1
|
Song C, Guo Y, Wang T, Liu K, Zhao PY, Liu Y, Huang H, Lu R, Zhang S. A dual-template synergistic assembly strategy towards the synthesis of extra-small nitrogen-doped mesoporous carbon nanospheres with large pores. NANOSCALE 2024; 16:16967-16976. [PMID: 38990172 DOI: 10.1039/d4nr01072h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Functional mesoporous carbon nanomaterials with large pores and small particle sizes have broad accessibility, but remain challenging to achieve. This study proposed a dual-template synergistic assembly strategy to facilely synthesize extra-small nitrogen-doped mesoporous carbon nanospheres with large pores in a low-cost manner. Directed by the synergistic effect of the combination of surfactants, sodium oleate (anionic surfactant) and triblock copolymer-P123 (nonionic surfactant) were selected as templates to construct nanomicelles (nanoemulsions), which were co-assembled with melamine-based oligomers to form composite nanomicelles, thus obtaining nitrogen-doped mesoporous polymer nanospheres (NMePS) and then nitrogen-doped mesoporous carbon nanospheres (NMeCS). Based on Schiff base chemistry, the melamine-based oligomers with self-assembly capability were synthesized as precursors, which is different from the conventional synthetic route of melamine-formaldehyde resin. The key parameters involved in the route were investigated comprehensively and correlated with the characterization results. Furthermore, the 50 nm-scale particle size and the large mesoporous size of 5.5 nm of NMeCS can facilitate effective mass transport, coupled with their high nitrogen content (15.7 wt%), contributing to their excellent performance in lithium-ion batteries.
Collapse
Affiliation(s)
- Caicheng Song
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- SINOPEC, Dalian Res Inst Petr & Petrochem Co. Ltd, 96 Nankai St, Dalian 116045, P. R. China
| | - Yiwen Guo
- Institute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
| | - Tianwei Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Kun Liu
- SINOPEC, Dalian Res Inst Petr & Petrochem Co. Ltd, 96 Nankai St, Dalian 116045, P. R. China
- Institute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
| | - Pin-Yi Zhao
- SINOPEC, Dalian Res Inst Petr & Petrochem Co. Ltd, 96 Nankai St, Dalian 116045, P. R. China
- Institute for Materials Discovery, University College London, WC1E 7JE, UK
- Department of Chemistry, University College London, WC1H 0AJ, UK
| | - Ying Liu
- SINOPEC, Dalian Res Inst Petr & Petrochem Co. Ltd, 96 Nankai St, Dalian 116045, P. R. China
| | - He Huang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Rongwen Lu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
2
|
Sang Y, Li H, Sun M, Ren J, Qu X. Persistent Luminescence-Based Nanoreservoir for Benign Photothermal-Reinforced Nanozymatic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:49114-49123. [PMID: 39241120 DOI: 10.1021/acsami.4c10214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Adjusting the catalytic activity of nanozymes for enhanced oncotherapy has attracted significant interest. However, it remains challenging to engineer regulatory tactics with a minimal impact on normal tissues. By exploiting the advantages of energy storage, photostimulated, and long afterglow luminescence of persistent nanoparticles (PLNPs), a persistent luminescence-based nanoreservoir was produced to improve its catalytic activity for benign oncotherapy. In the study, PLNPs in a nanoreservoir with the ability to store photons served as a self-illuminant to promote its peroxidase-like activity and therapeutic efficacy by persistently motivating its photothermal effect before and after external irradiation ceased. The photostimulated and persistent luminescence of PLNPs and spatiotemporal controllability of exogenous light jointly alleviated adverse effects induced by prolonged irradiation and elevated the catalytic capability of the nanoreservoir. Ultimately, the system fulfilled benign photothermal-intensive nanozymatic therapy. This work provides new insights into boosting the catalytic activity of nanozymes for secure disease treatment.
