing interest in less common and more challenging axially chiral C-N atropisomers. This review offers an overview of the various methodologies available for their asymmetric synthesis. A brief introduction is initially given to contextualize these axially chiral skeletons, including a historical background and examples of natural products containing axially chiral C-N axes. The preparation of different families of C-N based atropisomers is then presented from anilides to chiral five- and six-membered ring heterocycles. Special emphasis has been given to modern catalytic asymmetric strategies over the past decade for the synthesis of these chiral scaffolds. Applications of these methods to the preparation of natural products and biologically active molecules will be highlighted along the text.
Collapse
Affiliation(s)
- Patricia Rodríguez‐Salamanca
- Instituto de Investigaciones Químicas (CSIC-US) and Centro deInnovación en Química Avanzada (ORFEO-CINQA)C/ Américo Vespucio, 4941092SevillaSpain
| | - Rosario Fernández
- Departamento de Química OrgánicaUniversidad de Sevilla) and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González, 141012SevillaSpain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro deInnovación en Química Avanzada (ORFEO-CINQA)C/ Américo Vespucio, 4941092SevillaSpain
- Departamento de Química OrgánicaUniversidad de Sevilla) and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González, 141012SevillaSpain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro deInnovación en Química Avanzada (ORFEO-CINQA)C/ Américo Vespucio, 4941092SevillaSpain
| |
Collapse
|
41
|
Liu H, Li K, Huang S, Yan H. An Isolable Vinylidene ortho-Quinone Methide: Synthesis, Structure and Reactivity. Angew Chem Int Ed Engl 2022; 61:e202117063. [PMID: 35171537 DOI: 10.1002/anie.202117063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/29/2022]
Abstract
Commonly, an elusive intermediate is generated from a precursor and then trapped and consumed in a reaction. Vinylidene ortho-quinone methides (VQMs) have been demonstrated as transient axially chiral intermediates in asymmetric catalysis due to their orthogonal π-bonds forming an allene motif. The current understanding of VQMs is primarily based on time-resolved absorption, trapping experiments and computational studies. Herein, we report the first isolation and comprehensive characterization of a VQM, including crystallographic analysis. The disturbed aromaticity of the VQM led to its high reactivity as an electrophile or a 4π-component capable of asymmetric dearomatization of an electron-deficient phenyl group. Notably, the VQM could be isolated in enantiomerically enriched form, and the subsequent transformation was stereospecific, indicating that the generation of the VQM was involved in the enantiodetermining step. This study paves the way for the direct application of VQMs as starting materials.
Collapse
Affiliation(s)
- Hong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| | - Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| | - Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, P.R. China
| |
Collapse
|
42
|
Mei GJ, Koay WL, Guan CY, Lu Y. Atropisomers beyond the C–C axial chirality: Advances in catalytic asymmetric synthesis. Chem 2022. [DOI: 10.1016/j.chempr.2022.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Li K, Huang S, Liu T, Jia S, Yan H. Organocatalytic Asymmetric Dearomatizing Hetero-Diels-Alder Reaction of Nonactivated Arenes. J Am Chem Soc 2022; 144:7374-7381. [PMID: 35417152 DOI: 10.1021/jacs.2c01106] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonactivated arenes, such as benzene derivatives, are chemically inert due to their intrinsic aromaticity and low polarity. The catalytic asymmetric dearomatization (CADA, coined by You and co-workers) of the nonactivated arenes represents a formidable challenge. We herein demonstrated an organocatalytic asymmetric dearomatizing hetero-Diels-Alder reaction of benzene derivatives. The tunable regioselectivity of this strategy allowed delivery of a diversity of stereochemically complex polycyclic compounds and oxahelicenes with excellent stereoselectivity. The high complexity and three-dimensionality of the products are crucial for their potential applications in materials science and drug discovery. Mechanistic studies suggested that this reaction proceeds through a chiral tetra-substituted vinylidene ortho-quinone methide (VQM) intermediate, which is extremely active to overcome the loss of aromaticity of benzene derivatives with concomitant chirality transfer.
