1
|
Xu Y, Chen W, Pu R, Ding J, An Q, Yang Y, Liu W, Zuo Z. Selective monodeuteration enabled by bisphosphonium catalyzed ring opening processes. Nat Commun 2024; 15:9366. [PMID: 39477917 PMCID: PMC11526102 DOI: 10.1038/s41467-024-53728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 10/16/2024] [Indexed: 11/02/2024] Open
Abstract
The selective incorporation of a deuterium atom into small molecules with high selectivity is highly valuable for medical and chemical research. Unfortunately, this remains challenging due to the complete deuteration caused by commonly used hydrogen isotope exchange strategies. We report the development of a photocatalytic selective monodeuteration protocol utilizing C-C bond as the unconventional functional handle. The synergistic combination of radical-mediated C-C bond scission and deuterium atom transfer processes enables the effective constructions of benzylic CDH moieties with high selectivity for monodeuteration. The combinational use of a bisphosphonium photocatalyst, thiol catalyst, and CH3OD deuteration agent provides operationally simple conditions for photocatalytic monodeuteration. Moreover, the photoinduced electron transfer process of the bisphosphonium photocatalyst is elucidated through a series of spectroscopy experiments, identifying a peculiar back electron transfer process that can be regulated by subsequent nucleophilic additions.
Collapse
Affiliation(s)
- Yuanli Xu
- Innovation Center for Chenguang High Performance Fluorine Material, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, 643000, Zigong, China
| | - Wenlong Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ruihua Pu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Jia Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Yi Yang
- Innovation Center for Chenguang High Performance Fluorine Material, Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, Sichuan University of Science and Engineering, 643000, Zigong, China.
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China.
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
2
|
Zhang J, Jiao M, Lu Z, Lu H, Wang M, Shi Z. Hydrodeuteroalkylation of Unactivated Olefins Using Thianthrenium Salts. Angew Chem Int Ed Engl 2024; 63:e202409862. [PMID: 38866703 DOI: 10.1002/anie.202409862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zheng Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Jiangsu Nata Opto-electronic Material Co., Ltd., Suzhou, 215126, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Yan Y, Hao J, Peng Y, Yin M, Jing L, Han P. Electrochemical benzylic deuteration of p-QMs enabling the synthesis of benzylic deuterated diarylmethanes. Org Biomol Chem 2024; 22:4047-4051. [PMID: 38712523 DOI: 10.1039/d4ob00537f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Herein, electroreductive umpolung benzylic deuteration of p-QMs using cheap and easily accessible D2O as a deuterium source is reported. Various value-added benzylic deuterated diarylmethanes can be synthesized without the requirement of noble metal catalysts, redox reagents, and strong bases. The establishment of this protocol will provide an alternative strategy for acquiring benzylic deuterated diarylmethanes.
Collapse
Affiliation(s)
- Yunying Yan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Jianjun Hao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Yulin Peng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Mengyun Yin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Linhai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China.
| |
Collapse
|
4
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
5
|
Molinillo P, Puyo M, Vattier F, Lacroix B, Rendón N, Lara P, Suárez A. Ruthenium nanoparticles stabilized by 1,2,3-triazolylidene ligands in the hydrogen isotope exchange of E-H bonds (E = B, Si, Ge, Sn) using deuterium gas. NANOSCALE 2023; 15:14488-14495. [PMID: 37606171 DOI: 10.1039/d3nr02637j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A series of ruthenium nanoparticles (Ru·MIC) stabilized with different mesoionic 1,2,3-triazolylidene (MIC) ligands were prepared by decomposition of the Ru(COD)(COT) (COD = 1,5-cyclooctadiene; COT = 1,3,5-cyclooctatriene) precursor with H2 (3 bar) in the presence of substoichiometric amounts of the stabilizer (0.1-0.2 equiv.). Small and monodisperse nanoparticles exhibiting mean sizes between 1.1 and 1.2 nm were obtained, whose characterization was carried out by means of transmission electron microscopy (TEM), including high resolution TEM (HRTEM), inductively coupled plasma (ICP) analysis and X-ray photoelectron spectroscopy (XPS). In particular, XPS measurements confirmed the presence of MIC ligands on the surfaces of the nanoparticles. The Ru·MIC nanoparticles were used in the isotopic H/D exchange of different hydrosilanes, hydroboranes, hydrogermananes and hydrostannanes using deuterium gas under mild conditions (1.0 mol% Ru, 1 bar D2, 55 °C). Selective labelling of the E-H (E = B, Si, Ge, Sn) bond in these derivatives, with high levels of deuterium incorporation, was observed.