Collapse
Affiliation(s)
- Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huimin Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Muhammad I, Saddique J, Wu C, Rahman MU, Khan ZU, Ali W, Zhang R. Nitrogen-Doped Graphene-Supported Nickel Nanoparticles Reveal Low Dehydrogenation Temperature and Long Cyclic Life of Magnesium Hydrides. ACS OMEGA 2024; 9:19261-19271. [PMID: 38708274 PMCID: PMC11064194 DOI: 10.1021/acsomega.4c00198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024]
Abstract
Magnesium hydride (MgH2) is a promising hydrogen storage candidate due to its large capacity; however, high dehydrogenation temperature and slow kinetic rates are the main bottlenecks. Herein, we proposed a strategy for designing nitrogen-doped graphene-supported Ni nanoparticles (NPs) (Ni@NC) to tackle these problems. The results showed that the MgH2 + 15 wt % Ni@NC nanocomposite reduced the on-set dehydrogenation temperature to 195 °C, which was 175 °C lower than pristine MgH2. In addition, MgH2 + 15 wt % Ni@NC achieved 1.7 and 6.5 wt % desorption capacities at 225 and 300 °C, respectively, while absorbing 5.5 wt % hydrogen at 100 °C. The MgH2 + 15 wt % Ni@NC nanocomposite showed high cyclic stability, achieving 98.0% capacity retention after 100 cycles at 270 °C with negligible loss in capacity. This remarkable hydrogen storage performance can be attributed to the homogeneous distribution of Ni NPs on N-doped graphene layers, in situ formed Mg2NiH2 NPs, and multiphasic regions, promoting the nucleation and growth process during hydrogenation/dehydrogenation, which stabilized and improved the cyclic stability. This strategy paves the way to developing high-performance MgH2 for large-scale applications.
Collapse
Affiliation(s)
- Imran Muhammad
- School
of Materials Science and Engineering, Changzhou
University, Changzhou 213164, P. R. China
| | - Jaffer Saddique
- Key
Laboratory of Advanced Catalytic Materials (Ministry of Education),
School of Materials Science and Chemistry, Zhejiang Normal University, Zhejiang Jinhua 321004, P. R. China
| | - Chengzhang Wu
- State
Key Laboratory of Advanced Special Steel, Key Laboratory of Advanced
Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai 200072, China
| | - Muneeb ur Rahman
- Department
of Physics, Islamia College Peshawar, Khyber Pakhtunkhwa 25120, Pakistan
| | - Zaheen Ullah Khan
- Institute
of Materials for Energy and Environment, School of Materials Science
and Engineering, Qingdao University, Qingdao 266071, China
| | - Wajid Ali
- Key
Laboratory of Advanced Catalytic Materials (Ministry of Education),
School of Materials Science and Chemistry, Zhejiang Normal University, Zhejiang Jinhua 321004, P. R. China
| | - Rong Zhang
- School
of Materials Science and Engineering, Changzhou
University, Changzhou 213164, P. R. China
| |
Collapse
|
4
|
Galaburda M, Szewczuk-Karpisz K, Goncharuk O, Siryk O, Charmas B, Deryło-Marczewska A. The influence of sodium alginate on the structural and adsorption properties of resorcinol-formaldehyde resins and their porous carbon derivatives. Chemphyschem 2024; 25:e202300796. [PMID: 38100512 DOI: 10.1002/cphc.202300796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
A series of carbon composites were synthesised by carbonisation of resorcinol-formaldehyde resin mixtures with the addition of different amounts of sodium alginate (SA) and compared with a composite prepared using Na2 CO3 as a catalyst for the polymerisation reaction. The effect of operating parameters such as SA concentration and polycondensation time on the structural and morphological properties of resorcinol-formaldehyde resins (RFR) and carbon-derived composites was investigated for further use as adsorbents. The synthesised composites were characterised by FTIR, SEM, Raman spectroscopy and N2 adsorption/desorption techniques. It was found that the morphology, specific surface area (SBET ~347-559 m2 /g), volume and particle size distribution (~0.5-4 μm) and porosity (Vpor =0.178-0.348 cm3 /g) of the composites were influenced by the concentration of SA and the synthesis technique and determined the adsorption properties of the materials. It was found that the surface of the filled chars was found to have an affinity for heavy metals and has the ability to form chemical bonds with cadmium ions. The maximum sorption capacities for Cd(II), i. e. 13.28 mg/g, were observed for the sample synthesised with the highest SA content. This confirms the statement that as-synthesised materials are promising adsorbents for environmental applications.
