1
|
Gu YT, Chen DD, Wang CB, Cheng Q, Han JR, Tian X, Liu S, Su W. A Mild and General trans-Diboration of Both Terminal and Internal Propargyl Alcohols. Org Lett 2024; 26:10499-10504. [PMID: 39605161 DOI: 10.1021/acs.orglett.4c03841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A practical and efficient trans-diboration of propargyl alcohols was accomplished using sodium hydride (NaH) as a base in N,N-dimethylformamide at room temperature. The mild reaction conditions demonstrate general applicability, facilitating the successful conversion of both terminal and internal propargyl alcohols with diverse structures and functional groups into highly functionalized alkenediboronates [4-borylated 1,2-oxaborol-2(5H)-oles]. The resulting products, which incorporate two boron groups, can be selectively activated and subjected to stepwise transformations, thereby providing an effective platform for synthesizing a wide range of structurally diverse trisubstituted alkenes.
Collapse
Affiliation(s)
- Yu-Tong Gu
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Di-Di Chen
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Cheng-Bin Wang
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Qiushi Cheng
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Jian-Rong Han
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Xia Tian
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Shouxin Liu
- Hebei Key Laboratory of Molecular Chemistry for Drug, Hebei University of Science and Technology, Shijiazhuang 050022, China
| | - Wei Su
- College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, Hebei University of Science and Technology, Shijiazhuang 050022, China
| |
Collapse
|
2
|
Blaha I, Weber S, Dülger R, Veiros LF, Kirchner K. Alkene Isomerization Catalyzed by a Mn(I) Bisphosphine Borohydride Complex. ACS Catal 2024; 14:13174-13180. [PMID: 39263541 PMCID: PMC11385370 DOI: 10.1021/acscatal.4c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
An additive-free manganese-catalyzed isomerization of terminal alkenes to internal alkenes is described. This reaction is implementing an inexpensive nonprecious metal catalyst. The most efficient catalyst is the borohydride complex cis-[Mn(dippe)(CO)2(κ2-BH4)]. This catalyst operates at room temperature, with a catalyst loading of 2.5 mol %. A variety of terminal alkenes is effectively and selectively transformed into the respective internal E-alkenes. Preliminary results show chain-walking isomerization at an elevated temperature. Mechanistic studies were carried out, including stoichiometric reactions and in situ NMR analysis. These experiments are flanked by computational studies. Based on these, the catalytic process is initiated by the liberation of "BH3" as a THF adduct. The catalytic process is initiated by double bond insertion into an M-H species, leading to an alkyl metal intermediate, followed by β-hydride elimination at the opposite position to afford the isomerization product.
Collapse
Affiliation(s)
- Ines Blaha
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Robin Dülger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| |
Collapse
|
3
|
Weber S, Blaha I, Kirchner K. Manganese catalysed reduction of nitriles with amine boranes. Catal Sci Technol 2024; 14:4843-4847. [PMID: 39206321 PMCID: PMC11347915 DOI: 10.1039/d4cy00813h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
The room temperature reduction of various nitriles using amine boranes (ABs) catalysed by a manganese(i) alkyl complex is described. Based on experimental findings, a plausible mechanistic scenario is presented. This includes the presence of two catalytic cycles, one for productive reduction of nitriles and one for hydrogen evolution.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163-AC A-1060 Wien Austria
| | - Ines Blaha
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163-AC A-1060 Wien Austria
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/163-AC A-1060 Wien Austria
| |
Collapse
|
4
|
Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkynes Catalyzed by a Mn(I) Alkyl PCP Pincer Complex Following Two Diverging Pathways. ACS Catal 2024; 14:12385-12391. [PMID: 39169905 PMCID: PMC11334104 DOI: 10.1021/acscatal.4c03805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024]
Abstract
A stereo- and regioselective Mn(I)-catalyzed hydroboration of terminal alkynes with pinacolborane (HBPin) is described. The hydroboration reaction is highly Z-selective in the case of aryl alkynes and E-selective in the case of aliphatic alkynes. The reaction requires no additives or solvents and proceeds with a catalyst loading of 1 mol % at 50-70 °C. The most active precatalyst is the bench-stable alkyl Mn(I) complex cis-[Mn(PCP-iPr)(CO)2(CH2CH2CH3)]. The catalytic process is initiated by the migratory insertion of a CO ligand into the Mn-alkyl bond to yield an acyl intermediate. This species undergoes C-H and B-H bond cleavage of the alkyne (aromatic alkynes) and HBPin (in the case of aliphatic alkynes) forming the active Mn(I) alkynyl and boryl catalysts [Mn(PCP-iPr)(CO)(C≡CR)] and [Mn(PCP-iPr)(CO)(BPin)], respectively. A broad variety of aromatic and aliphatic alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations. The functionalized alkenes can be used for further applications in cross-coupling reactions.
