1
|
Du P, Ait El Fakir A, Zhao S, Dostagir NHMD, Pan H, Ting KW, Mine S, Qian Y, Shimizu KI, Toyao T. Ethanol synthesis via catalytic CO 2 hydrogenation over multi-elemental KFeCuZn/ZrO 2 catalyst. Chem Sci 2024:d4sc02588a. [PMID: 39290587 PMCID: PMC11403942 DOI: 10.1039/d4sc02588a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Technological enablers that use CO2 as a feedstock to create value-added chemicals, including ethanol, have gained widespread appeal. They offer a potential solution to climate change and promote the development of a circular economy. However, the conversion of CO2 to ethanol poses significant challenges, not only because CO2 is a thermodynamically stable and chemically inert molecule but also because of the complexity of the reaction routes and uncontrollability of C-C coupling. In this study, we developed an efficient catalyst, K-Fe-Cu-Zn/ZrO2 (KFeCuZn/ZrO2), which enhances the EtOH space time yield (STYEtOH) to 5.4 mmol gcat -1 h-1, under optimized conditions (360 °C, 4 MPa, and 12 L gcat -1 h-1). Furthermore, we investigated the roles of each constituent element using in situ/operando spectroscopy such as X-ray absorption spectroscopy (XAS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). These results demonstrate that all components are necessary for efficient ethanol synthesis.
Collapse
Affiliation(s)
- Pengfei Du
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | | | - Shirun Zhao
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | | | - HongLi Pan
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Kah Wei Ting
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Shinya Mine
- National Institute of Advanced Industrial Science and Technology (AIST), Research Institute for Chemical Process Technology 4-2-1 Nigatake, Miyagino Sendai 983-8551 Japan
| | - Yucheng Qian
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University Sapporo 001-0021 Japan
| |
Collapse
|
2
|
Wang Z, Li Y, Ma Z, Wang D, Ren X. Strategies for overcoming challenges in selective electrochemical CO 2 conversion to ethanol. iScience 2024; 27:110437. [PMID: 39114499 PMCID: PMC11304069 DOI: 10.1016/j.isci.2024.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
The electrochemical conversion of carbon dioxide (CO2) to valuable chemicals is gaining significant attention as a pragmatic solution for achieving carbon neutrality and storing renewable energy in a usable form. Recent research increasingly focuses on designing electrocatalysts that specifically convert CO2 into ethanol, a desirable product due to its high-energy density, ease of storage, and portability. However, achieving high-efficiency ethanol production remains a challenge compared to ethylene (a competing product with a similar electron configuration). Existing electrocatalytic systems often suffer from limitations such as low energy efficiency, poor stability, and inadequate selectivity toward ethanol. Inspired by recent progress in the field, this review explores fundamental principles and material advancements in CO2 electroreduction, emphasizing strategies for ethanol production over ethylene. We discuss electrocatalyst design, reaction mechanisms, challenges, and future research directions. These advancements aim to bridge the gap between current research and industrialized applications of this technology.
Collapse
Affiliation(s)
- Zihong Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Yecheng Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Zhihao Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Dazhuang Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Xiaodi Ren
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
3
|
Neyman KM, Alemany P. Chemical Orderings in CuCo Nanoparticles: Topological Modeling Using DFT Calculations. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1242. [PMID: 39120347 PMCID: PMC11314349 DOI: 10.3390/nano14151242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/10/2024]
Abstract
The orderings of atoms in bimetallic 1.6-2.1 nm-large CuCo nanoparticles, important as catalytic and magnetic materials, were studied using a combination of DFT calculations with a topological approach. The structure and magnetism of Cu50Co151, Cu101Co100, Cu151Co50, and Cu303Co102 nanoparticles; their resistance to disintegrating into separate Cu and Co species; as well as the exposed surface sites, were quantified and analyzed, showing a clear preference for Cu atoms to occupy surface positions while the Co atoms tended to form a compact cluster in the interior of the nanoparticles. The surface segregation of Co atoms that are encapsulated by less-active Cu atoms, induced by the adsorption of CO molecules, was already enabled at a low coverage of adsorbed CO, providing the energy required to displace the entire compact Co species inside the Cu matrices due to a notable adsorption preference of CO for the Co sites over the Cu ones. The calculated adsorption energies and vibrational frequencies of adsorbed CO should be helpful indicators for experimentally monitoring the nature of the surface sites of CuCo nanoparticles, especially in the case of active Co surface sites emerging in the presence of CO.