Collapse
Affiliation(s)
- Mariia Galaburda
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
- Laboratory of Oxide Nanocomposites, Chuiko Institute of Surface Chemistry, NASU 17 General Naumov Str., 03164, Kyiv, Ukraine
| | - Katarzyna Szewczuk-Karpisz
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin
| | - Olena Goncharuk
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin
- Department of Chemical Technology of Ceramics and Glass, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37 Peremohy av., 03056, Kyiv, Ukraine
| | - Olena Siryk
- Department of Physical Chemistry of Porous Materials, Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin
| | - Barbara Charmas
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| | - Anna Deryło-Marczewska
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Curie-Sklodowska Sq. 3, 20-031, Lublin, Poland
| |
Collapse
|
5
|
Du S, Huang B, Hao GP, Huang J, Liu Z, Oschatz M, Xiao J, Lu AH. pH-Regulated Refinement of Pore Size in Carbon Spheres for Size-Sieving of Gaseous C 8 , C 6 and C 3 Hydrocarbon Pairs. CHEMSUSCHEM 2023; 16:e202300215. [PMID: 37186177 DOI: 10.1002/cssc.202300215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Selective separation of industrial important C8 , C6 and C3 hydrocarbon pairs by physisorbents can greatly reduce the energy intensity related to the currently used cryogenic distillation techniques. The achievement of size-sieving based on carbonaceous materials is desirable, but commonly hindered by the random structure of carbons often with a broad pore size distribution. Herein, a pH-regulated pre-condensation strategy was introduced to control the carbon pore architecture by the sp2 /sp3 hybridization of precursor. The lower pH value during pre-condensation of glucose facilitates the growth of aromatic nanodomains, rearrangement of stacked layers and a concomitant transition from sp3 -C to sp2 -C. The subsequent pyrolysis endows the pore size manipulated from 6.8 to 4.8 Å and narrowly distributed over a range of 0.2 Å. The refined pores enable effective size-sieving of C8 , C6 and C3 hydrocarbon pairs with high separation factor of 1.9 and 4.9 for C8 xylene (X) isomers para-X/meta-X and para-X/ortho-X, respectively, 5.1 for C6 alkane isomers n-hexane/3-methylpentane, and 22.0 for C3 H6 /C3 H8 . The excellent separation performance based-on size exclusion effect is validated by static adsorption isotherms and dynamic breakthrough experiments. This synthesis strategy provides a means of exploring advanced carbonaceous materials with controlled hybridized structure and pore sizes for challenging separation needs.
Collapse
Affiliation(s)
- Shengjun Du
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Baolin Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jiawu Huang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zewei Liu
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Martin Oschatz
- Institute for Technical Chemistry and Environmental Chemistry, Center for Energy and Environmental Chemistry Jena, Friedrich-Schiller-University, Jena, 07745, Germany
| | - Jing Xiao
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Department of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources and School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
6
|
Rauscher MV, Seyffertitz M, Kohns R, Stock S, Amenitsch H, Huesing N, Paris O. Optimizing surfactant removal from a soft-templated ordered mesoporous carbon precursor: an in situ SAXS study. J Appl Crystallogr 2023; 56:801-809. [PMID: 37284273 PMCID: PMC10241053 DOI: 10.1107/s1600576723003886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 06/08/2023] Open
Abstract
In situ small-angle X-ray scattering (SAXS) was employed to identify critical parameters during thermal treatment for template removal of an ordered mesoporous carbon precursor synthesized via a direct soft-templating route. The structural parameters obtained from the SAXS data as a function of time were the lattice parameter of the 2D hexagonal structure, the diameter of the cylindrical mesostructures and a power-law exponent characterizing the interface roughness. Moreover, detailed information on contrast changes and pore lattice order was obtained from analysis of the integrated SAXS intensity of the Bragg and diffuse scattering separately. Five characteristic regions during heat treatment were identified and discussed regarding the underlying dominant processes. The influence of temperature and O2/N2 ratio on the final structure was analyzed, and parameter ranges were identified for an optimized template removal without strongly affecting the matrix. The results indicate that the final structure and controllability of the process are optimum for temperatures between 260 and 300°C with a gas flow containing 2 mol% of O2.