Collapse
Affiliation(s)
- Daniel
P. Zobernig
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, Wien A-1060, Austria
| | - Berthold Stöger
- X-Ray
Center, TU Wien, Getreidemarkt 9/163, Wien A-1060, Austria
| | - Luis F. Veiros
- Centro
de
Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto
Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049 001, Portugal
| | - Karl Kirchner
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, Wien A-1060, Austria
| |
Collapse
|
5
|
Zhang X, Lu K, Chen X, Su G, Rong X, Ma M. Hydroboration and hydrosilylation of alkenes catalyzed by an unsymmetrical magnesium methyl complex. Org Biomol Chem 2024; 22:5353-5360. [PMID: 38869074 DOI: 10.1039/d4ob00745j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The hydroboration and hydrosilylation of alkenes catalyzed by the unsymmetrical β-diketiminate magnesium methyl complex [(DippXylNacnac)MgMe (THF)] (1) have been reported. When complex 1 was employed as a highly efficient catalyst in the hydroboration of various alkenes with HBpin, only the anti-Markovnikov hydroboration products were obtained in high yields and with high regioselectivities under mild reaction conditions (60 °C). To our surprise, it showed different regioselectivities in the hydrosilylation of a range of alkenes with PhSiH3. Aromatic alkene substrates afforded the corresponding branched Markovnikov hydrosilylation products in high yields and with high regioselectivities; conversely, aliphatic alkenes produced the linear anti-Markovnikov products in moderate yields. This is completely consistent with the corresponding density functional theory (DFT) calculations. In addition, the practical utility was demonstrated via scale-up reactions of boronate esters and a preliminary plausible mechanism of hydroboration and hydrosilylation have been investigated as well.
Collapse
Affiliation(s)
- Xuguang Zhang
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Kai Lu
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xi Chen
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Guanxin Su
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaofei Rong
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| | - Mengtao Ma
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Pawar RB, Karmur MH, Punji B. Ligand-free MnBr 2-Catalyzed Chemo- and Stereoselective Hydroboration of Terminal Alkynes. Chem Asian J 2024; 19:e202400158. [PMID: 38512720 DOI: 10.1002/asia.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Developing simple and benign protocols for synthesizing alkenylboronates is crucial as they are synthetically valuable compounds in various organic transformations. In this work, we report a straightforward ligand-free protocol for synthesizing alkenylboronates via atom-economical hydroboration of alkynes with HBpin catalyzed by a manganese salt. The reaction shows a high level of chemo and regioselectivity for the terminal alkynes and exclusively produces E-selective alkenylboronates. The hydroboration scope is vast, with the resilience of a range of synthetically beneficial functionalities, such as halides, ether, alkenyl, silyl and thiophenyl groups. This reaction proceeds through the involvement of a metal-hydride intermediate. The developed alkenylboronate can be smoothly converted to useful C-C, C-N and C-I bond-forming reactions.
Collapse
Affiliation(s)
- Rameshwar B Pawar
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Mital H Karmur
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
7
|
Duran Arroyo V, Arevalo R. Tandem manganese catalysis for the chemo-, regio-, and stereoselective hydroboration of terminal alkynes: in situ precatalyst activation as a key to enhanced chemoselectivity. RSC Adv 2024; 14:5514-5523. [PMID: 38352676 PMCID: PMC10863604 DOI: 10.1039/d3ra08747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
The manganese(ii) complex [Mn(iPrPNP)Cl2] (iPrPNP = 2,6-bis(diisopropylphosphinomethyl)pyridine) was found to catalyze the stereo- and regioselective hydroboration of terminal alkynes employing HBPin (pinacolborane). In the absence of in situ activators, mixtures of alkynylboronate and E-alkenylboronate esters were formed, whereas when NaHBEt3 was employed as the in situ activator, E-alkenylboronate esters were exclusively accessed. Mechanistic studies revealed a tandem C-H borylation/semihydrogenation pathway accounting for the formation of the products. Stoichiometric reactions hint toward reaction of a Mn-H active species with the terminal alkyne as the catalyst entry pathway to the cycle, whereas reaction with HBPin led to catalyst deactivation.