Collapse
Affiliation(s)
- Pablo Molinillo
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Maxime Puyo
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Florencia Vattier
- Instituto de Ciencia de Materiales de Sevilla. CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
| | - Bertrand Lacroix
- Departamento de Física Aplicada I, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Nuria Rendón
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Patricia Lara
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Andrés Suárez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica, and Centro de Innovación en Química Avanzada (ORFEO-CINQA). CSIC and Universidad de Sevilla, Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
6
|
Kramp H, Weck R, Sandvoss M, Sib A, Mencia G, Fazzini PF, Chaudret B, Derdau V. In situ Generated Iridium Nanoparticles as Hydride Donors in Photoredox-Catalyzed Hydrogen Isotope Exchange Reactions with Deuterium and Tritium Gas. Angew Chem Int Ed Engl 2023; 62:e202308983. [PMID: 37453077 DOI: 10.1002/anie.202308983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
We have studied the photoredox-catalyzed hydrogen isotope exchange (HIE) reaction with deuterium or tritium gas as isotope sources and in situ formed transition metal nanoparticles as hydrogen atom transfer pre-catalysts. By this means we have found synergistic reactivities applying two different HIE mechanisms, namely photoredox-catalyzed and CH-functionalization HIE leading to the synthesis of highly deuterated complex molecules. Finally, we adopted these findings successfully to tritium chemistry.
Collapse
Affiliation(s)
- Henrik Kramp
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Remo Weck
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Martin Sandvoss
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Gabriel Mencia
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 135 avenue de Rangueil, 31077, Toulouse Cedex 4, France
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Du HZ, Fan JZ, Wang ZZ, Strotman NA, Yang H, Guan BT. Cesium Amide-Catalyzed Selective Deuteration of Benzylic C-H Bonds with D 2 and Application for Tritiation of Pharmaceuticals. Angew Chem Int Ed Engl 2023; 62:e202214461. [PMID: 36289047 DOI: 10.1002/anie.202214461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Hydrogen isotope exchange (HIE) represents one of the most attractive labeling methods to synthesize deuterium- and tritium-labeled compounds. Catalytic HIE methods that enable site-selective C-H bond activation and exchange labeling with gaseous isotopes D2 and T2 are of vital importance, in particular for high-specific-activity tritiation of pharmaceuticals. As part of our interest in exploring s-block metals for catalytic transformations, we found CsN(SiMe3 )2 to be an efficient catalyst for selective HIE of benzylic C-H bonds with D2 gas. The reaction proceeds through a kinetic deprotonative equilibrium that establishes an exchange pathway between C-H bonds and D2 gas. By virtue of multiple C-H bonds activation and high activity (isotope enrichment up to 99 %), the simple cesium amide catalyst provided a very powerful and practically convenient labeling protocol for synthesis of highly deuterated compounds and high-specific-activity tritiation of pharmaceuticals.
Collapse
Affiliation(s)
- Hui-Zhen Du
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun-Zhen Fan
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zhong-Zhen Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Neil A Strotman
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Haifeng Yang
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Bing-Tao Guan
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
8
|
Suárez-Riaño O, Mencia G, Tricard S, Esvan J, Fazzini PF, Chaudret B, Baquero EA. Water-soluble NHC Pd/Ni bimetallic nanoparticles for H/D exchange in aromatic amino-acids. Chem Commun (Camb) 2023; 59:1062-1065. [PMID: 36606591 DOI: 10.1039/d2cc06019a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Labelling of amino-acids is important for the production of deuterated proteins. However, aromatic amino-acid reduction is a common undesired process with noble-metal nanocatalysts. In this work, we describe a new NHC-stabilized water-soluble Pd/Ni system able to perform H/D exchange reactions in an enantiospecific fashion without reducing the aromatic ring of phenylalanine and tyrosine thanks to a synergetic Pd-Ni effect.
Collapse
Affiliation(s)
- Oscar Suárez-Riaño
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, 111321, Bogotá, Colombia.
| | - Gabriel Mencia
- LPCNO, Laboratoire de Physique et Chimie de Nano-Objets, UMR, 5215 INSA-CNRS-UPS, Institut National des Sciences Appliques 135, Avenue de Rangueil, 31077, Toulouse, France.
| | - Simon Tricard
- LPCNO, Laboratoire de Physique et Chimie de Nano-Objets, UMR, 5215 INSA-CNRS-UPS, Institut National des Sciences Appliques 135, Avenue de Rangueil, 31077, Toulouse, France.
| | - Jerome Esvan
- Institut Carnot - Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux, INP-ENSIACET, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse, France
| | - Pier-Francesco Fazzini
- LPCNO, Laboratoire de Physique et Chimie de Nano-Objets, UMR, 5215 INSA-CNRS-UPS, Institut National des Sciences Appliques 135, Avenue de Rangueil, 31077, Toulouse, France.