Collapse
Affiliation(s)
- Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Tianyu Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shiqi Jia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
44
|
Organocatalytic atroposelective construction of axially chiral N, N- and N, S-1,2-azoles through novel ring formation approach. Nat Commun 2022; 13:1933. [PMID: 35410417 PMCID: PMC9001698 DOI: 10.1038/s41467-022-29557-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract1,2-Azoles are privileged structures in ligand/catalyst design and widely exist in many important natural products and drugs. In this report, two types of axially chiral 1,2-azoles (naphthyl-isothiazole S-oxides with a stereogenic sulfur center and atropoisomeric naphthyl pyrazoles) are synthesized via modified vinylidene ortho-quinone methide intermediates. Diverse products are acquired in satisfying yields and good to excellent enantioselectivities. The vinylidene ortho-quinone methide intermediates bearing two hetero atoms at 5-position have been demonstrated as a platform molecule for the atroposelective synthesis of axially chiral 1,2-azoles. This finding not only enrich our knowledge of vinylidene ortho-quinone methide chemistry but also provide the easy preparation method for diverse atropisomeric heterobiaryls that were inaccessible by existing methodologies. The obtained chiral naphthyl-isothiazole S-oxides and naphthyl-pyrazoles have demonstrated their potential application in further synthetic transformations and therapeutic agents.
Collapse
|
45
|
Liu H, Li K, Huang S, Yan H. An Isolable Vinylidene
ortho‐
Quinone Methide: Synthesis, Structure and Reactivity. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P.R. China
| |
Collapse
|
46
|
Knipe PC, Sweet JS. Catalytic Enantioselective Synthesis of C–N Atropisomeric Heterobiaryls. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
AbstractMolecules containing an atropisomeric C–N biaryl axis are gaining increasing attention in catalytic and medicinal chemistry. Despite this rising interest, relatively few approaches towards their catalytic enantioselective synthesis have been reported. Here we review these approaches, with a focus on the mechanism of asymmetric induction. Some common themes emerge: Brønsted acid catalysed cyclo-condensation and palladium-catalysed ring-closure are the most common and successful approaches. Meanwhile, the more direct but challenging axial C–N bond formation strategy remains in its infancy, with just two reports to-date. We hope this review will inform and inspire other researchers to develop new creative approaches to this important chemical motif.1 Introduction2 Cyclo-Condensation3 Proximal C–N Bond Formation4 Desymmetrisation of Intact Axes5 ortho-C–H Functionalisation6 Cycloaddition7 Axial C–N Bond Formation8 Atropisomeric N–N Axes: An Emerging Class of Heterobiaryls9 Conclusion and Outlook
Collapse
|
47
|
Yang WL, Shen JH, Zhao ZH, Wang Z, Deng WP. Stereoselective synthesis of functionalized azepines via gold and palladium relay catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00646d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a cycloisomerization/asymmetric [4 + 3] cycloaddition cascade reaction via gold/palladium relay catalysis, furnishing enantioenriched furan-fused azepines efficiently.
Collapse
Affiliation(s)
- Wu-Lin Yang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jia-Huan Shen
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zeng-Hui Zhao
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhongao Wang
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Wei-Ping Deng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
- Shanghai Key Laboratory of Chemical Biology & School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
48
|
Zhang H, Shi F. Advances in Catalytic Asymmetric Reactions Using 2-Indolylmethanols as Platform Molecules. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Jia S, Qin W, Wang P, Yan H. Organocatalytic atroposelective construction of axially chiral nonsymmetric biaryltriols and their applications in asymmetric synthesis and heavy metal ion detection. Org Chem Front 2022. [DOI: 10.1039/d1qo01821c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organocatalytic atroposelective construction of axially chiral nonsymmetric biaryltriols and their applications in asymmetric synthesis and heavy metal ion detection.
Collapse
Affiliation(s)
- Shiqi Jia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing 401331, P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing 401331, P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing 401331, P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing 401331, P. R. China
| |
Collapse
|
50
|
He S, Wang J, Zheng J, Luo QQ, Leng H, Zheng S, Peng C, Han B, Zhan G. Organocatalytic (5+1) benzannulation of Morita–Baylis–Hillman carbonates: synthesis of multisubstituted 4-benzylidene pyrazolones. NEW J CHEM 2022. [DOI: 10.1039/d2nj01949c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DABCO-catalyzed (5+1) cycloaddition of MBH carbonate undergoes an α-double deprotonation pathway to de novo assemble the benzene ring.
Collapse
Affiliation(s)
- Shurong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Jinfeng Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Qing-Qing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Haijun Leng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Sixiang Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P. R. China
| |
Collapse
|