Collapse
Affiliation(s)
- Victor Duran Arroyo
- Department of Chemistry and Biochemistry, University of California 5200 North Lake Road 95343 Merced California USA
| | - Rebeca Arevalo
- Department of Chemistry and Biochemistry, University of California 5200 North Lake Road 95343 Merced California USA
| |
Collapse
|
8
|
Das K, Kundu A, Sarkar K, Adhikari D, Maji B. Catalytic acceptorless dehydrogenative borylation of styrenes enabled by a molecularly defined manganese complex. Chem Sci 2024; 15:1098-1105. [PMID: 38239678 PMCID: PMC10793603 DOI: 10.1039/d3sc05523j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/09/2023] [Indexed: 01/22/2024] Open
Abstract
In this study, we employed a 3d metal complex as a catalyst to synthesize alkenyl boronate esters through the dehydrogenative coupling of styrenes and pinacolborane. The process generates hydrogen gas as the sole byproduct without requiring an acceptor, rendering it environmentally friendly and atom-efficient. This methodology demonstrated exceptional selectivity for dehydrogenative borylation over direct hydroboration. Additionally, it exhibited a preference for borylating aromatic alkenes over aliphatic ones. Notably, derivatives of natural products and bioactive molecules successfully underwent diversification using this approach. The alkenyl boronate esters served as precursors for the synthesis of various pharmaceuticals and potential anticancer agents. Our research involved comprehensive experimental and computational studies to elucidate the reaction pathway, highlighting the B-H bond cleavage as the rate-determining step. The catalyst's success was attributed to the hemilability and metal-ligand bifunctionality of the ligand backbone.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Abhishek Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali SAS Nagar 140306 India
| | - Koushik Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali SAS Nagar 140306 India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur 741246 India
| |
Collapse
|
9
|
Schratzberger H, Stöger B, Veiros LF, Kirchner K. Selective Transfer Semihydrogenation of Alkynes Catalyzed by an Iron PCP Pincer Alkyl Complex. ACS Catal 2023; 13:14012-14022. [PMID: 37942266 PMCID: PMC10629171 DOI: 10.1021/acscatal.3c04156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Two bench-stable Fe(II) alkyl complexes [Fe(κ3PCP-PCP-iPr)(CO)2(R)] (R = CH2CH2CH3, CH3) were obtained by the treatment of [Fe(κ3PCP-PCP-iPr)(CO)2(H)] with NaNH2 and subsequent addition of CH3CH2CH2Br and CH3I, respectively. The reaction proceeds via the anionic Fe(0) intermediate Na[Fe(κ3PCP-PCP-iPr)(CO)2]. The catalytic performance of both alkyl complexes was investigated for the transfer hydrogenation of terminal and internal alkynes utilizing PhSiH3 and iPrOH as a hydrogen source. Precatalyst activation is initiated by migration of the alkyl ligand to the carbonyl C atom of an adjacent CO ligand. In agreement with previous findings, the rate of alkyl migration follows the order nPr > Me. Accordingly, [Fe(κ3PCP-PCP-iPr)(CO)2(CH2CH2CH3)] is the more active catalyst. The reaction takes place at 25 °C with a catalyst loading of 0.5 mol%. There was no overhydrogenation, and in the case of internal alkynes, exclusively, Z-alkenes are formed. The implemented protocol tolerates a variety of electron-donating and electron-withdrawing functional groups including halides, nitriles, unprotected amines, and heterocycles. Mechanistic investigations including deuterium labeling studies and DFT calculations were undertaken to provide a reasonable reaction mechanism.