Collapse
Affiliation(s)
- Max Valentin Rauscher
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| | - Malina Seyffertitz
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| | - Richard Kohns
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg, Salzburg, Austria
| | - Sebastian Stock
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
| | - Nicola Huesing
- Department of Chemistry and Physics of Materials, Paris Lodron University Salzburg, Salzburg, Austria
| | - Oskar Paris
- Chair of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Leoben, Austria
| |
Collapse
|
7
|
Wang F, Han Y, Feng X, Xu R, Li A, Wang T, Deng M, Tong C, Li J, Wei Z. Mesoporous Carbon-Based Materials for Enhancing the Performance of Lithium-Sulfur Batteries. Int J Mol Sci 2023; 24:ijms24087291. [PMID: 37108464 PMCID: PMC10138428 DOI: 10.3390/ijms24087291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
The most promising energy storage devices are lithium-sulfur batteries (LSBs), which offer a high theoretical energy density that is five times greater than that of lithium-ion batteries. However, there are still significant barriers to the commercialization of LSBs, and mesoporous carbon-based materials (MCBMs) have attracted much attention in solving LSBs' problems, due to their large specific surface area (SSA), high electrical conductivity, and other unique advantages. The synthesis of MCBMs and their applications in the anodes, cathodes, separators, and "two-in-one" hosts of LSBs are reviewed in this study. Most interestingly, we establish a systematic correlation between the structural characteristics of MCBMs and their electrochemical properties, offering recommendations for improving performance by altering the characteristics. Finally, the challenges and opportunities of LSBs under current policies are also clarified. This review provides ideas for the design of cathodes, anodes, and separators for LSBs, which could have a positive impact on the performance enhancement and commercialization of LSBs. The commercialization of high energy density secondary batteries is of great importance for the achievement of carbon neutrality and to meet the world's expanding energy demand.
Collapse
Affiliation(s)
- Fangzheng Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Yuying Han
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Xin Feng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Rui Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Ang Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Mingming Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Cheng Tong
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| |
Collapse
|
8
|
Wongwilawan S, Kim D, Nguyen TS, Lim W, Li S, Yavuz CT. Systematic Modulation of Thiol Functionalities in Inexpensive Porous Polymers for Effective Mercury Removal. Chemistry 2022; 28:e202202340. [PMID: 36169493 DOI: 10.1002/chem.202202340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 12/30/2022]
Abstract
Through accumulation, mercury contamination in aquatic systems still poses serious health risks despite the strict regulations on drinking water and industrial discharge. One effective strategy against this is adsorptive removal, in which a suitably functionalized porous material is added to water treatment protocols. Thiol (SH) group-grafted structures perform commendably; however, insufficient attention is paid to the cost, scalability, and reusability or how the arrangement of sulfur atoms could affect the HgII binding strength. We used an inexpensive and scalable porous covalent organic polymer (COP-130) to systematically introduce thiol functional groups with precise chain lengths and sulfur content. Thiol-functionalized COP-130 demonstrates enhanced wettability and excellent HgII uptake of up to 936 mg g-1 , with fast kinetics and exceptionally high selectivity. These Hg adsorbents are easily regenerated with HCl and can be used at least six times without loss of capacity even after treatment with strong acid, a rare performance in the domain of Hg-removal research.