| | - Bruno Chaudret
- LPCNO, Laboratoire de Physique et Chimie de Nano-Objets, UMR, 5215 INSA-CNRS-UPS, Institut National des Sciences Appliques 135, Avenue de Rangueil, 31077, Toulouse, France.
| | - Edwin A Baquero
- Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, 111321, Bogotá, Colombia.
| |
Collapse
|
9
|
Ramanathan D, Shi Q, Xu M, Chang R, Peñín B, Funes-Ardoiz I, Ye J. Catalytic asymmetric deuterosilylation of exocyclic olefins with mannose-derived thiols and deuterium oxide. Org Chem Front 2023. [DOI: 10.1039/d2qo01979e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metal-free, photoinduced asymmetric deuterosilylation of exocyclic olefins has been achieved using a mannose-derived thiol catalyst.
Collapse
Affiliation(s)
- Devenderan Ramanathan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichen Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Beatriz Peñín
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, Madre de Dios 53, 26006 Logroño, Spain
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Maddocks S, Samuri NF, Ridge K, Cunningham ID, Lockley WJS. Benzylic deuteration of alkylnitroaromatics via amine-base catalysed exchange with deuterium oxide. J Labelled Comp Radiopharm 2023; 66:11-21. [PMID: 36453978 PMCID: PMC10107807 DOI: 10.1002/jlcr.4008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
This paper describes the deuterium-labelling of alkylnitroaromatics by base-catalysed exchange with deuterium oxide. As the alkyl protons alpha to the aromatic ring are the most acidic sites in the molecule, regioselective hydrogen isotope exchange at this benzylic location leads to a regiospecifically deuterated product. The exchange labelling takes place in good yields and with high atom% abundance in the presence of an appropriate nitrogen base. Alkylated 2,4-dinitrobenzenes deuterate at room temperature under catalysis by triethylamine, whilst alkylated 2-nitro- or 4-nitrobenzenes and related mono-nitroaromatics require higher temperatures and catalysis by 1,5-diazobicyclo[4.3.0]non-5-ene (DBN). The labelling reactions require an inert gas atmosphere, but otherwise are simple and high yielding with no obvious byproducts. Those compounds in which the benzylic protons are in an ortho-orientation with respect to the nitro group label somewhat more slowly than the analogues where there is a para relationship. In addition, higher alkyl homologues undergo benzylic deuteration at slower rates than methyl.
Collapse
Affiliation(s)
- Stephen Maddocks
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Nurul F Samuri
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Katerina Ridge
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - Ian D Cunningham
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| | - William J S Lockley
- Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
11
|
Bourriquen F, Rockstroh N, Bartling S, Junge K, Beller M. Manganese‐Catalysed Deuterium Labelling of Anilines and Electron‐Rich (Hetero)Arenes. Angew Chem Int Ed Engl 2022; 61:e202202423. [PMID: 35484978 PMCID: PMC9322005 DOI: 10.1002/anie.202202423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/18/2022]
Abstract
There is a constant need for deuterium‐labelled products for multiple applications in life sciences and beyond. Here, a new class of heterogeneous catalysts is reported for practical deuterium incorporation in anilines, phenols, and heterocyclic substrates. The optimal material can be conveniently synthesised and allows for high deuterium incorporation using deuterium oxide as isotope source. This new catalyst has been fully characterised and successfully applied to the labelling of natural products as well as marketed drugs.
Collapse
Affiliation(s)
- Florian Bourriquen
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Nils Rockstroh
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
12
|
Min XT, Mei YK, Chen BZ, He LB, Song TT, Ji DW, Hu YC, Wan B, Chen QA. Rhodium-Catalyzed Deuterated Tsuji-Wilkinson Decarbonylation of Aldehydes with Deuterium Oxide. J Am Chem Soc 2022; 144:11081-11087. [PMID: 35709491 DOI: 10.1021/jacs.2c04422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The recent surge in the applications of deuterated drug candidates has rendered an urgent need for diverse deuterium labeling techniques. Herein, an efficient Rh-catalyzed deuterated Tsuji-Wilkinson decarbonylation of naturally available aldehydes with D2O is developed. In this reaction, D2O not only acts as a deuterated reagent and solvent but also promotes Rh-catalyzed decarbonylation. In addition, decarbonylative strategies for the synthesis of terminal monodeuterated alkenes from α,β-unsaturated aldehydes are within reach.