Collapse
Affiliation(s)
- Heiko Schratzberger
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Berthold Stöger
- X-Ray
Center, TU Wien, Getreidemarkt 9/163, A-1060 Wien, Austria
| | - Luis F. Veiros
- Centro
de
Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| |
Collapse
|
10
|
Miao X, Chen W, Lv S, Li A, Li Y, Zhang Q, Yue Y, Zhao H, Liu L, Guo S, Guo L. Stabilizing Single-Atomic Pt by Forming PtFe Bonds for Efficient Diboration of Alkynes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211790. [PMID: 36632699 DOI: 10.1002/adma.202211790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Precisely tailoring the oxidation state of single-atomic metal in heterogeneous catalysis is an efficient way to stabilize the single-atomic site and promote their activity, but realizing this approach remains a grand challenge to date. Herein, a class of stable single-atomic catalysts with well-tuned oxidation state of Pt by forming PtFe atomic bonds is reported, which are supported by defective Fe2 O3 nanosheets on reduced graphene oxide (PFARFNs). These as-synthesized materials can greatly enhance the catalytic activity, stability, and selectivity for the diboration of alkynes. The PFARFNs exhibit high conversion of 99% at 100 °C with an outstanding turnover frequency (TOF) of 545 h-1 , and a relatively high conversion of 58% at room temperature (25 °C) with a TOF of 310 h-1 , which has been hardly achieved previously. Through both experimental and theoretical investigation, it is demonstrated that the fast electron transfer from Fe to Pt in Fe-Pt-O atomic sites in PFARFNs can not only stabilize the single-atomic Pt, but also significantly improve their catalytic activity.
Collapse
Affiliation(s)
- Xiang Miao
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuning Lv
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Anran Li
- School of Engineering Medicine, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, P. R. China
| | - Yanhong Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yonghai Yue
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Hewei Zhao
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Limin Liu
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
11
|
Kostera S, Weber S, Blaha I, Peruzzini M, Kirchner K, Gonsalvi L. Base- and Additive-Free Carbon Dioxide Hydroboration to Methoxyboranes Catalyzed by Non-Pincer-Type Mn(I) Complexes. ACS Catal 2023; 13:5236-5244. [PMID: 37123593 PMCID: PMC10127281 DOI: 10.1021/acscatal.3c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/10/2023] [Indexed: 04/03/2023]
Abstract
Well-defined, bench stable Mn(I) non-pincer-type complexes were tested as earth-abundant transition metal catalysts for the selective reduction of CO2 to boryl-protected MeOH in the presence of pinacolborane (HBpin). Essentially, quantitative yields were obtained under mild reaction conditions (1 bar CO2, 60 °C), without the need of any base or additives, in the presence of the alkylcarbonyl Mn(I) bis(phosphine) complexes fac-[Mn(CH2CH2CH3)(dippe)(CO)3] [Mn1, dippe = 1,2-bis(diisopropylphosphino)ethane] and [Mn(dippe)(CO)2{(μ-H)2(Bpin)}] (Mn4), that is obtained by reaction of the bench-stable precatalyst Mn1 with HBpin via elimination of butanal. Preliminary mechanistic details were obtained by a combination of NMR experiments and monitoring of the catalytic reactions.
Collapse
|
12
|
Nunes MP, Jawale DV, Delolo FG, Araujo MH, Gravel E, Doris E, da Silva Júnior EN. Solvent-free hydroboration of alkenes and alkynes catalyzed by rhodium-ruthenium nanoparticles on carbon nanotubes. Chem Commun (Camb) 2023; 59:2763-2766. [PMID: 36786050 DOI: 10.1039/d2cc06864h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
A heterogeneous catalyst consisting of bimetallic rhodium-ruthenium particles immobilized on carbon nanotubes was used in the hydroboration reaction and proved highly effective for a variety of alkenes and alkynes. The reactions were carried out with low catalytic loadings (0.04 mol%), under solvent-free conditions, and at room temperature. In addition, to demonstrate its recyclability, the catalyst was recovered by a simple centrifugation process and reused over 5 consecutive cycles without losing any activity.