Collapse
Affiliation(s)
- Sirinapa Wongwilawan
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea.,PTT Global Chemical Public Company Ltd., Bangkok, 10900, Thailand
| | - Doyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea
| | - Thien S Nguyen
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea.,Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Advanced Membranes & Porous Materials Center, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,KAUST Catalysis Center, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Wonki Lim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea
| | - Sheng Li
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea
| | - Cafer T Yavuz
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 (Republic of, Korea.,Oxide & Organic Nanomaterials for Energy & Environment Laboratory, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,Advanced Membranes & Porous Materials Center, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia.,KAUST Catalysis Center, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
9
|
Collins G, Kasturi PR, Karthik R, Shim JJ, Sukanya R, Breslin CB. Mesoporous carbon-based materials and their applications as non-precious metal electrocatalysts in the oxygen reduction reaction. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Xu J, Duan X, Zhang P, Niu Q, Dai S. Processing Poly (ethylene terephthalate) Waste into Functional Carbon Materials by Mechanochemical Extrusion. CHEMSUSCHEM 2022; 15:e202201576. [PMID: 36107132 DOI: 10.1002/cssc.202201576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Indexed: 06/15/2023]
Abstract
With the plastic pollution becoming worse, the upcycling of plastic waste into functional materials is a great challenge. Herein, a mechanochemical extrusion approach was developed for processing poly(ethylene terephthalate) (PET) waste into porous carbon materials. The essence of the cyclic extrusion approach lies in the solvent-free mixing of thermoplastic PET with pore-directing additive (e. g., silica or zinc chloride) at the molecular level. PET waste could be upcycled into functional carbon with high surface area (up to 1001 m2 g-1 ), specific shapes, and preferred mechanical strength, after cyclic extrusion and carbonization. Moreover, metal species could be well dispersed onto porous carbons through solvent-free extrusion, different from traditional loading methods (impregnation method, deposition-precipitation method). In this manner, mechanochemical extrusion provides an alternative for upcycling plastic waste into value-added materials.
Collapse
Affiliation(s)
- Jialu Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaolan Duan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Qiang Niu
- Inner Mongolia Erdos Power and Metallurgy Group Co., Ltd., Ordos, 017010, Inner Mongolia, P. R. China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, 37830 TN, United States
| |
Collapse
|
11
|
Effect of surface properties of Ni-MgO-Al2O3 catalyst for simultaneous H2 production and CO2 utilization using dry reforming of coke oven gas. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Miyake R. Cooperative systems constructed using crystalline metal complexes of short flexible peptides. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01145-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Robertson M, Zagho MM, Nazarenko S, Qiang Z. Mesoporous carbons from self‐assembled polymers. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Moustafa M. Zagho
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Sergei Nazarenko
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| | - Zhe Qiang
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg Mississippi USA
| |
Collapse
|
14
|
Do HW, Kim H, Cho ES. Enhanced hydrogen storage kinetics and air stability of nanoconfined NaAlH 4 in graphene oxide framework. RSC Adv 2021; 11:32533-32540. [PMID: 35493568 PMCID: PMC9041783 DOI: 10.1039/d1ra05111c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/25/2021] [Indexed: 11/23/2022] Open
Abstract
With a growing concern over climate change, hydrogen offers a wide range of opportunities for decarbonization and provides a flexibility in overall energy systems. While hydrogen energy is already plugged into industrial sectors, a physical hydrogen storage system poses a formidable challenge, giving momentum for safe and efficient solid-state hydrogen storage. Accommodating such demands, sodium alanate (NaAlH4) has been considered one of the candidate materials due to its high storage capacity. However, it requires a high temperature for hydrogen desorption and becomes inactive irreversibly upon air-exposure. To enhance sluggish reaction kinetics and reduce the hydrogen desorption temperature, NaAlH4 can be confined into a porous nanoscaffold; however, nanoconfined NaAlH4 with sufficient hydrogen storage performance and competent stability has not been demonstrated so far. In this work, we demonstrate a simultaneously enhanced hydrogen storage performance and air-stability for NaAlH4 particles confined in a nanoporous graphene oxide framework (GOF). The structure of the GOF was elaborately optimized as a nanoscaffold, and NaAlH4 was infiltrated into the pores of the GOF via incipient wetness impregnation. As a result of the nanoconfinement, both the onset temperature and activation energy for hydrogen desorption of NaAlH4 are significantly decreased without transition metal catalysts, while simultaneously achieving the stability under ambient conditions. NaAlH4 nanoconfined in a graphene oxide framework (NaAlH4@GOF) showed significantly enhanced hydrogen storage kinetics as well as improved oxidative stability under ambient conditions.![]()
Collapse
Affiliation(s)
- Hyung Wan Do
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - HyeonJi Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Eun Seon Cho
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|