Collapse
Affiliation(s)
- Xiang-Ting Min
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong-Kang Mei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Zhi Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Bowen He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Boshun Wan
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Bourriquen F, Rockstroh N, Bartling S, Junge K, Beller M. Manganese Catalysed Deuterium Labelling of Anilines and Electron‐Rich (Hetero)Arenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Nils Rockstroh
- LIKAT: Leibniz-Institut fur Katalyse eV Analytics GERMANY
| | | | - Kathrin Junge
- LIKAT: Leibniz-Institut fur Katalyse eV Applied Chemistry GERMANY
| | - Matthias Beller
- Leibniz-Institut für Katalyse Homogeneous Catalysis Albert-Einstein-Straße 29a 18059 Rostock GERMANY
| |
Collapse
|
14
|
Levernier E, Tatoueix K, Garcia-Argote S, Pfeifer V, Kiesling R, Gravel E, Feuillastre S, Pieters G. Easy-to-Implement Hydrogen Isotope Exchange for the Labeling of N-Heterocycles, Alkylkamines, Benzylic Scaffolds, and Pharmaceuticals. JACS AU 2022; 2:801-808. [PMID: 35557763 PMCID: PMC9088292 DOI: 10.1021/jacsau.1c00503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Indexed: 06/07/2023]
Abstract
Facilitating access to deuterated and tritiated complex molecules is of paramount importance due to the fundamental role of isotopically labeled compounds in drug discovery and development. Deuterated analogues of drugs are extensively used as internal standards for quantification purposes or as active pharmaceutical ingredients, whereas tritiated drugs are essential for preclinical ADME studies. In this report, we describe the labeling of prevalent substructures in FDA-approved drugs such as azines, indoles, alkylamine moieties, or benzylic carbons by the in situ generation of Rh nanoparticles able to catalyze both C(sp2)-H and C(sp3)-H activation processes. In this easy-to-implement labeling process, Rh nanocatalysts are formed by decomposition of a commercially available rhodium dimer under a deuterium or tritium gas atmosphere (1 bar or less), using the substrate itself as a surface ligand to control the aggregation state of the resulting metallic clusters. It is noteworthy that the size of the nanoparticles observed is surprisingly independent of the substrate used and is homogeneous, as evidenced by transmission electron microscopy experiments. This method has been successfully applied to the one-step synthesis of (1) deuterated pharmaceuticals usable as internal standards for MS quantification and (2) tritiated drug analogues with very high molar activities (up to 113 Ci/mmol).
Collapse
Affiliation(s)
- Etienne Levernier
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Kevin Tatoueix
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Sébastien Garcia-Argote
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Viktor Pfeifer
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Ralf Kiesling
- Boehringer
Ingelheim Pharma GmbH & Co. KG, Birkendorfer Straße 65, 88397 Biberach an der Riß, Germany
| | - Edmond Gravel
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Sophie Feuillastre
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| | - Grégory Pieters
- Département
Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, 91191 Gif-sur-Yvette, France
| |
Collapse
|
15
|
Kang QK, Li Y, Chen K, Zhu H, Wu WQ, Lin Y, Shi H. Rhodium-Catalyzed Stereoselective Deuteration of Benzylic C-H Bonds via Reversible η 6 -Coordination. Angew Chem Int Ed Engl 2022; 61:e202117381. [PMID: 35006640 DOI: 10.1002/anie.202117381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 12/15/2022]
Abstract
We report a convenient method for benzylic H/D exchange of a wide variety of substrates bearing primary, secondary, or tertiary C-H bonds via a reversible η6 -coordination strategy. A doubly cationic [CpCF3 RhIII ]2+ catalyst that serves as an arenophile facilitates deprotonation of inert benzylic hydrogen atoms (pKa >40 in DMSO) without affecting other hydrogen atoms, such as those on aromatic rings or in α-positions of carboxylate groups. Notably, the H/D exchange reactions feature high stereoretention. We demonstrated the potential utility of this method by using it for deuterium labeling of ten pharmaceuticals and their analogues.
Collapse
Affiliation(s)
- Qi-Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Kai Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hui Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Wen-Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
16
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 170] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
17
|
Kang QK, Li Y, Chen K, Zhu H, Wu WQ, Lin Y, Shi H. Rhodium‐Catalyzed Stereoselective Deuteration of Benzylic C–H Bonds via Reversible η6‐Coordination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi-Kai Kang
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Yuntong Li
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Kai Chen
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Hui Zhu
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Wen-Qiang Wu
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Yunzhi Lin
- Westlake University School of Science 18,Shilongshan RoadCloud Town, Xihu District 310024 Hangzhou CHINA
| | - Hang Shi
- Westlake University School of Science 18 Shilongshan Road 310024 Hangzhou CHINA
| |
Collapse
|