Collapse
Affiliation(s)
- Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Dhanaji V Jawale
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Fábio G Delolo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Maria H Araujo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191, Gif-sur-Yvette, France.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
13
|
Wang Y, Li Y, Wang L, Ding S, Song L, Zhang X, Wu YD, Sun J. Ir-Catalyzed Regioselective Dihydroboration of Thioalkynes toward Gem-Diboryl Thioethers. J Am Chem Soc 2023; 145:2305-2314. [PMID: 36657379 DOI: 10.1021/jacs.2c10881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
While 1,1-diboryl (gem-diboryl) compounds are valuable synthetic building blocks, currently, related studies have mainly focused on those 1,1-diboryl alkanes without a hetero functional group in the α-position. gem-Diboryl compounds with an α-hetero substituent, though highly versatile, have been limitedly accessible and thus rarely utilized. Herein, we have developed the first α-dihydroboration of heteroalkynes leading to the efficient construction of gem-diboryl, hetero-, and tetra-substituted carbon centers. This straightforward, practical, mild, and atom-economic reaction is an attractive complement to the conventional multistep synthetic strategy relying on deprotonation of gem-diborylmethane by a strong base. Specifically, [Ir(cod)(OMe)]2 was found to be uniquely effective for this process of thioalkynes, leading to excellent α-regioselectivity when delivering the two boryl groups, which is remarkable in view of the many competitive paths including monohydroboration, 1,2-dihydroboration, dehydrodiboration, triboration, tetraboration, etc. Control experiments combined with DFT calculations suggested that this process involves two sequential hydroboration events. The second hydroboration requires a higher energy barrier due to severe steric repulsion in generating the highly congested α-sulfenyl gem-diboryl carbon center, a structural motif that was almost unknown before.
Collapse
Affiliation(s)
- Yong Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Yuxuan Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Lei Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Shengtao Ding
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China
| | - Lijuan Song
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun-Dong Wu
- Shenzhen Bay Laboratory, Shenzhen 518055, China.,Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon 999077, Hong Kong SAR, China.,Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
| |
Collapse
|
14
|
Torres-Calis A, García JJ. Homogeneous Manganese-Catalyzed Hydrofunctionalizations of Alkenes and Alkynes: Catalytic and Mechanistic Tendencies. ACS OMEGA 2022; 7:37008-37038. [PMID: 36312376 PMCID: PMC9608411 DOI: 10.1021/acsomega.2c05109] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In recent years, many manganese-based homogeneous catalytic precursors have been developed as powerful alternatives in organic synthesis. Among these, the hydrofunctionalizations of unsaturated C-C bonds correspond to outstanding ways to afford compounds with more versatile functional groups, which are commonly used as building blocks in the production of fine chemicals and feedstock for the industrial field. Herein, we present an account of the Mn-catalyzed homogeneous hydrofunctionalizations of alkenes and alkynes with the main objective of finding catalytic and mechanistic tendencies that could serve as a platform for the works to come.
Collapse
|
15
|
Weber S, Kirchner K. Manganese Alkyl Carbonyl Complexes: From Iconic Stoichiometric Textbook Reactions to Catalytic Applications. Acc Chem Res 2022; 55:2740-2751. [PMID: 36074912 PMCID: PMC9494751 DOI: 10.1021/acs.accounts.2c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The activation of weakly polarized bonds represents a challenging, yet highly valuable process. In this context, precious metal catalysts have been used as reliable compounds for the activation of rather inert bonds for the last several decades. Nevertheless, base-metal complexes including cobalt, iron, or nickel are currently promising candidates for the substitution of noble metals in order to develop more sustainable processes. In the past few years, manganese(I)-based complexes were heavily employed as efficient catalysts for (de)hydrogenation reactions. However, the vast majority of these complexes operate via a metal-ligand bifunctionality as already well implemented for precious metals decades ago. Although high reactivity can be achieved in various reactions, this concept is often not applicable to certain transformations due to outer-sphere mechanisms. In this Account, we outline the potential of alkylated Mn(I)-carbonyl complexes for the activation of nonpolar and moderately polar E-H (E = H, B, C, Si) bonds and disclose our successful approach for the utilization of complexes in the field of homogeneous catalysis. This involves the rational design of manganese complexes for hydrogenation reactions involving ketones, nitriles, carbon dioxide, and alkynes. In addition to that, the reduction of alkenes by dihydrogen could be achieved by a series of well-defined manganese complexes which was not possible before. Furthermore, we elucidate the potential of our Mn-based catalysts in the field of hydrofunctionalization reactions for carbon-carbon multiple bonds. Our investigations unveiled novel insights into reaction pathways of dehydrogenative silylation of alkenes and trans-1,2-diboration of terminal alkynes, which was not yet reported for transition metals. Due to rational catalyst design, these transformations can be achieved under mild reaction conditions. Delightfully, all of the employed complexes are bench-stable compounds. We took advantage of the fact that Mn(I) alkyl complexes are known to undergo migratory insertion of the alkyl group into the CO ligand, yielding an unsaturated acyl intermediate. Hydrogen atom abstraction by the acyl ligand then paves the way to an active species for a variety of catalytic transformations which all proceed via an inner-sphere process. Although these textbook reactions have been well-known for decades, the application in catalytic transformations is still in its infancy. A brief historical overview of alkylated manganese(I)-carbonyl complexes is provided, covering the synthesis and especially iconic stoichiometric transformations, e.g., carbonylation, as intensively examined by Calderazzo, Moss, and others. An outline of potential future applications of defined alkyl manganese complexes will be given, which may inspire researchers for the development of novel (base-)metal catalysts.