Collapse
Affiliation(s)
- Konstantin M. Neyman
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain;
| | - Pere Alemany
- Departament de Ciència de Materials i Química Física and Institut de Quimica Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1, 08028 Barcelona, Spain;
| |
Collapse
|
4
|
Chen Y, Liu J, Chen X, Gu S, Wei Y, Wang L, Wan H, Guan G. Development of Multifunctional Catalysts for the Direct Hydrogenation of Carbon Dioxide to Higher Alcohols. Molecules 2024; 29:2666. [PMID: 38893540 PMCID: PMC11173553 DOI: 10.3390/molecules29112666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The direct hydrogenation of greenhouse gas CO2 to higher alcohols (C2+OH) provides a new route for the production of high-value chemicals. Due to the difficulty of C-C coupling, the formation of higher alcohols is more difficult compared to that of other compounds. In this review, we summarize recent advances in the development of multifunctional catalysts, including noble metal catalysts, Co-based catalysts, Cu-based catalysts, Fe-based catalysts, and tandem catalysts for the direct hydrogenation of CO2 to higher alcohols. Possible reaction mechanisms are discussed based on the structure-activity relationship of the catalysts. The reaction-coupling strategy holds great potential to regulate the reaction network. The effects of the reaction conditions on CO2 hydrogenation are also analyzed. Finally, we discuss the challenges and potential opportunities for the further development of direct CO2 hydrogenation to higher alcohols.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Jinzhao Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Xinyu Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Siyao Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Yibin Wei
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China;
| | - Lei Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Hui Wan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| | - Guofeng Guan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 210009, China; (Y.C.); (J.L.); (X.C.); (S.G.); (G.G.)
| |
Collapse
|
5
|
Lei H, Zhao W, Zhang W, Yang J. Theoretical Insights into Amido Group-Mediated Enhancement of CO 2 Hydrogenation to Methanol on Cobalt Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8822-8831. [PMID: 38345828 DOI: 10.1021/acsami.3c17456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Catalytic reduction of carbon dioxide into high-value-added products, such as methanol, is an effective approach to mitigate the greenhouse effect, and improving Co-based catalysts is anticipated to yield potential catalysts with high performance and low cost. In this study, based on first-principles calculations, we elucidate the promotion effects of surface *NHx (x = 1, 2, and 3) on the carbon dioxide hydrogenation to methanol from both activity and selectivity perspectives on Co-based catalysts. The presence of *NHx reduced the energy barrier of each elementary step on Co(100) by regulating the electronic structure to alter the binding strength of intermediates or by forming a hydrogen bond between surface oxygen-containing species and *NHx to stabilize transition states. The best promotion effect for different steps corresponds to different *NHx. The energy barrier of the rate-determining step of CO2 hydrogenation to methanol is lowered from 1.55 to 0.88 eV, and the product selectivity shifts from methane to methanol with the assistance of *NHx on the Co(100) surface. A similar phenomenon is observed on the Co(111) surface. The promotion effect of *NHx on Co-based catalysts is superior to that of water, indicating that the introduction of *NHx on a Co-based catalyst is an effective strategy to enhance the catalytic performance of CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
- Han Lei
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wanghui Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory for Chemical Technology, Ghent University, Ghent 9052, Belgium
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Sheng Z, Zhou H, Zhang Y, Li J, Wang L. Sheet-Like Morphology CuO/Co 3O 4 Nanocomposites for Enhanced Catalysis in Hydrogenation of CO 2 to Methanol. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3153. [PMID: 38133050 PMCID: PMC10745419 DOI: 10.3390/nano13243153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
The selective hydrogenation of CO2 into high-value chemicals is an effective approach to address environmental issues. Cobalt-based catalysts have significant potential in CO2 hydrogenation reaction systems; however, there is a need to control their selectivity better. In this study, copper is introduced onto Co3O4 nanosheets using the ion exchange reverse loading method. The unique interaction of these materials significantly alters the selectivity of the cobalt-based catalyst. Results from scanning transmission electron microscopy and scanning electron microscopy indicate that this catalyst enables a more even dispersion of copper species in the Co3O4 nanosheets. Temperature-programmed reduction and X-ray photoelectron spectroscopy reveal that the catalyst facilitates the metal-metal interaction between Co and Cu. Temperature-programmed desorption experiments for CO2 and H2 demonstrate that the close interaction between Co and Cu modifies CO2 adsorption, leading to differences in catalytic activity. Moreover, the catalyst effectively suppresses CO2 methanation and promotes methanol formation by altering the alkalinity of the catalyst surface and weakening the hydrogen dissociation ability.