Collapse
|
16
|
Kumar R, Dutta S, Sharma V, Singh PP, Gonnade RG, Koley D, Sen SS. Monomeric Magnesium Catalyzed Alkene and Alkyne Hydroboration. Chemistry 2022; 28:e202201896. [DOI: 10.1002/chem.202201896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sayan Dutta
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Praval P. Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Materials Chemistry Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Debasis Koley
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
17
|
Das K, Waiba S, Jana A, Maji B. Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chem Soc Rev 2022; 51:4386-4464. [PMID: 35583150 DOI: 10.1039/d2cs00093h] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emerging field of organometallic catalysis has shifted towards research on Earth-abundant transition metals due to their ready availability, economic advantage, and novel properties. In this case, manganese, the third most abundant transition-metal in the Earth's crust, has emerged as one of the leading competitors. Accordingly, a large number of molecularly-defined Mn-complexes has been synthesized and employed for hydrogenation, dehydrogenation, and hydroelementation reactions. In this regard, catalyst design is based on three pillars, namely, metal-ligand bifunctionality, ligand hemilability, and redox activity. Indeed, the developed catalysts not only differ in the number of chelating atoms they possess but also their working principles, thereby leading to different turnover numbers for product molecules. Hence, the critical assessment of molecularly defined manganese catalysts in terms of chelating atoms, reaction conditions, mechanistic pathway, and product turnover number is significant. Herein, we analyze manganese complexes for their catalytic activity, versatility to allow multiple transformations and their routes to convert substrates to target molecules. This article will also be helpful to get significant insight into ligand design, thereby aiding catalysis design.
Collapse
Affiliation(s)
- Kuhali Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Satyadeep Waiba
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India.
| |
Collapse
|
18
|
Farrar-Tobar RA, Weber S, Csendes Z, Ammaturo A, Fleissner S, Hoffmann H, Veiros LF, Kirchner K. E-Selective Manganese-Catalyzed Semihydrogenation of Alkynes with H 2 Directly Employed or In Situ-Generated. ACS Catal 2022; 12:2253-2260. [PMID: 35211351 PMCID: PMC8859827 DOI: 10.1021/acscatal.1c06022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Indexed: 02/07/2023]
Abstract
Selective semihydrogenation of alkynes with the Mn(I) alkyl catalyst fac-[Mn(dippe)(CO)3(CH2CH2CH3)] (dippe = 1,2-bis(di-iso-propylphosphino)ethane) as a precatalyst is described. The required hydrogen gas is either directly employed or in situ-generated upon alcoholysis of KBH4 with methanol. A series of aryl-aryl, aryl-alkyl, alkyl-alkyl, and terminal alkynes was readily hydrogenated to yield E-alkenes in good to excellent isolated yields. The reaction proceeds at 60 °C for directly employed hydrogen or at 60-90 °C with in situ-generated hydrogen and catalyst loadings of 0.5-2 mol %. The implemented protocol tolerates a variety of electron-donating and electron-withdrawing functional groups, including halides, phenols, nitriles, unprotected amines, and heterocycles. The reaction can be upscaled to the gram scale. Mechanistic investigations, including deuterium-labeling studies and density functional theory (DFT) calculations, were undertaken to provide a reasonable reaction mechanism, showing that initially formed Z-isomer undergoes fast isomerization to afford the thermodynamically more stable E-isomer.