Collapse
Affiliation(s)
| | | | | | - Jinlin Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Li Wang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
7
|
Gao G, Zhu G, Chen X, Sun Z, Cabot A. Optimizing Pt-Based Alloy Electrocatalysts for Improved Hydrogen Evolution Performance in Alkaline Electrolytes: A Comprehensive Review. ACS NANO 2023; 17:20804-20824. [PMID: 37922197 DOI: 10.1021/acsnano.3c05810] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The splitting of water through electrocatalysis offers a sustainable method for the production of hydrogen. In alkaline electrolytes, the lack of protons forces water dissociation to occur before the hydrogen evolution reaction (HER). While pure Pt is the gold standard electrocatalyst in acidic electrolytes, since the 5d orbital in Pt is nearly fully occupied, when it overlaps with the molecular orbital of water, it generates a Pauli repulsion. As a result, the formation of a Pt-H* bond in an alkaline environment is difficult, which slows the HER and negates the benefits of using a pure Pt catalyst. To overcome this limitation, Pt can be alloyed with transition metals, such as Fe, Co, and Ni. This approach has the potential not only to enhance the performance but also to increase the Pt dispersion and decrease its usage, thus overall improving the catalyst's cost-effectiveness. The excellent water adsorption and dissociation ability of transition metals contributes to the generation of a proton-rich local environment near the Pt-based alloy that promotes HER. Significant progress has been achieved in comprehending the alkaline HER mechanism through the manipulation of the structure and composition of electrocatalysts based on the Pt alloy. The objective of this review is to analyze and condense the latest developments in the production of Pt-based alloy electrocatalysts for alkaline HER. It focuses on the modified performance of Pt-based alloys and clarifies the design principles and catalytic mechanism of the catalysts from both an experimental and theoretical perspective. This review also highlights some of the difficulties encountered during the HER and the opportunities for increasing the HER performance. Finally, guidance for the development of more efficient Pt-based alloy electrocatalysts is provided.
Collapse
Affiliation(s)
- Guoliang Gao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Xueli Chen
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona 08930, Spain
- Catalan Institution for Research and Advanced Studies - ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
8
|
Wang J, Wang T, Xi Y, Gao G, Sun P, Li F. In-Situ-Formed Potassium-Modified Nickel-Zinc Carbide Boosts Production of Higher Alcohols beyond CH 4 in CO 2 Hydrogenation. Angew Chem Int Ed Engl 2023; 62:e202311335. [PMID: 37646093 DOI: 10.1002/anie.202311335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Ni-based catalysts have been widely studied in the hydrogenation of CO2 to CH4 , but selective and efficient synthesis of higher alcohols (C2+ OH) from CO2 hydrogenation over Ni-based catalyst is still challenging due to successive hydrogenation of C1 intermediates leading to methanation. Herein, we report an unprecedented synthesis of C2+ OH from CO2 hydrogenation over K-modified Ni-Zn bimetal catalyst with promising activity and selectivity. Systematic experiments (including XRD, in situ spectroscopic characterization) and computational studies reveal the in situ generation of an active K-modified Ni-Zn carbide (K-Ni3 Zn1 C0.7 ) by carburization of Zn-incorporated Ni0 , which can significantly enhance CO2 adsorption and the surface coverage of alkyl intermediates, and boost the C-C coupling to C2+ OH rather than conventional CH4 . This work opens a new catalytic avenue toward CO2 hydrogenation to C2+ OH, and also provides an insightful example for the rational design of selective and efficient Ni-based catalysts for CO2 hydrogenation to multiple carbon products.
Collapse
Affiliation(s)
- Jia Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Tingting Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongjie Xi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Guang Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Peng Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Fuwei Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|