Collapse
Affiliation(s)
- Ronald A. Farrar-Tobar
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Zita Csendes
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Antonio Ammaturo
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Sarah Fleissner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Helmuth Hoffmann
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| | - Luis F. Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, Lisboa 1049-001, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, Vienna A-1060, Austria
| |
Collapse
|
19
|
Abstract
AbstractRecent developments in manganese-catalyzed reducing transformations—hydrosilylation, hydroboration, hydrogenation, and transfer hydrogenation—are reviewed herein. Over the past half a decade (i.e., 2016 to the present), more than 115 research publications have been reported in these fields. Novel organometallic compounds and new reduction transformations have been discovered and further developed. Significant challenges that had historically acted as barriers for the use of manganese catalysts in reduction reactions are slowly being broken down. This review will hopefully assist in developing this research area, by presenting a clear and concise overview of the catalyst structures and substrate transformations published so far.1 Introduction2 Hydrosilylation3 Hydroboration4 Hydrogenation5 Transfer Hydrogenation6 Conclusion and Perspective
Collapse
Affiliation(s)
- Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion
- Ruhr University Bochum
| | - Peter Schlichter
- Max Planck Institute for Chemical Energy Conversion
- Institut für Technische und Makromolekulare Chemie (ITMC), RWTH Aachen University
| |
Collapse
|
20
|
Geier SJ, Vogels CM, Melanson JA, Westcott SA. The transition metal-catalysed hydroboration reaction. Chem Soc Rev 2022; 51:8877-8922. [DOI: 10.1039/d2cs00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the development of the transition metal-catalysed hydroboration reaction, from its beginnings in the 1980s to more recent developments including earth-abundant catalysts and an ever-expanding array of substrates.
Collapse
Affiliation(s)
- Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jennifer A. Melanson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
21
|
Weber S, Zobernig D, Stöger B, Veiros LF, Kirchner K. Hydroboration of Terminal Alkenes and trans-1,2-Diboration of Terminal Alkynes Catalyzed by a Manganese(I) Alkyl Complex. Angew Chem Int Ed Engl 2021; 60:24488-24492. [PMID: 34435424 PMCID: PMC8596825 DOI: 10.1002/anie.202110736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 11/21/2022]
Abstract
A MnI‐catalyzed hydroboration of terminal alkenes and a 1,2‐diboration of terminal alkynes with pinacolborane (HBPin) is described. For alkenes, anti‐Markovnikov hydroboration takes place; for alkynes the reaction proceeds with excellent trans‐1,2‐selectivity. The most active pre‐catalyst is bench‐stable alkyl bisphosphine MnI complex fac‐[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic process is initiated by migratory insertion of a CO ligand into the Mn–alkyl bond to yield an acyl intermediate, which undergoes B−H bond cleavage of HBPin (for alkenes) and rapid C−H bond cleavage (for alkynes), forming the active MnI boryl and acetylide catalysts [Mn(dippe)(CO)2(BPin)] and [Mn(dippe)(CO)2(C≡CR)], respectively. A broad variety of aromatic and aliphatic alkenes and alkynes was efficiently and selectively borylated. Mechanistic insights are provided based on experimental data and DFT calculations revealing that an acceptorless reaction is operating involving dihydrogen release.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Daniel Zobernig
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060, Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060, Wien, Austria
| |
Collapse
|
22
|
Weber S, Glavic M, Stöger B, Pittenauer E, Podewitz M, Veiros LF, Kirchner K. Manganese-Catalyzed Dehydrogenative Silylation of Alkenes Following Two Parallel Inner-Sphere Pathways. J Am Chem Soc 2021; 143:17825-17832. [PMID: 34644064 PMCID: PMC8554758 DOI: 10.1021/jacs.1c09175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
We report on an additive-free
Mn(I)-catalyzed dehydrogenative silylation
of terminal alkenes. The most active precatalyst is the bench-stable
alkyl bisphosphine Mn(I) complex fac-[Mn(dippe)(CO)3(CH2CH2CH3)]. The catalytic
process is initiated by migratory insertion of a CO ligand into the
Mn–alkyl bond to yield an acyl intermediate which undergoes
rapid Si–H bond cleavage of the silane HSiR3 forming
the active 16e– Mn(I) silyl catalyst [Mn(dippe)(CO)2(SiR3)] together with liberated butanal. A broad
variety of aromatic and aliphatic alkenes was efficiently and selectively
converted into E-vinylsilanes and allylsilanes, respectively,
at room temperature. Mechanistic insights are provided based on experimental
data and DFT calculations revealing that two parallel reaction pathways
are operative: an acceptorless reaction pathway involving dihydrogen
release and a pathway requiring an alkene as sacrificial hydrogen
acceptor.
Collapse
Affiliation(s)
- Stefan Weber
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Manuel Glavic
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Berthold Stöger
- X-Ray Center, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Ernst Pittenauer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Maren Podewitz
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais No. 1, 1049-001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| |
Collapse
|